Updated to CUDA 9.1. And fixed no_gpu dependecies.

This commit is contained in:
AlexeyAB
2018-02-23 15:05:31 +03:00
parent 6332ea99ab
commit cd2bdec090
8 changed files with 43 additions and 20 deletions

View File

@ -9,18 +9,23 @@ ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52] \
-gencode arch=compute_61,code=[sm_61,compute_61]
-gencode arch=compute_61,code=[sm_61,compute_61]
# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
# ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
# GP100/Tesla P100 <20> DGX-1
# ARCH= -gencode arch=compute_60,code=sm_60
# For Jetson Tx1 uncomment:
# ARCH= -gencode arch=compute_51,code=[sm_51,compute_51]
# For Jetson Tx2 uncomment:
# For Jetson Tx2 or Drive-PX2 uncomment:
# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
# This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52
VPATH=./src/
EXEC=darknet

View File

@ -32,13 +32,13 @@ This repository supports:
* both Windows and Linux
* both OpenCV 3.x and OpenCV 2.4.13
* both cuDNN 5 and cuDNN 6
* both cuDNN v5-v7
* CUDA >= 7.5
* also create SO-library on Linux and DLL-library on Windows
##### Requires:
* **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409 (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
* **CUDA 8.0**: https://developer.nvidia.com/cuda-downloads
* **CUDA 9.1**: https://developer.nvidia.com/cuda-downloads
* **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
* **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
- OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi`
@ -117,7 +117,7 @@ On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector
Just do `make` in the darknet directory.
Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
* `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
* `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
* `DEBUG=1` to bould debug version of Yolo
* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
@ -142,7 +142,7 @@ Before make, you can set such options in the `Makefile`: [link](https://github.c
5. If you want to build with CUDNN to speed up then:
* download and install **cuDNN 6.0 for CUDA 8.0**: https://developer.nvidia.com/cudnn
* download and install **cuDNN 7.0 for CUDA 9.1**: https://developer.nvidia.com/cudnn
* add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg

View File

@ -52,7 +52,7 @@
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 8.0.props" />
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 9.1.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
@ -281,6 +281,6 @@
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 8.0.targets" />
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 9.1.targets" />
</ImportGroup>
</Project>

View File

@ -198,6 +198,7 @@
<ClCompile Include="..\..\src\gettimeofday.c" />
<ClCompile Include="..\..\src\go.c" />
<ClCompile Include="..\..\src\gru_layer.c" />
<ClCompile Include="..\..\src\http_stream.cpp" />
<ClCompile Include="..\..\src\im2col.c" />
<ClCompile Include="..\..\src\image.c" />
<ClCompile Include="..\..\src\layer.c" />
@ -251,6 +252,7 @@
<ClInclude Include="..\..\src\getopt.h" />
<ClInclude Include="..\..\src\gettimeofday.h" />
<ClInclude Include="..\..\src\gru_layer.h" />
<ClInclude Include="..\..\src\http_stream.h" />
<ClInclude Include="..\..\src\im2col.h" />
<ClInclude Include="..\..\src\image.h" />
<ClInclude Include="..\..\src\layer.h" />

View File

@ -52,7 +52,7 @@
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 8.0.props" />
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 9.1.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
@ -285,6 +285,6 @@
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 8.0.targets" />
<Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 9.1.targets" />
</ImportGroup>
</Project>

View File

@ -78,7 +78,7 @@ __global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) output_f16[idx] = __float2half(input_f32[idx]);
//if (idx < size) *((unsigned int *)output_f16 + idx) = __float2half(input_f32[idx]);
//if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]);
}
void cuda_convert_f32_to_f16(float* input_f32, size_t size, half *output_f16) {
@ -89,7 +89,7 @@ __global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) output_f32[idx] = __half2float(input_f16[idx]);
//if (idx < size) output_f32[idx] = __half2float(*((unsigned int *)input_f16 + idx));
//if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx));
}
void cuda_convert_f16_to_f32(half* input_f16, size_t size, float *output_f32) {
@ -247,6 +247,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
if(state.delta){
if(l.binary || l.xnor) swap_binary(&l);
// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
cudnnConvolutionBackwardData(cudnn_handle(),
&one,
l.weightDesc,

View File

@ -141,19 +141,27 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
{
#ifdef CUDNN_HALF
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
// Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
// PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
const cudnnDataType_t data_type = CUDNN_DATA_HALF;
#else
cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#endif
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
#if(CUDNN_MAJOR >= 7)
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
// For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
// otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
// Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
// 1. Accumulation into FP32
// 2. Loss Scaling - required only for: activation gradients. We do not use.
// 3. FP32 Master Copy of Weights
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
#endif
// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
// on architectures with DP4A support (compute capability 6.1 and later).
// on architectures with DP4A support (compute capability 6.1 and later).
//cudnnDataType_t data_type = CUDNN_DATA_INT8;
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
@ -164,7 +172,7 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
#if(CUDNN_MAJOR >= 6)
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, data_type); // cudnn >= 6.0
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
#else
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1
#endif

View File

@ -113,6 +113,13 @@ void forward_backward_network_gpu(network net, float *x, float *y)
state.delta = 0;
state.truth = *net.truth_gpu;
state.train = 1;
#ifdef CUDNN_HALF
int i;
for (i = 0; i < net.n; ++i) {
layer l = net.layers[i];
cuda_convert_f32_to_f16(l.weights_gpu, l.c*l.n*l.size*l.size, (half *)l.weights_gpu16);
}
#endif
forward_network_gpu(net, state);
cudaStreamSynchronize(get_cuda_stream());
backward_network_gpu(net, state);