mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
so much need to commit
This commit is contained in:
@ -1,4 +1,5 @@
|
||||
#include "connected_layer.h"
|
||||
#include "batchnorm_layer.h"
|
||||
#include "utils.h"
|
||||
#include "cuda.h"
|
||||
#include "blas.h"
|
||||
@ -19,6 +20,12 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
l.outputs = outputs;
|
||||
l.batch=batch;
|
||||
l.batch_normalize = batch_normalize;
|
||||
l.h = 1;
|
||||
l.w = 1;
|
||||
l.c = inputs;
|
||||
l.out_h = 1;
|
||||
l.out_w = 1;
|
||||
l.out_c = outputs;
|
||||
|
||||
l.output = calloc(batch*outputs, sizeof(float));
|
||||
l.delta = calloc(batch*outputs, sizeof(float));
|
||||
@ -29,7 +36,6 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
l.weights = calloc(outputs*inputs, sizeof(float));
|
||||
l.biases = calloc(outputs, sizeof(float));
|
||||
|
||||
|
||||
//float scale = 1./sqrt(inputs);
|
||||
float scale = sqrt(2./inputs);
|
||||
for(i = 0; i < outputs*inputs; ++i){
|
||||
@ -37,7 +43,7 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
}
|
||||
|
||||
for(i = 0; i < outputs; ++i){
|
||||
l.biases[i] = scale;
|
||||
l.biases[i] = 0;
|
||||
}
|
||||
|
||||
if(batch_normalize){
|
||||
@ -176,6 +182,19 @@ void backward_connected_layer(connected_layer l, network_state state)
|
||||
if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
}
|
||||
|
||||
|
||||
void denormalize_connected_layer(layer l)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < l.outputs; ++i){
|
||||
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
|
||||
for(j = 0; j < l.inputs; ++j){
|
||||
l.weights[i*l.inputs + j] *= scale;
|
||||
}
|
||||
l.biases[i] -= l.rolling_mean[i] * scale;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_connected_layer(connected_layer l)
|
||||
@ -223,11 +242,7 @@ void forward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
/*
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
|
||||
}
|
||||
*/
|
||||
|
||||
int m = l.batch;
|
||||
int k = l.inputs;
|
||||
int n = l.outputs;
|
||||
@ -236,52 +251,26 @@ void forward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
float * c = l.output_gpu;
|
||||
gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
if(l.batch_normalize){
|
||||
if(state.train){
|
||||
fast_mean_gpu(l.output_gpu, l.batch, l.outputs, 1, l.mean_gpu);
|
||||
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.outputs, 1, l.variance_gpu);
|
||||
|
||||
scal_ongpu(l.outputs, .95, l.rolling_mean_gpu, 1);
|
||||
axpy_ongpu(l.outputs, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
|
||||
scal_ongpu(l.outputs, .95, l.rolling_variance_gpu, 1);
|
||||
axpy_ongpu(l.outputs, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
|
||||
|
||||
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
|
||||
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1);
|
||||
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
|
||||
} else {
|
||||
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.outputs, 1);
|
||||
}
|
||||
|
||||
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.outputs, 1);
|
||||
forward_batchnorm_layer_gpu(l, state);
|
||||
}
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
|
||||
}
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
|
||||
/*
|
||||
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
|
||||
float avg = mean_array(l.output, l.outputs*l.batch);
|
||||
printf("%f\n", avg);
|
||||
*/
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
constrain_ongpu(l.outputs*l.batch, 5, l.delta_gpu, 1);
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
|
||||
}
|
||||
|
||||
if(l.batch_normalize){
|
||||
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.outputs, 1, l.scale_updates_gpu);
|
||||
|
||||
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.outputs, 1);
|
||||
|
||||
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.mean_delta_gpu);
|
||||
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.variance_delta_gpu);
|
||||
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.outputs, 1, l.delta_gpu);
|
||||
backward_batchnorm_layer_gpu(l, state);
|
||||
}
|
||||
|
||||
int m = l.outputs;
|
||||
|
Reference in New Issue
Block a user