Updated to CUDA 9.1. And fixed no_gpu dependecies.

This commit is contained in:
AlexeyAB
2018-02-23 15:05:31 +03:00
parent 6332ea99ab
commit cd2bdec090
8 changed files with 43 additions and 20 deletions

View File

@ -141,19 +141,27 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
{
#ifdef CUDNN_HALF
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
// Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
// PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
const cudnnDataType_t data_type = CUDNN_DATA_HALF;
#else
cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#endif
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
#if(CUDNN_MAJOR >= 7)
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
// For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
// otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
// Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
// 1. Accumulation into FP32
// 2. Loss Scaling - required only for: activation gradients. We do not use.
// 3. FP32 Master Copy of Weights
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
#endif
// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
// on architectures with DP4A support (compute capability 6.1 and later).
// on architectures with DP4A support (compute capability 6.1 and later).
//cudnnDataType_t data_type = CUDNN_DATA_INT8;
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
@ -164,7 +172,7 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
#if(CUDNN_MAJOR >= 6)
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, data_type); // cudnn >= 6.0
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
#else
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1
#endif