hi
4
Makefile
@ -1,4 +1,4 @@
|
||||
GPU=0
|
||||
GPU=1
|
||||
OPENCV=1
|
||||
CUDNN=0
|
||||
DEBUG=0
|
||||
@ -41,7 +41,7 @@ CFLAGS+= -DCUDNN
|
||||
LDFLAGS+= -lcudnn
|
||||
endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o art.o
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS+= -lstdc++
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
||||
|
@ -1,6 +1,6 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=4
|
||||
batch=1
|
||||
subdivisions=1
|
||||
height=448
|
||||
width=448
|
||||
channels=3
|
||||
|
15
cfg/yolo.cfg
@ -1,6 +1,6 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=64
|
||||
batch=1
|
||||
subdivisions=1
|
||||
height=448
|
||||
width=448
|
||||
channels=3
|
||||
@ -13,14 +13,6 @@ steps=200,400,600,20000,30000
|
||||
scales=2.5,2,2,.1,.1
|
||||
max_batches = 40000
|
||||
|
||||
[crop]
|
||||
crop_width=448
|
||||
crop_height=448
|
||||
flip=0
|
||||
angle=0
|
||||
saturation = 1.5
|
||||
exposure = 1.5
|
||||
|
||||
[convolutional]
|
||||
filters=64
|
||||
size=7
|
||||
@ -211,9 +203,6 @@ activation=leaky
|
||||
output=4096
|
||||
activation=leaky
|
||||
|
||||
[dropout]
|
||||
probability=.5
|
||||
|
||||
[connected]
|
||||
output= 1470
|
||||
activation=linear
|
||||
|
Before Width: | Height: | Size: 713 B After Width: | Height: | Size: 713 B |
Before Width: | Height: | Size: 629 B After Width: | Height: | Size: 629 B |
Before Width: | Height: | Size: 537 B After Width: | Height: | Size: 537 B |
Before Width: | Height: | Size: 610 B After Width: | Height: | Size: 610 B |
Before Width: | Height: | Size: 494 B After Width: | Height: | Size: 494 B |
Before Width: | Height: | Size: 657 B After Width: | Height: | Size: 657 B |
Before Width: | Height: | Size: 833 B After Width: | Height: | Size: 833 B |
Before Width: | Height: | Size: 520 B After Width: | Height: | Size: 520 B |
Before Width: | Height: | Size: 497 B After Width: | Height: | Size: 497 B |
Before Width: | Height: | Size: 583 B After Width: | Height: | Size: 583 B |
Before Width: | Height: | Size: 635 B After Width: | Height: | Size: 635 B |
Before Width: | Height: | Size: 480 B After Width: | Height: | Size: 480 B |
Before Width: | Height: | Size: 517 B After Width: | Height: | Size: 517 B |
Before Width: | Height: | Size: 500 B After Width: | Height: | Size: 500 B |
Before Width: | Height: | Size: 547 B After Width: | Height: | Size: 547 B |
Before Width: | Height: | Size: 541 B After Width: | Height: | Size: 541 B |
Before Width: | Height: | Size: 579 B After Width: | Height: | Size: 579 B |
Before Width: | Height: | Size: 466 B After Width: | Height: | Size: 466 B |
Before Width: | Height: | Size: 541 B After Width: | Height: | Size: 541 B |
Before Width: | Height: | Size: 436 B After Width: | Height: | Size: 436 B |
Before Width: | Height: | Size: 550 B After Width: | Height: | Size: 550 B |
Before Width: | Height: | Size: 438 B After Width: | Height: | Size: 438 B |
Before Width: | Height: | Size: 711 B After Width: | Height: | Size: 711 B |
Before Width: | Height: | Size: 518 B After Width: | Height: | Size: 518 B |
Before Width: | Height: | Size: 501 B After Width: | Height: | Size: 501 B |
Before Width: | Height: | Size: 535 B After Width: | Height: | Size: 535 B |
Before Width: | Height: | Size: 517 B After Width: | Height: | Size: 517 B |
Before Width: | Height: | Size: 474 B After Width: | Height: | Size: 474 B |
Before Width: | Height: | Size: 785 B After Width: | Height: | Size: 785 B |
Before Width: | Height: | Size: 779 B After Width: | Height: | Size: 779 B |
Before Width: | Height: | Size: 535 B After Width: | Height: | Size: 535 B |
Before Width: | Height: | Size: 559 B After Width: | Height: | Size: 559 B |
Before Width: | Height: | Size: 653 B After Width: | Height: | Size: 653 B |
Before Width: | Height: | Size: 812 B After Width: | Height: | Size: 812 B |
Before Width: | Height: | Size: 488 B After Width: | Height: | Size: 488 B |
Before Width: | Height: | Size: 602 B After Width: | Height: | Size: 602 B |
Before Width: | Height: | Size: 588 B After Width: | Height: | Size: 588 B |
Before Width: | Height: | Size: 666 B After Width: | Height: | Size: 666 B |
Before Width: | Height: | Size: 661 B After Width: | Height: | Size: 661 B |
Before Width: | Height: | Size: 575 B After Width: | Height: | Size: 575 B |
Before Width: | Height: | Size: 640 B After Width: | Height: | Size: 640 B |
Before Width: | Height: | Size: 806 B After Width: | Height: | Size: 806 B |
Before Width: | Height: | Size: 471 B After Width: | Height: | Size: 471 B |
Before Width: | Height: | Size: 526 B After Width: | Height: | Size: 526 B |
Before Width: | Height: | Size: 561 B After Width: | Height: | Size: 561 B |
Before Width: | Height: | Size: 841 B After Width: | Height: | Size: 841 B |
Before Width: | Height: | Size: 745 B After Width: | Height: | Size: 745 B |
Before Width: | Height: | Size: 762 B After Width: | Height: | Size: 762 B |
Before Width: | Height: | Size: 606 B After Width: | Height: | Size: 606 B |
Before Width: | Height: | Size: 634 B After Width: | Height: | Size: 634 B |
Before Width: | Height: | Size: 552 B After Width: | Height: | Size: 552 B |
Before Width: | Height: | Size: 853 B After Width: | Height: | Size: 853 B |
Before Width: | Height: | Size: 633 B After Width: | Height: | Size: 633 B |
Before Width: | Height: | Size: 515 B After Width: | Height: | Size: 515 B |
Before Width: | Height: | Size: 789 B After Width: | Height: | Size: 789 B |
Before Width: | Height: | Size: 785 B After Width: | Height: | Size: 785 B |
Before Width: | Height: | Size: 761 B After Width: | Height: | Size: 761 B |
Before Width: | Height: | Size: 593 B After Width: | Height: | Size: 593 B |
Before Width: | Height: | Size: 777 B After Width: | Height: | Size: 777 B |
Before Width: | Height: | Size: 583 B After Width: | Height: | Size: 583 B |
Before Width: | Height: | Size: 571 B After Width: | Height: | Size: 571 B |
Before Width: | Height: | Size: 475 B After Width: | Height: | Size: 475 B |
Before Width: | Height: | Size: 836 B After Width: | Height: | Size: 836 B |
Before Width: | Height: | Size: 459 B After Width: | Height: | Size: 459 B |
Before Width: | Height: | Size: 819 B After Width: | Height: | Size: 819 B |
Before Width: | Height: | Size: 527 B After Width: | Height: | Size: 527 B |
Before Width: | Height: | Size: 560 B After Width: | Height: | Size: 560 B |
Before Width: | Height: | Size: 698 B After Width: | Height: | Size: 698 B |
Before Width: | Height: | Size: 744 B After Width: | Height: | Size: 744 B |
Before Width: | Height: | Size: 669 B After Width: | Height: | Size: 669 B |
Before Width: | Height: | Size: 752 B After Width: | Height: | Size: 752 B |
Before Width: | Height: | Size: 765 B After Width: | Height: | Size: 765 B |
Before Width: | Height: | Size: 806 B After Width: | Height: | Size: 806 B |
Before Width: | Height: | Size: 411 B After Width: | Height: | Size: 411 B |
Before Width: | Height: | Size: 628 B After Width: | Height: | Size: 628 B |
Before Width: | Height: | Size: 509 B After Width: | Height: | Size: 509 B |
Before Width: | Height: | Size: 700 B After Width: | Height: | Size: 700 B |
Before Width: | Height: | Size: 709 B After Width: | Height: | Size: 709 B |
Before Width: | Height: | Size: 474 B After Width: | Height: | Size: 474 B |
Before Width: | Height: | Size: 509 B After Width: | Height: | Size: 509 B |
Before Width: | Height: | Size: 374 B After Width: | Height: | Size: 374 B |
Before Width: | Height: | Size: 654 B After Width: | Height: | Size: 654 B |
Before Width: | Height: | Size: 654 B After Width: | Height: | Size: 654 B |
Before Width: | Height: | Size: 552 B After Width: | Height: | Size: 552 B |
Before Width: | Height: | Size: 771 B After Width: | Height: | Size: 771 B |
Before Width: | Height: | Size: 584 B After Width: | Height: | Size: 584 B |
@ -8,6 +8,18 @@ extern "C" {
|
||||
}
|
||||
|
||||
|
||||
__device__ float lhtan_activate_kernel(float x)
|
||||
{
|
||||
if(x < 0) return .001*x;
|
||||
if(x > 1) return .001*(x-1) + 1;
|
||||
return x;
|
||||
}
|
||||
__device__ float lhtan_gradient_kernel(float x)
|
||||
{
|
||||
if(x > 0 && x < 1) return 1;
|
||||
return .001;
|
||||
}
|
||||
|
||||
__device__ float hardtan_activate_kernel(float x)
|
||||
{
|
||||
if (x < -1) return -1;
|
||||
@ -89,6 +101,8 @@ __device__ float activate_kernel(float x, ACTIVATION a)
|
||||
return stair_activate_kernel(x);
|
||||
case HARDTAN:
|
||||
return hardtan_activate_kernel(x);
|
||||
case LHTAN:
|
||||
return lhtan_activate_kernel(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -120,6 +134,8 @@ __device__ float gradient_kernel(float x, ACTIVATION a)
|
||||
return stair_gradient_kernel(x);
|
||||
case HARDTAN:
|
||||
return hardtan_gradient_kernel(x);
|
||||
case LHTAN:
|
||||
return lhtan_gradient_kernel(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -32,6 +32,8 @@ char *get_activation_string(ACTIVATION a)
|
||||
return "stair";
|
||||
case HARDTAN:
|
||||
return "hardtan";
|
||||
case LHTAN:
|
||||
return "lhtan";
|
||||
default:
|
||||
break;
|
||||
}
|
||||
@ -47,6 +49,7 @@ ACTIVATION get_activation(char *s)
|
||||
if (strcmp(s, "relie")==0) return RELIE;
|
||||
if (strcmp(s, "plse")==0) return PLSE;
|
||||
if (strcmp(s, "hardtan")==0) return HARDTAN;
|
||||
if (strcmp(s, "lhtan")==0) return LHTAN;
|
||||
if (strcmp(s, "linear")==0) return LINEAR;
|
||||
if (strcmp(s, "ramp")==0) return RAMP;
|
||||
if (strcmp(s, "leaky")==0) return LEAKY;
|
||||
@ -83,6 +86,8 @@ float activate(float x, ACTIVATION a)
|
||||
return stair_activate(x);
|
||||
case HARDTAN:
|
||||
return hardtan_activate(x);
|
||||
case LHTAN:
|
||||
return lhtan_activate(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -122,6 +127,8 @@ float gradient(float x, ACTIVATION a)
|
||||
return stair_gradient(x);
|
||||
case HARDTAN:
|
||||
return hardtan_gradient(x);
|
||||
case LHTAN:
|
||||
return lhtan_gradient(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -4,7 +4,7 @@
|
||||
#include "math.h"
|
||||
|
||||
typedef enum{
|
||||
LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN
|
||||
LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN
|
||||
}ACTIVATION;
|
||||
|
||||
ACTIVATION get_activation(char *s);
|
||||
@ -47,6 +47,18 @@ static inline float plse_activate(float x)
|
||||
return .125*x + .5;
|
||||
}
|
||||
|
||||
static inline float lhtan_activate(float x)
|
||||
{
|
||||
if(x < 0) return .001*x;
|
||||
if(x > 1) return .001*(x-1) + 1;
|
||||
return x;
|
||||
}
|
||||
static inline float lhtan_gradient(float x)
|
||||
{
|
||||
if(x > 0 && x < 1) return 1;
|
||||
return .001;
|
||||
}
|
||||
|
||||
static inline float hardtan_gradient(float x)
|
||||
{
|
||||
if (x > -1 && x < 1) return 1;
|
||||
|
50
src/coco.c
@ -6,11 +6,14 @@
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
#include "box.h"
|
||||
#include "demo.h"
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
|
||||
void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
|
||||
|
||||
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
|
||||
|
||||
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
||||
@ -98,34 +101,6 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
|
||||
{
|
||||
int i,j,n;
|
||||
//int per_cell = 5*num+classes;
|
||||
for (i = 0; i < side*side; ++i){
|
||||
int row = i / side;
|
||||
int col = i % side;
|
||||
for(n = 0; n < num; ++n){
|
||||
int index = i*num + n;
|
||||
int p_index = side*side*classes + i*num + n;
|
||||
float scale = predictions[p_index];
|
||||
int box_index = side*side*(classes + num) + (i*num + n)*4;
|
||||
boxes[index].x = (predictions[box_index + 0] + col) / side * w;
|
||||
boxes[index].y = (predictions[box_index + 1] + row) / side * h;
|
||||
boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
|
||||
boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
|
||||
for(j = 0; j < classes; ++j){
|
||||
int class_index = i*classes;
|
||||
float prob = scale*predictions[class_index+j];
|
||||
probs[index][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
if(only_objectness){
|
||||
probs[index][0] = scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
@ -235,7 +210,7 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
float *predictions = network_predict(net, X);
|
||||
int w = val[t].w;
|
||||
int h = val[t].h;
|
||||
convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
|
||||
convert_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
|
||||
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
|
||||
free_image(val[t]);
|
||||
@ -298,7 +273,7 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
|
||||
image sized = resize_image(orig, net.w, net.h);
|
||||
char *id = basecfg(path);
|
||||
float *predictions = network_predict(net, sized.data);
|
||||
convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
|
||||
convert_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
|
||||
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
|
||||
|
||||
char *labelpath = find_replace(path, "images", "labels");
|
||||
@ -370,7 +345,7 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
convert_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80);
|
||||
show_image(im, "predictions");
|
||||
@ -386,16 +361,6 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
}
|
||||
}
|
||||
|
||||
void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename);
|
||||
static void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, char* filename)
|
||||
{
|
||||
#if defined(OPENCV)
|
||||
demo_coco(cfgfile, weightfile, thresh, cam_index, filename);
|
||||
#else
|
||||
fprintf(stderr, "Need to compile with OpenCV for demo.\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
void run_coco(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
@ -406,7 +371,6 @@ void run_coco(int argc, char **argv)
|
||||
}
|
||||
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
||||
int cam_index = find_int_arg(argc, argv, "-c", 0);
|
||||
char *file = find_char_arg(argc, argv, "-file", 0);
|
||||
|
||||
if(argc < 4){
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
@ -420,5 +384,5 @@ void run_coco(int argc, char **argv)
|
||||
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, file);
|
||||
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, coco_labels, 80);
|
||||
}
|
||||
|
@ -71,8 +71,6 @@ void binarize_filters_gpu(float *filters, int n, int size, float *binary)
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
if(l.binary){
|
||||
binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
|
||||
@ -103,6 +101,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
l.output_gpu);
|
||||
|
||||
#else
|
||||
int i;
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = l.out_w*l.out_h;
|
||||
|
@ -5,17 +5,22 @@
|
||||
#include "parser.h"
|
||||
#include "box.h"
|
||||
#include "image.h"
|
||||
#include "demo.h"
|
||||
#include <sys/time.h>
|
||||
|
||||
#define FRAMES 1
|
||||
#define FRAMES 3
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
|
||||
void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
|
||||
|
||||
extern char *coco_classes[];
|
||||
extern image coco_labels[];
|
||||
#define DELAY 0
|
||||
static int delay = DELAY;
|
||||
|
||||
static char **demo_names;
|
||||
static image *demo_labels;
|
||||
static int demo_classes;
|
||||
|
||||
static float **probs;
|
||||
static box *boxes;
|
||||
@ -24,7 +29,7 @@ static image in ;
|
||||
static image in_s ;
|
||||
static image det ;
|
||||
static image det_s;
|
||||
static image disp ;
|
||||
static image disp = {0};
|
||||
static CvCapture * cap;
|
||||
static float fps = 0;
|
||||
static float demo_thresh = 0;
|
||||
@ -34,14 +39,22 @@ static int demo_index = 0;
|
||||
static image images[FRAMES];
|
||||
static float *avg;
|
||||
|
||||
void *fetch_in_thread_coco(void *ptr)
|
||||
void *fetch_in_thread(void *ptr)
|
||||
{
|
||||
in = get_image_from_stream(cap);
|
||||
in_s = resize_image(in, net.w, net.h);
|
||||
if(!in.data){
|
||||
in = disp;
|
||||
if(delay == DELAY) error("Stream closed.");
|
||||
}else{
|
||||
if(disp.data){
|
||||
free_image(disp);
|
||||
}
|
||||
in_s = resize_image(in, net.w, net.h);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void *detect_in_thread_coco(void *ptr)
|
||||
void *detect_in_thread(void *ptr)
|
||||
{
|
||||
float nms = .4;
|
||||
|
||||
@ -50,28 +63,47 @@ void *detect_in_thread_coco(void *ptr)
|
||||
float *prediction = network_predict(net, X);
|
||||
|
||||
memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
|
||||
mean_arrays(predictions, FRAMES, l.outputs, avg);
|
||||
if(delay == DELAY){
|
||||
mean_arrays(predictions, FRAMES, l.outputs, avg);
|
||||
}
|
||||
|
||||
free_image(det_s);
|
||||
convert_coco_detections(avg, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0);
|
||||
convert_detections(avg, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0);
|
||||
if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
printf("\033[2J");
|
||||
printf("\033[1;1H");
|
||||
printf("\nFPS:%.0f\n",fps);
|
||||
printf("\nFPS:%.1f\n",fps);
|
||||
printf("Objects:\n\n");
|
||||
|
||||
images[demo_index] = det;
|
||||
det = images[(demo_index + FRAMES/2 + 1)%FRAMES];
|
||||
demo_index = (demo_index + 1)%FRAMES;
|
||||
|
||||
draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, coco_classes, coco_labels, 80);
|
||||
draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, demo_names, demo_labels, demo_classes);
|
||||
if(delay == 0){
|
||||
delay = DELAY;
|
||||
} else {
|
||||
--delay;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename)
|
||||
double get_wall_time()
|
||||
{
|
||||
struct timeval time;
|
||||
if (gettimeofday(&time,NULL)){
|
||||
return 0;
|
||||
}
|
||||
return (double)time.tv_sec + (double)time.tv_usec * .000001;
|
||||
}
|
||||
|
||||
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, image *labels, int classes)
|
||||
{
|
||||
demo_names = names;
|
||||
demo_labels = labels;
|
||||
demo_classes = classes;
|
||||
demo_thresh = thresh;
|
||||
printf("COCO demo\n");
|
||||
printf("Demo\n");
|
||||
net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
@ -102,44 +134,46 @@ void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, con
|
||||
pthread_t fetch_thread;
|
||||
pthread_t detect_thread;
|
||||
|
||||
fetch_in_thread_coco(0);
|
||||
fetch_in_thread(0);
|
||||
det = in;
|
||||
det_s = in_s;
|
||||
|
||||
fetch_in_thread_coco(0);
|
||||
detect_in_thread_coco(0);
|
||||
fetch_in_thread(0);
|
||||
detect_in_thread(0);
|
||||
disp = det;
|
||||
det = in;
|
||||
det_s = in_s;
|
||||
|
||||
for(j = 0; j < FRAMES/2; ++j){
|
||||
fetch_in_thread_coco(0);
|
||||
detect_in_thread_coco(0);
|
||||
fetch_in_thread(0);
|
||||
detect_in_thread(0);
|
||||
disp = det;
|
||||
det = in;
|
||||
det_s = in_s;
|
||||
}
|
||||
|
||||
int count = 0;
|
||||
cvNamedWindow("COCO", CV_WINDOW_NORMAL);
|
||||
cvMoveWindow("COCO", 0, 0);
|
||||
cvResizeWindow("COCO", 1352, 1013);
|
||||
cvNamedWindow("Demo", CV_WINDOW_NORMAL);
|
||||
cvMoveWindow("Demo", 0, 0);
|
||||
cvResizeWindow("Demo", 1352, 1013);
|
||||
|
||||
double before = get_wall_time();
|
||||
|
||||
while(1){
|
||||
++count;
|
||||
struct timeval tval_before, tval_after, tval_result;
|
||||
gettimeofday(&tval_before, NULL);
|
||||
if(pthread_create(&fetch_thread, 0, fetch_in_thread_coco, 0)) error("Thread creation failed");
|
||||
if(pthread_create(&detect_thread, 0, detect_in_thread_coco, 0)) error("Thread creation failed");
|
||||
show_image(disp, "COCO");
|
||||
/*
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/coco/coco_%05d", count);
|
||||
save_image(disp, buff);
|
||||
*/
|
||||
if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
|
||||
if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
|
||||
//fetch_in_thread(0);
|
||||
//detect_in_thread(0);
|
||||
|
||||
free_image(disp);
|
||||
cvWaitKey(10);
|
||||
show_image(disp, "Demo");
|
||||
cvWaitKey(1);
|
||||
//char buff[256];
|
||||
//sprintf(buff, "coco/coco_%05d", count);
|
||||
//save_image(disp, buff);
|
||||
|
||||
//free_image(disp);
|
||||
//cvWaitKey(10);
|
||||
pthread_join(fetch_thread, 0);
|
||||
pthread_join(detect_thread, 0);
|
||||
|
||||
@ -147,15 +181,18 @@ void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, con
|
||||
det = in;
|
||||
det_s = in_s;
|
||||
|
||||
gettimeofday(&tval_after, NULL);
|
||||
timersub(&tval_after, &tval_before, &tval_result);
|
||||
float curr = 1000000.f/((long int)tval_result.tv_usec);
|
||||
fps = .9*fps + .1*curr;
|
||||
if(delay == DELAY){
|
||||
double after = get_wall_time();
|
||||
float curr = 1./(after - before);
|
||||
fps = curr;
|
||||
before = after;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index){
|
||||
fprintf(stderr, "YOLO-COCO demo needs OpenCV for webcam images.\n");
|
||||
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, image *labels, int classes)
|
||||
{
|
||||
fprintf(stderr, "Demo needs OpenCV for webcam images.\n");
|
||||
}
|
||||
#endif
|
||||
|
7
src/demo.h
Normal file
@ -0,0 +1,7 @@
|
||||
#ifndef DEMO
|
||||
#define DEMO
|
||||
|
||||
#include "image.h"
|
||||
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, image *labels, int classes);
|
||||
|
||||
#endif
|
@ -53,8 +53,6 @@ void forward_detection_layer(const detection_layer l, network_state state)
|
||||
softmax_array(l.output + index + offset, l.classes, 1,
|
||||
l.output + index + offset);
|
||||
}
|
||||
int offset = locations*l.classes;
|
||||
activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC);
|
||||
}
|
||||
}
|
||||
if(state.train){
|
||||
@ -133,11 +131,9 @@ void forward_detection_layer(const detection_layer l, network_state state)
|
||||
best_index = 0;
|
||||
}
|
||||
}
|
||||
/*
|
||||
if(1 && *(state.net.seen) < 100000){
|
||||
if(l.random && *(state.net.seen) < 64000){
|
||||
best_index = rand()%l.n;
|
||||
}
|
||||
*/
|
||||
|
||||
int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
|
||||
int tbox_index = truth_index + 1 + l.classes;
|
||||
@ -175,10 +171,6 @@ void forward_detection_layer(const detection_layer l, network_state state)
|
||||
avg_iou += iou;
|
||||
++count;
|
||||
}
|
||||
if(l.softmax){
|
||||
gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords),
|
||||
LOGISTIC, l.delta + index + locations*l.classes);
|
||||
}
|
||||
}
|
||||
|
||||
if(0){
|
||||
@ -208,6 +200,7 @@ void forward_detection_layer(const detection_layer l, network_state state)
|
||||
}
|
||||
|
||||
|
||||
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
|
||||
|
||||
|
||||
printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
|
||||
|
@ -365,6 +365,7 @@ void show_image_cv(image p, const char *name)
|
||||
image get_image_from_stream(CvCapture *cap)
|
||||
{
|
||||
IplImage* src = cvQueryFrame(cap);
|
||||
if (!src) return make_empty_image(0,0,0);
|
||||
image im = ipl_to_image(src);
|
||||
rgbgr_image(im);
|
||||
return im;
|
||||
|
@ -88,6 +88,7 @@ struct layer{
|
||||
float object_scale;
|
||||
float noobject_scale;
|
||||
float class_scale;
|
||||
int random;
|
||||
|
||||
int dontload;
|
||||
int dontloadscales;
|
||||
|
@ -64,6 +64,7 @@ float get_current_rate(network net)
|
||||
case EXP:
|
||||
return net.learning_rate * pow(net.gamma, batch_num);
|
||||
case POLY:
|
||||
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
||||
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
||||
case RANDOM:
|
||||
return net.learning_rate * pow(rand_uniform(0,1), net.power);
|
||||
|