🔥 ARE YOU NOT ENTERTAINED 🔥

This commit is contained in:
Joseph Redmon 2016-11-26 20:02:46 -08:00
parent 75fe603722
commit b3c4fc9f22
6 changed files with 314 additions and 40 deletions

134
cfg/yolo-tiny.cfg Normal file
View File

@ -0,0 +1,134 @@
[net]
batch=64
subdivisions=8
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
max_batches = 120000
policy=steps
steps=-1,100,80000,100000
scales=.1,10,.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=425
activation=linear
[region]
anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
bias_match=1
classes=80
coords=4
num=5
softmax=1
jitter=.2
rescore=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1

134
cfg/yolo-tiny_voc.cfg Normal file
View File

@ -0,0 +1,134 @@
[net]
batch=64
subdivisions=8
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
max_batches = 40100
policy=steps
steps=-1,100,20000,30000
scales=.1,10,.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=125
activation=linear
[region]
anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
bias_match=1
classes=20
coords=4
num=5
softmax=1
jitter=.2
rescore=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1

View File

@ -63,7 +63,7 @@ void *detect_in_thread(void *ptr)
if(l.type == DETECTION){
get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
} else if (l.type == REGION){
get_region_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
get_region_boxes(l, 1, 1, demo_thresh, probs, boxes, 0, 0);
} else {
error("Last layer must produce detections\n");
}

View File

@ -66,7 +66,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
args.num_boxes = l.max_boxes;
args.d = &buffer;
args.type = DETECTION_DATA;
args.threads = 4;
args.threads = 8;
args.angle = net.angle;
args.exposure = net.exposure;
@ -81,6 +81,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
if(l.random && count++%10 == 0){
printf("Resizing\n");
int dim = (rand() % 10 + 10) * 32;
if (get_current_batch(net)+100 > net.max_batches) dim = 544;
//int dim = (rand() % 4 + 16) * 32;
printf("%d\n", dim);
args.w = dim;
@ -208,7 +209,7 @@ void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs,
}
}
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h, int *map)
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
@ -224,7 +225,6 @@ void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int
for(j = 0; j < classes; ++j){
int class = j;
if (map) class = map[j];
if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
xmin, ymin, xmax, ymax);
}
@ -233,6 +233,7 @@ void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int
void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
{
int j;
list *options = read_data_cfg(datacfg);
char *valid_images = option_find_str(options, "valid", "data/train.list");
char *name_list = option_find_str(options, "names", "data/names.list");
@ -242,23 +243,6 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
int *map = 0;
if (mapf) map = read_map(mapf);
char buff[1024];
char *type = option_find_str(options, "eval", "voc");
FILE *fp = 0;
int coco = 0;
int imagenet = 0;
if(0==strcmp(type, "coco")){
snprintf(buff, 1024, "%s/coco_results.json", prefix);
fp = fopen(buff, "w");
fprintf(fp, "[\n");
coco = 1;
} else if(0==strcmp(type, "imagenet")){
snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix);
fp = fopen(buff, "w");
imagenet = 1;
}
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
@ -274,12 +258,31 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
layer l = net.layers[net.n-1];
int classes = l.classes;
int j;
FILE **fps = calloc(classes, sizeof(FILE *));
char buff[1024];
char *type = option_find_str(options, "eval", "voc");
FILE *fp = 0;
FILE **fps = 0;
int coco = 0;
int imagenet = 0;
if(0==strcmp(type, "coco")){
snprintf(buff, 1024, "%s/coco_results.json", prefix);
fp = fopen(buff, "w");
fprintf(fp, "[\n");
coco = 1;
} else if(0==strcmp(type, "imagenet")){
snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix);
fp = fopen(buff, "w");
imagenet = 1;
classes = 200;
} else {
fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
fps[j] = fopen(buff, "w");
}
}
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
@ -330,12 +333,12 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_region_boxes(l, w, h, thresh, probs, boxes, 0);
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
if (coco){
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
} else if (imagenet){
print_imagenet_detections(fp, i+t-nthreads+1 + 9741, boxes, probs, l.w*l.h*l.n, 200, w, h, map);
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
} else {
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
}
@ -345,7 +348,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
}
}
for(j = 0; j < classes; ++j){
fclose(fps[j]);
if(fps) fclose(fps[j]);
}
if(coco){
fseek(fp, -2, SEEK_CUR);
@ -394,7 +397,7 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_region_boxes(l, 1, 1, thresh, probs, boxes, 1);
get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0);
if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
char labelpath[4096];
@ -473,7 +476,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0);
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
save_image(im, "predictions");

View File

@ -196,7 +196,8 @@ void forward_region_layer(const region_layer l, network_state state)
if(truth.x > 100000 && truth.y > 100000){
for(n = 0; n < l.n*l.w*l.h; ++n){
int index = size*n + b*l.outputs + 5;
float p = get_hierarchy_probability(l.output + index, l.softmax_tree, class);
float scale = l.output[index-1];
float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class);
if(p > maxp){
maxp = p;
maxi = n;
@ -324,7 +325,7 @@ void backward_region_layer(const region_layer l, network_state state)
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
{
int i,j,n;
float *predictions = l.output;
@ -348,8 +349,13 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b
hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
int found = 0;
if(map){
for(j = 0; j < 200; ++j){
float prob = scale*predictions[class_index+map[j]];
probs[index][j] = (prob > thresh) ? prob : 0;
}
} else {
for(j = l.classes - 1; j >= 0; --j){
if(1){
if(!found && predictions[class_index + j] > .5){
found = 1;
} else {
@ -357,9 +363,6 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b
}
float prob = predictions[class_index+j];
probs[index][j] = (scale > thresh) ? prob : 0;
}else{
float prob = scale*predictions[class_index+j];
probs[index][j] = (prob > thresh) ? prob : 0;
}
}
} else {

View File

@ -9,7 +9,7 @@ typedef layer region_layer;
region_layer make_region_layer(int batch, int h, int w, int n, int classes, int coords);
void forward_region_layer(const region_layer l, network_state state);
void backward_region_layer(const region_layer l, network_state state);
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map);
void resize_region_layer(layer *l, int w, int h);
#ifdef GPU