mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Updated to CUDA 9.1. And fixed no_gpu dependecies.
This commit is contained in:
@ -141,19 +141,27 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
|
||||
{
|
||||
|
||||
#ifdef CUDNN_HALF
|
||||
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
|
||||
// Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
|
||||
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
|
||||
// PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
|
||||
const cudnnDataType_t data_type = CUDNN_DATA_HALF;
|
||||
#else
|
||||
cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
|
||||
#endif
|
||||
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
|
||||
|
||||
#if(CUDNN_MAJOR >= 7)
|
||||
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
|
||||
// For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
|
||||
// otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
|
||||
// Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
|
||||
// 1. Accumulation into FP32
|
||||
// 2. Loss Scaling - required only for: activation gradients. We do not use.
|
||||
// 3. FP32 Master Copy of Weights
|
||||
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
|
||||
cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
|
||||
#endif
|
||||
|
||||
// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
|
||||
// on architectures with DP4A support (compute capability 6.1 and later).
|
||||
// on architectures with DP4A support (compute capability 6.1 and later).
|
||||
//cudnnDataType_t data_type = CUDNN_DATA_INT8;
|
||||
|
||||
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
|
||||
@ -164,7 +172,7 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
|
||||
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
|
||||
cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
|
||||
#if(CUDNN_MAJOR >= 6)
|
||||
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, data_type); // cudnn >= 6.0
|
||||
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
|
||||
#else
|
||||
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user