mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
go updates
This commit is contained in:
parent
64ffc28220
commit
cff59ba135
4
Makefile
4
Makefile
@ -1,5 +1,5 @@
|
||||
GPU=0
|
||||
OPENCV=0
|
||||
GPU=1
|
||||
OPENCV=1
|
||||
DEBUG=0
|
||||
|
||||
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
|
||||
|
@ -10,11 +10,11 @@ decay=0.0005
|
||||
learning_rate=0.1
|
||||
max_batches = 0
|
||||
policy=steps
|
||||
steps=50000, 90000
|
||||
scales=.1, .1
|
||||
steps=50000
|
||||
scales=.1
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
@ -23,6 +23,14 @@ batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
@ -31,6 +39,14 @@ batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
@ -39,6 +55,14 @@ batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
@ -47,12 +71,28 @@ batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
batch_normalize=1
|
||||
|
||||
[convolutional]
|
||||
filters=1
|
||||
size=1
|
||||
|
@ -410,7 +410,7 @@ void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
|
||||
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(valid_list);
|
||||
int scales[] = {160, 192, 224, 288, 320, 352, 384};
|
||||
int scales[] = {192, 224, 288, 320, 352};
|
||||
int nscales = sizeof(scales)/sizeof(scales[0]);
|
||||
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
@ -65,9 +65,9 @@ __global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, in
|
||||
}
|
||||
}
|
||||
|
||||
void binarize_filters_gpu(float *filters, int n, int size, float *mean)
|
||||
void binarize_filters_gpu(float *filters, int n, int size, float *binary)
|
||||
{
|
||||
binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, mean);
|
||||
binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, binary);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
@ -161,13 +161,6 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
void swap_binary(convolutional_layer *l)
|
||||
{
|
||||
float *swap = l->filters_gpu;
|
||||
l->filters_gpu = l->binary_filters_gpu;
|
||||
l->binary_filters_gpu = swap;
|
||||
}
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
|
@ -7,6 +7,52 @@
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
void swap_binary(convolutional_layer *l)
|
||||
{
|
||||
float *swap = l->filters;
|
||||
l->filters = l->binary_filters;
|
||||
l->binary_filters = swap;
|
||||
|
||||
#ifdef GPU
|
||||
swap = l->filters_gpu;
|
||||
l->filters_gpu = l->binary_filters_gpu;
|
||||
l->binary_filters_gpu = swap;
|
||||
#endif
|
||||
}
|
||||
|
||||
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales)
|
||||
{
|
||||
int i, k, f;
|
||||
for(f = 0; f < n; ++f){
|
||||
float mean = 0;
|
||||
for(i = 0; i < size; ++i){
|
||||
mean += fabs(filters[f*size + i]);
|
||||
}
|
||||
mean = mean / size;
|
||||
scales[f] = mean;
|
||||
for(i = 0; i < size/8; ++i){
|
||||
binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0;
|
||||
for(k = 0; k < 8; ++k){
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void binarize_filters(float *filters, int n, int size, float *binary)
|
||||
{
|
||||
int i, f;
|
||||
for(f = 0; f < n; ++f){
|
||||
float mean = 0;
|
||||
for(i = 0; i < size; ++i){
|
||||
mean += fabs(filters[f*size + i]);
|
||||
}
|
||||
mean = mean / size;
|
||||
for(i = 0; i < size; ++i){
|
||||
binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int convolutional_out_height(convolutional_layer l)
|
||||
{
|
||||
int h = l.h;
|
||||
@ -139,6 +185,8 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
|
||||
if(binary){
|
||||
l.binary_filters = calloc(c*n*size*size, sizeof(float));
|
||||
l.cfilters = calloc(c*n*size*size, sizeof(char));
|
||||
l.scales = calloc(n, sizeof(float));
|
||||
}
|
||||
|
||||
if(batch_normalize){
|
||||
@ -295,13 +343,42 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
|
||||
}
|
||||
}
|
||||
|
||||
void forward_convolutional_layer(const convolutional_layer l, network_state state)
|
||||
void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
{
|
||||
int out_h = convolutional_out_height(l);
|
||||
int out_w = convolutional_out_width(l);
|
||||
int i;
|
||||
|
||||
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
||||
/*
|
||||
if(l.binary){
|
||||
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
|
||||
binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
|
||||
swap_binary(&l);
|
||||
}
|
||||
*/
|
||||
|
||||
if(l.binary){
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = out_h*out_w;
|
||||
|
||||
char *a = l.cfilters;
|
||||
float *b = l.col_image;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_cpu(state.input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm_bin(m,n,k,1,a,k,b,n,c,n);
|
||||
c += n*m;
|
||||
state.input += l.c*l.h*l.w;
|
||||
}
|
||||
scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
|
||||
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
return;
|
||||
}
|
||||
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
|
@ -27,6 +27,9 @@ void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
|
||||
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
|
||||
void binarize_filters(float *filters, int n, int size, float *binary);
|
||||
void swap_binary(convolutional_layer *l);
|
||||
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales);
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, network_state state);
|
||||
|
||||
|
50
src/gemm.c
50
src/gemm.c
@ -5,6 +5,28 @@
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
void gemm_bin(int M, int N, int K, float ALPHA,
|
||||
char *A, int lda,
|
||||
float *B, int ldb,
|
||||
float *C, int ldc)
|
||||
{
|
||||
int i,j,k;
|
||||
for(i = 0; i < M; ++i){
|
||||
for(k = 0; k < K; ++k){
|
||||
char A_PART = A[i*lda+k];
|
||||
if(A_PART){
|
||||
for(j = 0; j < N; ++j){
|
||||
C[i*ldc+j] += B[k*ldb+j];
|
||||
}
|
||||
} else {
|
||||
for(j = 0; j < N; ++j){
|
||||
C[i*ldc+j] -= B[k*ldb+j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float *random_matrix(int rows, int cols)
|
||||
{
|
||||
int i;
|
||||
@ -151,7 +173,7 @@ void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
{
|
||||
cublasHandle_t handle = blas_handle();
|
||||
cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
|
||||
(TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
|
||||
(TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
|
||||
check_error(status);
|
||||
}
|
||||
|
||||
@ -276,7 +298,7 @@ void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
|
||||
int test_gpu_blas()
|
||||
{
|
||||
/*
|
||||
/*
|
||||
test_gpu_accuracy(0,0,10,576,75);
|
||||
|
||||
test_gpu_accuracy(0,0,17,10,10);
|
||||
@ -289,18 +311,18 @@ int test_gpu_blas()
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
|
||||
test_gpu_accuracy(0,0,10,10,10);
|
||||
test_gpu_accuracy(0,0,10,10,10);
|
||||
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu(0,0,192,729,1600);
|
||||
time_ongpu(0,0,384,196,1728);
|
||||
time_ongpu(0,0,256,196,3456);
|
||||
time_ongpu(0,0,256,196,2304);
|
||||
time_ongpu(0,0,128,4096,12544);
|
||||
time_ongpu(0,0,128,4096,4096);
|
||||
*/
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu(0,0,192,729,1600);
|
||||
time_ongpu(0,0,384,196,1728);
|
||||
time_ongpu(0,0,256,196,3456);
|
||||
time_ongpu(0,0,256,196,2304);
|
||||
time_ongpu(0,0,128,4096,12544);
|
||||
time_ongpu(0,0,128,4096,4096);
|
||||
*/
|
||||
time_ongpu(0,0,64,75,12544);
|
||||
time_ongpu(0,0,64,75,12544);
|
||||
time_ongpu(0,0,64,75,12544);
|
||||
@ -310,7 +332,7 @@ int test_gpu_blas()
|
||||
time_ongpu(0,0,512,4608,196);
|
||||
time_ongpu(1,1,4608,512,196);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -1,6 +1,11 @@
|
||||
#ifndef GEMM_H
|
||||
#define GEMM_H
|
||||
|
||||
void gemm_bin(int M, int N, int K, float ALPHA,
|
||||
char *A, int lda,
|
||||
float *B, int ldb,
|
||||
float *C, int ldc);
|
||||
|
||||
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
|
62
src/go.c
62
src/go.c
@ -10,6 +10,7 @@
|
||||
|
||||
int inverted = 1;
|
||||
int noi = 1;
|
||||
static const int nind = 5;
|
||||
|
||||
void train_go(char *cfgfile, char *weightfile)
|
||||
{
|
||||
@ -147,12 +148,14 @@ void print_board(float *board, int swap, int *indexes)
|
||||
int index = j*19 + i;
|
||||
if(indexes){
|
||||
int found = 0;
|
||||
for(n = 0; n < 3; ++n){
|
||||
for(n = 0; n < nind; ++n){
|
||||
if(index == indexes[n]){
|
||||
found = 1;
|
||||
if(n == 0) printf("\uff11");
|
||||
else if(n == 1) printf("\uff12");
|
||||
else if(n == 2) printf("\uff13");
|
||||
else if(n == 3) printf("\uff14");
|
||||
else if(n == 4) printf("\uff15");
|
||||
}
|
||||
}
|
||||
if(found) continue;
|
||||
@ -211,59 +214,56 @@ void test_go(char *filename, char *weightfile)
|
||||
if(board[i]) move[i] = 0;
|
||||
}
|
||||
|
||||
int indexes[3];
|
||||
int indexes[nind];
|
||||
int row, col;
|
||||
top_k(move, 19*19, 3, indexes);
|
||||
top_k(move, 19*19, nind, indexes);
|
||||
print_board(board, color, indexes);
|
||||
for(i = 0; i < 3; ++i){
|
||||
for(i = 0; i < nind; ++i){
|
||||
int index = indexes[i];
|
||||
row = index / 19;
|
||||
col = index % 19;
|
||||
printf("Suggested: %c %d, %.2f%%\n", col + 'A' + 1*(col > 7 && noi), (inverted)?19 - row : row+1, move[index]*100);
|
||||
printf("%d: %c %d, %.2f%%\n", i+1, col + 'A' + 1*(col > 7 && noi), (inverted)?19 - row : row+1, move[index]*100);
|
||||
}
|
||||
int index = indexes[0];
|
||||
int rec_row = index / 19;
|
||||
int rec_col = index % 19;
|
||||
|
||||
if(color == 1) printf("\u25EF Enter move: ");
|
||||
else printf("\u25C9 Enter move: ");
|
||||
|
||||
char c;
|
||||
char *line = fgetl(stdin);
|
||||
int num = sscanf(line, "%c %d", &c, &row);
|
||||
if (strlen(line) == 0){
|
||||
row = rec_row;
|
||||
col = rec_col;
|
||||
board[row*19 + col] = 1;
|
||||
}else if (c < 'A' || c > 'T'){
|
||||
if (c == 'p'){
|
||||
flip_board(board);
|
||||
color = -color;
|
||||
free(line);
|
||||
continue;
|
||||
int picked = 1;
|
||||
int dnum = sscanf(line, "%d", &picked);
|
||||
int cnum = sscanf(line, "%c", &c);
|
||||
if (strlen(line) == 0 || dnum) {
|
||||
--picked;
|
||||
if (picked < nind){
|
||||
int index = indexes[picked];
|
||||
row = index / 19;
|
||||
col = index % 19;
|
||||
board[row*19 + col] = 1;
|
||||
}
|
||||
} else if (cnum){
|
||||
if (c <= 'T' && c >= 'A'){
|
||||
int num = sscanf(line, "%c %d", &c, &row);
|
||||
row = (inverted)?19 - row : row-1;
|
||||
col = c - 'A';
|
||||
if (col > 7 && noi) col -= 1;
|
||||
if (num == 2) board[row*19 + col] = 1;
|
||||
} else if (c == 'p') {
|
||||
// Pass
|
||||
} else if(c=='b' || c == 'w'){
|
||||
char g;
|
||||
num = sscanf(line, "%c %c %d", &g, &c, &row);
|
||||
int num = sscanf(line, "%c %c %d", &g, &c, &row);
|
||||
row = (inverted)?19 - row : row-1;
|
||||
col = c - 'A';
|
||||
if (col > 7 && noi) col -= 1;
|
||||
if (num == 3) board[row*19 + col] = (g == 'b') ? color : -color;
|
||||
}else{
|
||||
} else if(c == 'c'){
|
||||
char g;
|
||||
num = sscanf(line, "%c %c %d", &g, &c, &row);
|
||||
int num = sscanf(line, "%c %c %d", &g, &c, &row);
|
||||
row = (inverted)?19 - row : row-1;
|
||||
col = c - 'A';
|
||||
if (col > 7 && noi) col -= 1;
|
||||
if (num == 3) board[row*19 + col] = 0;
|
||||
}
|
||||
} else if(num == 2){
|
||||
row = (inverted)?19 - row : row-1;
|
||||
col = c - 'A';
|
||||
if (col > 7 && noi) col -= 1;
|
||||
board[row*19 + col] = 1;
|
||||
}else{
|
||||
free(line);
|
||||
continue;
|
||||
}
|
||||
free(line);
|
||||
update_board(board);
|
||||
|
30
src/image.c
30
src/image.c
@ -142,15 +142,15 @@ void transpose_image(image im)
|
||||
assert(im.w == im.h);
|
||||
int n, m;
|
||||
int c;
|
||||
for(c = 0; c < im.c; ++c){
|
||||
for(n = 0; n < im.w-1; ++n){
|
||||
for(m = n + 1; m < im.w; ++m){
|
||||
float swap = im.data[m + im.w*(n + im.h*c)];
|
||||
im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)];
|
||||
im.data[n + im.w*(m + im.h*c)] = swap;
|
||||
}
|
||||
for(c = 0; c < im.c; ++c){
|
||||
for(n = 0; n < im.w-1; ++n){
|
||||
for(m = n + 1; m < im.w; ++m){
|
||||
float swap = im.data[m + im.w*(n + im.h*c)];
|
||||
im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)];
|
||||
im.data[n + im.w*(m + im.h*c)] = swap;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void rotate_image_cw(image im, int times)
|
||||
@ -676,6 +676,17 @@ void show_image_cv(image p, const char *name)
|
||||
}
|
||||
}
|
||||
|
||||
image binarize_image(image im)
|
||||
{
|
||||
image c = copy_image(im);
|
||||
int i;
|
||||
for(i = 0; i < im.w * im.h * im.c; ++i){
|
||||
if(c.data[i] > .5) c.data[i] = 1;
|
||||
else c.data[i] = 0;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
void saturate_image(image im, float sat)
|
||||
{
|
||||
rgb_to_hsv(im);
|
||||
@ -798,6 +809,8 @@ void show_image_cv(image p, const char *name)
|
||||
image exp5 = copy_image(im);
|
||||
exposure_image(exp5, .5);
|
||||
|
||||
image bin = binarize_image(im);
|
||||
|
||||
#ifdef GPU
|
||||
image r = resize_image(im, im.w, im.h);
|
||||
image black = make_image(im.w*2 + 3, im.h*2 + 3, 9);
|
||||
@ -817,7 +830,8 @@ void show_image_cv(image p, const char *name)
|
||||
show_image(black2, "Recreate");
|
||||
#endif
|
||||
|
||||
show_image(im, "Original");
|
||||
show_image(im, "Original");
|
||||
show_image(bin, "Binary");
|
||||
show_image(gray, "Gray");
|
||||
show_image(sat2, "Saturation-2");
|
||||
show_image(sat5, "Saturation-.5");
|
||||
|
@ -92,6 +92,7 @@ struct layer{
|
||||
float *rand;
|
||||
float *cost;
|
||||
float *filters;
|
||||
char *cfilters;
|
||||
float *filter_updates;
|
||||
float *state;
|
||||
|
||||
|
80
src/parser.c
80
src/parser.c
@ -730,8 +730,44 @@ void save_weights_double(network net, char *filename)
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void save_convolutional_weights_binary(layer l, FILE *fp)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_convolutional_layer(l);
|
||||
}
|
||||
#endif
|
||||
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
|
||||
int size = l.c*l.size*l.size;
|
||||
int i, j, k;
|
||||
fwrite(l.biases, sizeof(float), l.n, fp);
|
||||
if (l.batch_normalize){
|
||||
fwrite(l.scales, sizeof(float), l.n, fp);
|
||||
fwrite(l.rolling_mean, sizeof(float), l.n, fp);
|
||||
fwrite(l.rolling_variance, sizeof(float), l.n, fp);
|
||||
}
|
||||
for(i = 0; i < l.n; ++i){
|
||||
float mean = l.binary_filters[i*size];
|
||||
if(mean < 0) mean = -mean;
|
||||
fwrite(&mean, sizeof(float), 1, fp);
|
||||
for(j = 0; j < size/8; ++j){
|
||||
int index = i*size + j*8;
|
||||
unsigned char c = 0;
|
||||
for(k = 0; k < 8; ++k){
|
||||
if (j*8 + k >= size) break;
|
||||
if (l.binary_filters[index + k] > 0) c = (c | 1<<k);
|
||||
}
|
||||
fwrite(&c, sizeof(char), 1, fp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void save_convolutional_weights(layer l, FILE *fp)
|
||||
{
|
||||
if(l.binary){
|
||||
//save_convolutional_weights_binary(l, fp);
|
||||
//return;
|
||||
}
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_convolutional_layer(l);
|
||||
@ -843,27 +879,55 @@ void load_connected_weights(layer l, FILE *fp, int transpose)
|
||||
#endif
|
||||
}
|
||||
|
||||
void load_convolutional_weights_binary(layer l, FILE *fp)
|
||||
{
|
||||
fread(l.biases, sizeof(float), l.n, fp);
|
||||
if (l.batch_normalize && (!l.dontloadscales)){
|
||||
fread(l.scales, sizeof(float), l.n, fp);
|
||||
fread(l.rolling_mean, sizeof(float), l.n, fp);
|
||||
fread(l.rolling_variance, sizeof(float), l.n, fp);
|
||||
}
|
||||
int size = l.c*l.size*l.size;
|
||||
int i, j, k;
|
||||
for(i = 0; i < l.n; ++i){
|
||||
float mean = 0;
|
||||
fread(&mean, sizeof(float), 1, fp);
|
||||
for(j = 0; j < size/8; ++j){
|
||||
int index = i*size + j*8;
|
||||
unsigned char c = 0;
|
||||
fread(&c, sizeof(char), 1, fp);
|
||||
for(k = 0; k < 8; ++k){
|
||||
if (j*8 + k >= size) break;
|
||||
l.filters[index + k] = (c & 1<<k) ? mean : -mean;
|
||||
}
|
||||
}
|
||||
}
|
||||
binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_convolutional_layer(l);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void load_convolutional_weights(layer l, FILE *fp)
|
||||
{
|
||||
if(l.binary){
|
||||
//load_convolutional_weights_binary(l, fp);
|
||||
//return;
|
||||
}
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fread(l.biases, sizeof(float), l.n, fp);
|
||||
if (l.batch_normalize && (!l.dontloadscales)){
|
||||
fread(l.scales, sizeof(float), l.n, fp);
|
||||
fread(l.rolling_mean, sizeof(float), l.n, fp);
|
||||
fread(l.rolling_variance, sizeof(float), l.n, fp);
|
||||
/*
|
||||
int i;
|
||||
for(i = 0; i < l.n; ++i){
|
||||
if(l.rolling_mean[i] > 1 || l.rolling_mean[i] < -1 || l.rolling_variance[i] > 1 || l.rolling_variance[i] < -1)
|
||||
printf("%f %f\n", l.rolling_mean[i], l.rolling_variance[i]);
|
||||
}
|
||||
*/
|
||||
}
|
||||
fflush(stdout);
|
||||
fread(l.filters, sizeof(float), num, fp);
|
||||
if (l.flipped) {
|
||||
transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
|
||||
}
|
||||
if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_convolutional_layer(l);
|
||||
|
Loading…
x
Reference in New Issue
Block a user