mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixed openmp bugs for XNOR
This commit is contained in:
@ -141,70 +141,39 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
size_t t_intput_size = new_ldb * n;
|
||||
size_t t_bit_input_size = t_intput_size / 8;// +1;
|
||||
|
||||
/*
|
||||
int i = 0;
|
||||
im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
// should be optimized
|
||||
float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
//im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align);
|
||||
|
||||
transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.transposed_align_workspace_gpu, k, n, l.bit_align, new_ldb, 8);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
// should be optimized
|
||||
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
|
||||
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu);
|
||||
//cudaDeviceSynchronize();
|
||||
//check_error(status);
|
||||
*/
|
||||
|
||||
{
|
||||
//
|
||||
int i = 0;
|
||||
im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
/*
|
||||
float *input_cpu = (float *)calloc(input_size, sizeof(float));
|
||||
status = cudaMemcpy(input_cpu, state.input, input_size* sizeof(float), cudaMemcpyDeviceToHost);
|
||||
check_error(status);
|
||||
// should be optimized
|
||||
float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
// swaped(binary_weights <-> l.weights)
|
||||
convolve_cpu(input_cpu, l.weights, l.output, l.w, l.h, l.c, l.n, l.size, l.pad); // CPU
|
||||
status = cudaMemcpy(l.output_gpu, l.output, l.outputs * sizeof(float), cudaMemcpyHostToDevice);
|
||||
check_error(status);
|
||||
free(input_cpu);
|
||||
*/
|
||||
//im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align);
|
||||
|
||||
/*
|
||||
float *input_cpu = (float *)calloc(input_size, sizeof(float));
|
||||
float *input_bin_cpu = (float *)calloc(input_size, sizeof(char));
|
||||
//float *weights_bin_cpu = (float *)calloc(l.n*l.c*l.size*l.size, sizeof(char));
|
||||
status = cudaMemcpy(input_cpu, state.input, input_size * sizeof(float), cudaMemcpyDeviceToHost);
|
||||
check_error(status);
|
||||
float_to_bit(input_cpu, (unsigned char *)input_bin_cpu, input_size);
|
||||
//float_to_bit(l.weights, (unsigned char *)weights_bin_cpu, l.n*l.c*l.size*l.size); // l.align_bit_weights
|
||||
transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.transposed_align_workspace_gpu, k, n, l.bit_align, new_ldb, 8);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
convolve_bin_cpu(input_bin_cpu, (float *)l.align_bit_weights, l.output, l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr); // CPU
|
||||
status = cudaMemcpy(l.output_gpu, l.output, l.outputs * sizeof(float), cudaMemcpyHostToDevice);
|
||||
check_error(status);
|
||||
//free(weights_bin_cpu);
|
||||
free(input_bin_cpu);
|
||||
free(input_cpu);
|
||||
*/
|
||||
// should be optimized
|
||||
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
|
||||
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu);
|
||||
//cudaDeviceSynchronize();
|
||||
//check_error(status);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
{
|
||||
float_to_bit_gpu(state.input, (unsigned char *)l.align_workspace_gpu, input_size);
|
||||
convolve_bin_gpu(l.align_workspace_gpu, (float *)l.align_bit_weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr_gpu);
|
||||
|
||||
|
||||
//convolve_gpu(state.input, l.weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad);
|
||||
|
||||
//cudaDeviceSynchronize();
|
||||
//check_error(status);
|
||||
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
|
110
src/gemm.c
110
src/gemm.c
@ -204,10 +204,11 @@ void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
|
||||
{
|
||||
int *count_arr = calloc(M*N, sizeof(int));
|
||||
|
||||
int i, j, k, h;
|
||||
int i;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
||||
int j, k, h;
|
||||
for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
const char a_bit = get_bit(A, i*lda + k);
|
||||
uint64_t a_bit64 = fill_bit_int64(a_bit);
|
||||
@ -271,10 +272,11 @@ void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr)
|
||||
{
|
||||
int i, j, k, h;
|
||||
int i;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
||||
int j, k, h;
|
||||
float mean_val = mean_arr[i];
|
||||
|
||||
for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
||||
@ -365,7 +367,7 @@ void transpose_bin(char *A, char *B, const int n, const int m,
|
||||
const int lda, const int ldb, const int block_size)
|
||||
{
|
||||
int i;
|
||||
#pragma omp parallel for
|
||||
#pragma omp parallel for
|
||||
for (i = 0; i < n; i += 8) {
|
||||
int j;
|
||||
for (j = 0; j < m - 8; j += 8) {
|
||||
@ -617,14 +619,14 @@ void gemm_nn(int M, int N, int K, float ALPHA,
|
||||
void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stride,
|
||||
float *weights, float *input, float *output)
|
||||
{
|
||||
int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1
|
||||
int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1
|
||||
int i, f, j;
|
||||
const int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1
|
||||
const int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1
|
||||
|
||||
int fil;
|
||||
// filter index
|
||||
#pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP
|
||||
#pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP
|
||||
for (fil = 0; fil < n; ++fil) {
|
||||
//int i, f, j;
|
||||
int chan, y, x, f_y, f_x;
|
||||
// channel index
|
||||
for (chan = 0; chan < c; ++chan)
|
||||
@ -665,9 +667,9 @@ void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stri
|
||||
void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
|
||||
float *weights, float *input, float *output, float *mean)
|
||||
{
|
||||
int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1
|
||||
int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1
|
||||
int i, f, j;
|
||||
const int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1
|
||||
const int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1
|
||||
int i;
|
||||
|
||||
#if defined(_OPENMP)
|
||||
static int max_num_threads = 0;
|
||||
@ -684,9 +686,9 @@ void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
|
||||
*((__m256*)&weights[i]) = _mm256_and_ps(*((__m256*)&weights[i]), _mm256_castsi256_ps(all256_sing1));
|
||||
}
|
||||
|
||||
for (i = 0; i < w*h*c; i += 8) {
|
||||
//for (i = 0; i < w*h*c; i += 8) {
|
||||
//*((__m256*)&input[i]) = _mm256_and_ps(*((__m256*)&input[i]), _mm256_castsi256_ps(all256_sing1));
|
||||
}
|
||||
//}
|
||||
|
||||
|
||||
//__m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF);
|
||||
@ -704,7 +706,7 @@ void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
|
||||
|
||||
int fil;
|
||||
// filter index
|
||||
#pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP
|
||||
#pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP
|
||||
for (fil = 0; fil < n; ++fil) {
|
||||
int chan, y, x, f_y, f_x;
|
||||
float cur_mean = fabs(mean[fil]);
|
||||
@ -914,16 +916,17 @@ void im2col_cpu_custom_transpose(float* data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_col, int ldb_align)
|
||||
{
|
||||
int c, h, w;
|
||||
int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
const int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
const int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
const int channels_col = channels * ksize * ksize;
|
||||
int c;
|
||||
|
||||
// optimized version
|
||||
if (height_col == height && width_col == width && stride == 1 && pad == 1)
|
||||
{
|
||||
#pragma omp parallel for
|
||||
#pragma omp parallel for
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int h, w;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
@ -1005,6 +1008,7 @@ void im2col_cpu_custom_transpose(float* data_im,
|
||||
else {
|
||||
#pragma omp parallel for
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int h, w;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
@ -1029,17 +1033,17 @@ void im2col_cpu_custom(float* data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_col)
|
||||
{
|
||||
|
||||
int c, h, w;
|
||||
int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
int c;
|
||||
const int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
const int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
const int channels_col = channels * ksize * ksize;
|
||||
|
||||
// optimized version
|
||||
if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2())
|
||||
{
|
||||
#pragma omp parallel for
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int h, w;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
@ -1121,10 +1125,10 @@ void im2col_cpu_custom_align(float* data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_col, int bit_align)
|
||||
{
|
||||
int c, h, w;
|
||||
int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
int c;
|
||||
const int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
const int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
const int channels_col = channels * ksize * ksize;
|
||||
|
||||
// optimized version
|
||||
if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2())
|
||||
@ -1133,6 +1137,7 @@ void im2col_cpu_custom_align(float* data_im,
|
||||
|
||||
#pragma omp parallel for
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int h, w;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
@ -1218,10 +1223,10 @@ void im2col_cpu_custom_bin(float* data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_col, int bit_align)
|
||||
{
|
||||
int c, h, w;
|
||||
int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
int c;
|
||||
const int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
const int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
const int channels_col = channels * ksize * ksize;
|
||||
|
||||
// optimized version
|
||||
if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2())
|
||||
@ -1233,6 +1238,7 @@ void im2col_cpu_custom_bin(float* data_im,
|
||||
|
||||
#pragma omp parallel for
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int h, w;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
@ -1451,8 +1457,8 @@ void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, i
|
||||
int pad, int stride, int batch)
|
||||
{
|
||||
|
||||
int w_offset = -pad / 2;
|
||||
int h_offset = -pad / 2;
|
||||
const int w_offset = -pad / 2;
|
||||
const int h_offset = -pad / 2;
|
||||
int b, k;
|
||||
|
||||
for (b = 0; b < batch; ++b) {
|
||||
@ -1563,13 +1569,13 @@ void gemm_nn(int M, int N, int K, float ALPHA,
|
||||
void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride,
|
||||
float *weights, float *input, float *output, float *mean)
|
||||
{
|
||||
int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1
|
||||
int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1
|
||||
int i, f, j;
|
||||
const int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1
|
||||
const int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1
|
||||
//int i, f, j;
|
||||
|
||||
int fil;
|
||||
// filter index
|
||||
#pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP
|
||||
#pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP
|
||||
for (fil = 0; fil < n; ++fil) {
|
||||
int chan, y, x, f_y, f_x;
|
||||
// channel index
|
||||
@ -1613,10 +1619,11 @@ void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr)
|
||||
{
|
||||
int i, j, k, h;
|
||||
int i;
|
||||
|
||||
#pragma omp parallel for
|
||||
#pragma omp parallel for
|
||||
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
||||
int j, k;
|
||||
float mean_val = mean_arr[i];
|
||||
|
||||
for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
||||
@ -1660,16 +1667,17 @@ void im2col_cpu_custom(float* data_im,
|
||||
im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col);
|
||||
return;
|
||||
|
||||
int c, h, w;
|
||||
int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
int c;
|
||||
const int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
const int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
const int channels_col = channels * ksize * ksize;
|
||||
|
||||
// optimized version
|
||||
if (height_col == height && width_col == width && stride == 1 && pad == 1)
|
||||
{
|
||||
#pragma omp parallel for
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int h, w;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
@ -1750,10 +1758,10 @@ void im2col_cpu_custom_bin(float* data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_col, int bit_align)
|
||||
{
|
||||
int c, h, w;
|
||||
int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
int c;
|
||||
const int height_col = (height + 2 * pad - ksize) / stride + 1;
|
||||
const int width_col = (width + 2 * pad - ksize) / stride + 1;
|
||||
const int channels_col = channels * ksize * ksize;
|
||||
|
||||
// optimized version
|
||||
if (height_col == height && width_col == width && stride == 1 && pad == 1)
|
||||
@ -1762,6 +1770,7 @@ void im2col_cpu_custom_bin(float* data_im,
|
||||
|
||||
#pragma omp parallel for
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int h, w;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
@ -1906,9 +1915,10 @@ void float_to_bit(float *src, unsigned char *dst, size_t size)
|
||||
|
||||
static inline void transpose_scalar_block(float *A, float *B, const int lda, const int ldb, const int block_size)
|
||||
{
|
||||
int i, j;
|
||||
int i;
|
||||
//#pragma omp parallel for
|
||||
for (i = 0; i<block_size; i++) {
|
||||
int j;
|
||||
for (j = 0; j<block_size; j++) {
|
||||
B[j*ldb + i] = A[i*lda + j];
|
||||
}
|
||||
@ -1938,8 +1948,8 @@ void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, i
|
||||
int pad, int stride, int batch)
|
||||
{
|
||||
int b, k;
|
||||
int w_offset = -pad / 2;
|
||||
int h_offset = -pad / 2;
|
||||
const int w_offset = -pad / 2;
|
||||
const int h_offset = -pad / 2;
|
||||
|
||||
for (b = 0; b < batch; ++b) {
|
||||
#pragma omp parallel for
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "cuda_runtime.h"
|
||||
#include "cuda_runtime.h"
|
||||
#include "curand.h"
|
||||
#include "cublas_v2.h"
|
||||
#include <stdint.h>
|
||||
|
||||
extern "C" {
|
||||
#include "im2col.h"
|
||||
@ -70,6 +71,8 @@ __global__ void im2col_align_gpu_kernel(const int n, const float* data_im,
|
||||
const int height_col, const int width_col,
|
||||
float *data_col, const int bit_align)
|
||||
{
|
||||
//__shared__ float tmp_s[1];
|
||||
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
for (; index < n; index += blockDim.x*gridDim.x) {
|
||||
int w_out = index % width_col;
|
||||
@ -90,9 +93,15 @@ __global__ void im2col_align_gpu_kernel(const int n, const float* data_im,
|
||||
int h = h_in + i;
|
||||
int w = w_in + j;
|
||||
|
||||
*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
|
||||
float val = (h >= 0 && w >= 0 && h < height && w < width) ?
|
||||
data_im_ptr[i * width + j] : 0;
|
||||
|
||||
*data_col_ptr = val;
|
||||
//tmp_s[0] = val;
|
||||
|
||||
//*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
|
||||
// data_im_ptr[i * width + j] : 0;
|
||||
|
||||
//float src_val = (h >= 0 && w >= 0 && h < height && w < width) ? data_im_ptr[i * width + j] : 0;
|
||||
//unsigned int bit_mask = __ballot_sync(0xffffffff, src_val > 0);
|
||||
//if (threadIdx.x % WARP_SIZE == 0) *((unsigned int*)data_col_ptr_32) = bit_mask;
|
||||
@ -204,6 +213,10 @@ __device__ __host__ void transpose8rS32_reversed_diagonale(unsigned char* A, int
|
||||
|
||||
B[7 * n] = reverse_byte(x >> 24); B[6 * n] = reverse_byte(x >> 16); B[5 * n] = reverse_byte(x >> 8); B[4 * n] = reverse_byte(x);
|
||||
B[3 * n] = reverse_byte(y >> 24); B[2 * n] = reverse_byte(y >> 16); B[1 * n] = reverse_byte(y >> 8); B[0 * n] = reverse_byte(y);
|
||||
|
||||
//__device__ unsigned int __brev(unsigned int x)
|
||||
//Reverse the bit order of a 32 bit unsigned integer.
|
||||
// https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__INT.html
|
||||
}
|
||||
|
||||
|
||||
@ -257,10 +270,10 @@ void fill_int8_gpu(unsigned char *src, unsigned char val, size_t size) {
|
||||
}
|
||||
// --------------------------------
|
||||
|
||||
typedef unsigned long long int uint64_t;
|
||||
typedef unsigned int uint32_t;
|
||||
typedef unsigned char uint8_t;
|
||||
typedef char int8_t;
|
||||
//typedef unsigned long long int uint64_t;
|
||||
//typedef unsigned int uint32_t;
|
||||
//typedef unsigned char uint8_t;
|
||||
//typedef char int8_t;
|
||||
|
||||
__device__ __host__ static inline uint64_t broadcast_bit_1_to_64(uint8_t src) {
|
||||
return (src > 0) ? 0xFFFFFFFFFFFFFFFF : 0;
|
||||
@ -274,6 +287,29 @@ __device__ __host__ static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
|
||||
return ~(a^b);
|
||||
}
|
||||
|
||||
__device__ __host__ static inline uint4 xnor_int128(uint4 a, uint4 b) {
|
||||
uint4 res;
|
||||
res.w = ~(a.w^b.w);
|
||||
res.x = ~(a.x^b.x);
|
||||
res.y = ~(a.y^b.y);
|
||||
res.z = ~(a.z^b.z);
|
||||
return res;
|
||||
}
|
||||
|
||||
__device__ __host__ static inline ulonglong4 xnor_int256(ulonglong4 a, ulonglong4 b) {
|
||||
ulonglong4 res;
|
||||
res.w = ~(a.w^b.w);
|
||||
res.x = ~(a.x^b.x);
|
||||
res.y = ~(a.y^b.y);
|
||||
res.z = ~(a.z^b.z);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
__device__ static inline int popcnt_256(ulonglong4 a) {
|
||||
return __popcll(a.w) + __popcll(a.x) + __popcll(a.y) + __popcll(a.z);
|
||||
}
|
||||
|
||||
/*
|
||||
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
@ -320,75 +356,87 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
|
||||
// B (input) in the shared_memory
|
||||
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr)
|
||||
{
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
__shared__ uint64_t B_s[4096]; // 32 KB // [ldb x N`]
|
||||
__shared__ uint64_t B_s[4096]; // 32 KB // [ldb x N`] // max = 262 144 bits
|
||||
|
||||
int start_j = blockIdx.x*blockDim.x / M;
|
||||
int end_j = (blockIdx.x*blockDim.x + blockDim.x) / M + 1;
|
||||
|
||||
size_t shared_size = ldb * (end_j - start_j);
|
||||
|
||||
int j_cur = index / M;
|
||||
int local_j = j_cur - start_j;
|
||||
//float tmp_shared_size = ldb * (blockDim.x / M);
|
||||
//int passes = (4096 * 64) / tmp_shared_size - 1;
|
||||
//size_t shared_size = tmp_shared_size * passes;
|
||||
|
||||
for (int k = threadIdx.x * 64; k < shared_size; k += blockDim.x * 64) {
|
||||
int k;
|
||||
for (int k = threadIdx.x * 256; k < shared_size; k += blockDim.x * 256) {
|
||||
int x = start_j*ldb + k;
|
||||
if (x < (N*ldb)) *((uint64_t *)(B_s + k / 8)) = *((uint64_t *)(B + x / 8));
|
||||
if (x < (N*ldb)) *((ulonglong4 *)(B_s + k / 8)) = *((ulonglong4 *)(B + x / 8));
|
||||
}
|
||||
|
||||
//if (j_cur < N && (index % M == 0 || threadIdx.x == 0)) {
|
||||
// for (int k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
// *((uint64_t *)(B_s + (local_j*ldb + k) / 8)) = *((uint64_t *)(B + (j_cur*ldb + k) / 8)); // input
|
||||
//}
|
||||
//}
|
||||
////if (j_cur < N && (index % M == 0 || threadIdx.x == 0)) {
|
||||
//// for (int k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
//// *((uint64_t *)(B_s + (local_j*ldb + k) / 8)) = *((uint64_t *)(B + (j_cur*ldb + k) / 8)); // input
|
||||
////}
|
||||
////}
|
||||
__syncthreads();
|
||||
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
|
||||
//if (index == 0)
|
||||
//for(int in_tmp = threadIdx.x; in_tmp < 1*blockDim.x; in_tmp += blockDim.x)
|
||||
{
|
||||
int i, j, k, h;
|
||||
//int index = blockIdx.x*blockDim.x*1 + in_tmp;
|
||||
|
||||
int j_cur = index / M;
|
||||
int local_j = j_cur - start_j;
|
||||
|
||||
int i, j, h;
|
||||
|
||||
//#pragma omp parallel for
|
||||
//for (i = 0; i < M; ++i)
|
||||
i = index % M;
|
||||
//if(i < M)
|
||||
{ // l.n - filters [16 - 55 - 1024]
|
||||
// further improvements: for (l.n == 1024) iterate several (j)
|
||||
float mean_val = mean_arr[i];
|
||||
|
||||
//for (j = 0; j < N; ++j)
|
||||
j = index / M;
|
||||
if (j < N)
|
||||
{ // out_h*out_w - one channel output size [169 - 173056]
|
||||
const int bit_step = 256;
|
||||
int count = 0;
|
||||
int k = 0;
|
||||
for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
|
||||
ulonglong4 a_bit256 = *((ulonglong4 *)(A + (i*lda + k) / 8)); // weights
|
||||
//ulonglong4 b_bit256 = *((ulonglong4 *)(B + (j*ldb + k) / 8));
|
||||
ulonglong4 b_bit256 = *((ulonglong4 *)(B_s + (local_j*ldb + k) / 8)); // input
|
||||
ulonglong4 c_bit256 = xnor_int256(a_bit256, b_bit256);
|
||||
|
||||
for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); // weights
|
||||
//uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
|
||||
uint64_t b_bit64 = *((uint64_t *)(B_s + (local_j*ldb + k) / 8)); // input
|
||||
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
||||
|
||||
int tmp_count = __popcll(c_bit64);
|
||||
|
||||
if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
|
||||
count += tmp_count;
|
||||
//binary_int64_printf(c_bit64);
|
||||
//printf(", count = %d \n\n", tmp_count);
|
||||
count += __popcll(c_bit256.w) + __popcll(c_bit256.x) +
|
||||
__popcll(c_bit256.y) + __popcll(c_bit256.z);
|
||||
}
|
||||
|
||||
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
||||
count = count - f1; // remove extra bits (from empty space for align only)
|
||||
|
||||
C[i*ldc + j] = (2 * count - K) * mean_val;
|
||||
//B_s[0] = (2 * count - K) * mean_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
// A (weights) in the shared_memory
|
||||
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
@ -447,9 +495,11 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
#include <cstdio>
|
||||
|
||||
|
||||
void gemm_nn_custom_bin_mean_transposed_gpu(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
@ -742,7 +792,7 @@ __global__ void convolve_bin_gpu_kernel(float *input, float *weights, float *out
|
||||
int index2 = index / in_w;
|
||||
y = index2 % in_h;
|
||||
fil = index2 / in_h;
|
||||
if (fil < n) // (1-6 for one BLOCK)
|
||||
//if (fil < n) // (1-6 for one BLOCK)
|
||||
{
|
||||
//float mean_val = mean_arr_gpu[fil];
|
||||
int const output_index = fil*in_w*in_h + y*in_w + x;
|
||||
@ -772,48 +822,76 @@ __global__ void convolve_bin_gpu_kernel(float *input, float *weights, float *out
|
||||
int const weights_pre_index = fil*new_lda + chan*size*size;
|
||||
int const input_pre_index = chan*in_w*in_h;
|
||||
|
||||
__shared__ uint32_t input_shared[416*416/32]; // 21.2 KB bytes
|
||||
const int input_shared_size = in_w*in_h / 32;
|
||||
__shared__ uint32_t input_shared[416*416/32 + 1]; // 21.2 KB bytes (for input size 832x832)
|
||||
const int input_shared_size = in_w*in_h / 32 + 1;
|
||||
const int add_input_index = input_pre_index % 32;
|
||||
__syncthreads(); // why??? but is required
|
||||
|
||||
for (int s = threadIdx.x; s < input_shared_size; s += blockDim.x) {
|
||||
input_shared[s] = ((uint32_t *)weights)[input_pre_index / 32 + s];
|
||||
input_shared[s] = ((uint32_t *)input)[input_pre_index / 32 + s];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// filter - y
|
||||
for (f_y = 0; f_y < size; ++f_y)
|
||||
/*
|
||||
__shared__ uint8_t input_shared[208 * 208 / 8 + 1]; // 5.4 KB bytes (for input size 416x416)
|
||||
const int input_shared_size = in_w*in_h / 8 + 1;
|
||||
const int add_input_index = input_pre_index % 8;
|
||||
__syncthreads();
|
||||
|
||||
for (int s = threadIdx.x; s < input_shared_size; s += blockDim.x) {
|
||||
((uint8_t *)input_shared)[s] = ((uint8_t *)input)[input_pre_index / 8 + s];
|
||||
}
|
||||
__syncthreads();
|
||||
*/
|
||||
int src_index = -1;
|
||||
uint32_t input_byte;
|
||||
|
||||
if (fil < n) // (1-6 for one BLOCK)
|
||||
{
|
||||
int input_y = y + f_y - pad;
|
||||
// filter - x
|
||||
for (f_x = 0; f_x < size; ++f_x)
|
||||
// filter - y
|
||||
for (f_y = 0; f_y < size; ++f_y)
|
||||
{
|
||||
int input_x = x + f_x - pad;
|
||||
if (input_y < 0 || input_x < 0 || input_y >= in_h || input_x >= in_w) continue;
|
||||
int input_y = y + f_y - pad;
|
||||
// filter - x
|
||||
for (f_x = 0; f_x < size; ++f_x)
|
||||
{
|
||||
int input_x = x + f_x - pad;
|
||||
if (input_y < 0 || input_x < 0 || input_y >= in_h || input_x >= in_w) continue;
|
||||
|
||||
int input_index = input_pre_index + input_y*in_w + input_x;
|
||||
int weights_index = weights_pre_index + f_y*size + f_x;
|
||||
//int weights_index = fil*in_c*size*size + chan*size*size + f_y*size + f_x;
|
||||
//int weights_index = fil*new_lda + chan*size*size + f_y*size + f_x;
|
||||
int input_index = input_pre_index + input_y*in_w + input_x;
|
||||
int weights_index = weights_pre_index + f_y*size + f_x;
|
||||
//int weights_index = fil*in_c*size*size + chan*size*size + f_y*size + f_x;
|
||||
//int weights_index = fil*new_lda + chan*size*size + f_y*size + f_x;
|
||||
|
||||
uint8_t in_bit = get_bit((uint8_t *)input, input_index);
|
||||
//uint8_t w_bit = get_bit((uint8_t *)weights, weights_index);
|
||||
//uint8_t in_bit = get_bit((uint8_t *)input, input_index);
|
||||
//uint8_t w_bit = get_bit((uint8_t *)weights, weights_index);
|
||||
|
||||
//int weights_index = fil*in_c*size*size + chan*size*size + f_y*size + f_x;
|
||||
int weights_shared_index = (fil - min_fil)*new_lda + chan*size*size + f_y*size + f_x;
|
||||
//uint8_t in_bit = get_bit((uint8_t *)weights_shared, weights_shared_index);
|
||||
uint8_t w_bit = get_bit((uint8_t *)weights_shared, weights_shared_index);
|
||||
//int weights_index = fil*in_c*size*size + chan*size*size + f_y*size + f_x;
|
||||
int weights_shared_index = (fil - min_fil)*new_lda + chan*size*size + f_y*size + f_x;
|
||||
//uint8_t in_bit = get_bit((uint8_t *)weights_shared, weights_shared_index);
|
||||
uint8_t w_bit = get_bit((uint8_t *)weights_shared, weights_shared_index);
|
||||
|
||||
//int input_index = input_pre_index + input_y*in_w + input_x;
|
||||
//int input_shared_index = /*input_pre_index +*/ input_y*in_w + input_x + add_input_index;
|
||||
//uint8_t in_bit = get_bit((uint8_t *)input_shared, input_shared_index);
|
||||
//int input_index = input_pre_index + input_y*in_w + input_x;
|
||||
int input_shared_index = /*input_pre_index +*/ input_y*in_w + input_x + add_input_index;
|
||||
uint8_t in_bit = get_bit((uint8_t *)input_shared, input_shared_index);
|
||||
/*
|
||||
int new_src_index = input_shared_index / 32;
|
||||
int src_shift = input_shared_index % 32;
|
||||
//if (new_src_index != src_index)
|
||||
{
|
||||
src_index = new_src_index;
|
||||
input_byte = ((uint32_t *)input_shared)[src_index];
|
||||
}
|
||||
uint8_t in_bit = (input_byte & (1 << src_shift)) >> src_shift;
|
||||
*/
|
||||
|
||||
int res = xnor_bit1(in_bit, w_bit);
|
||||
sum += res;
|
||||
good_val++;
|
||||
int res = xnor_bit1(in_bit, w_bit);
|
||||
sum += res;
|
||||
good_val++;
|
||||
|
||||
//sum += input[input_index] *weights[weights_index];
|
||||
//sum += input[input_index] *weights[weights_index];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
// l.output[filters][width][height] +=
|
||||
@ -822,7 +900,8 @@ __global__ void convolve_bin_gpu_kernel(float *input, float *weights, float *out
|
||||
//output[output_index] += sum;
|
||||
}
|
||||
sum = sum - (good_val - sum);
|
||||
output[output_index] = sum * mean_arr_gpu[fil]; // atoimcAdd for inter-BLOCK sum
|
||||
//output[output_index] = sum * mean_arr_gpu[fil]; // atoimcAdd for inter-BLOCK sum
|
||||
atomicAdd(&output[output_index], sum * mean_arr_gpu[fil]);
|
||||
}
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user