mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
updates?
This commit is contained in:
parent
90d354a2a5
commit
d6fbe86e7a
71
src/cnn.c
71
src/cnn.c
@ -429,15 +429,16 @@ void train_imagenet_distributed(char *address)
|
||||
}
|
||||
}
|
||||
|
||||
void train_imagenet()
|
||||
void train_imagenet(char *cfgfile)
|
||||
{
|
||||
float avg_loss = 1;
|
||||
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
||||
srand(time(0));
|
||||
network net = parse_network_cfg("cfg/net.part");
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
set_learning_network(&net, .000001, .9, .0005);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
int i = 9540;
|
||||
int i = 20590;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -446,14 +447,14 @@ void train_imagenet()
|
||||
pthread_t load_thread;
|
||||
data train;
|
||||
data buffer;
|
||||
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer);
|
||||
while(1){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
normalize_data_rows(train);
|
||||
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256, &buffer);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
#ifdef GPU
|
||||
@ -490,7 +491,7 @@ void validate_imagenet(char *filename)
|
||||
int num = (i+1)*m/splits - i*m/splits;
|
||||
|
||||
data val, buffer;
|
||||
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 224, 224, &buffer);
|
||||
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
|
||||
for(i = 1; i <= splits; ++i){
|
||||
time=clock();
|
||||
|
||||
@ -500,7 +501,7 @@ void validate_imagenet(char *filename)
|
||||
|
||||
num = (i+1)*m/splits - i*m/splits;
|
||||
char **part = paths+(i*m/splits);
|
||||
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 224, 224, &buffer);
|
||||
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
|
||||
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
|
||||
|
||||
time=clock();
|
||||
@ -514,9 +515,10 @@ void validate_imagenet(char *filename)
|
||||
}
|
||||
}
|
||||
|
||||
void test_detection()
|
||||
void test_detection(char *cfgfile)
|
||||
{
|
||||
network net = parse_network_cfg("cfg/detnet.test");
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
char filename[256];
|
||||
@ -618,14 +620,14 @@ void test_cifar10()
|
||||
void train_cifar10()
|
||||
{
|
||||
srand(555555);
|
||||
network net = parse_network_cfg("cfg/cifar10.cfg");
|
||||
network net = parse_network_cfg("cfg/cifar_ramp.part");
|
||||
data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
||||
int count = 0;
|
||||
int iters = 10000/net.batch;
|
||||
data train = load_all_cifar10();
|
||||
while(++count <= 10000){
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, iters);
|
||||
float loss = train_network_sgd_gpu(net, train, iters);
|
||||
end = clock();
|
||||
//visualize_network(net);
|
||||
//cvWaitKey(5000);
|
||||
@ -633,10 +635,10 @@ void train_cifar10()
|
||||
//float test_acc = network_accuracy(net, test);
|
||||
//printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
||||
if(count%10 == 0){
|
||||
float test_acc = network_accuracy(net, test);
|
||||
float test_acc = network_accuracy_gpu(net, test);
|
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count);
|
||||
sprintf(buff, "/home/pjreddie/cifar/cifar10_%d.cfg", count);
|
||||
save_network(net, buff);
|
||||
}else{
|
||||
printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
||||
@ -899,31 +901,16 @@ void test_correct_alexnet()
|
||||
printf("%d\n", plist->size);
|
||||
clock_t time;
|
||||
int count = 0;
|
||||
|
||||
srand(222222);
|
||||
network net = parse_network_cfg("cfg/net.cfg");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
network net;
|
||||
int imgs = 1000/net.batch+1;
|
||||
imgs = 1;
|
||||
|
||||
while(++count <= 5){
|
||||
time=clock();
|
||||
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224,224);
|
||||
//translate_data_rows(train, -144);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network_data_cpu(net, train, imgs);
|
||||
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
|
||||
free_data(train);
|
||||
}
|
||||
#ifdef GPU
|
||||
count = 0;
|
||||
srand(222222);
|
||||
net = parse_network_cfg("cfg/net.cfg");
|
||||
while(++count <= 5){
|
||||
time=clock();
|
||||
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224);
|
||||
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256, 256);
|
||||
//translate_data_rows(train, -144);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
@ -933,6 +920,21 @@ void test_correct_alexnet()
|
||||
free_data(train);
|
||||
}
|
||||
#endif
|
||||
count = 0;
|
||||
srand(222222);
|
||||
net = parse_network_cfg("cfg/net.cfg");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
while(++count <= 5){
|
||||
time=clock();
|
||||
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 256,256);
|
||||
//translate_data_rows(train, -144);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network_data_cpu(net, train, imgs);
|
||||
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
|
||||
free_data(train);
|
||||
}
|
||||
}
|
||||
|
||||
void run_server()
|
||||
@ -972,22 +974,23 @@ int main(int argc, char *argv[])
|
||||
#ifdef GPU
|
||||
cl_setup(index);
|
||||
#endif
|
||||
if(0==strcmp(argv[1], "train")) train_imagenet();
|
||||
else if(0==strcmp(argv[1], "detection")) train_detection_net();
|
||||
if(0==strcmp(argv[1], "detection")) train_detection_net();
|
||||
else if(0==strcmp(argv[1], "asirra")) train_asirra();
|
||||
else if(0==strcmp(argv[1], "nist")) train_nist();
|
||||
else if(0==strcmp(argv[1], "cifar")) train_cifar10();
|
||||
else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
|
||||
else if(0==strcmp(argv[1], "test")) test_imagenet();
|
||||
else if(0==strcmp(argv[1], "server")) run_server();
|
||||
else if(0==strcmp(argv[1], "detect")) test_detection();
|
||||
#ifdef GPU
|
||||
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
|
||||
#endif
|
||||
else if(argc < 3){
|
||||
fprintf(stderr, "usage: %s <function>\n", argv[0]);
|
||||
fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
|
||||
return 0;
|
||||
}
|
||||
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
|
||||
else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
|
||||
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
|
||||
else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
|
||||
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
|
||||
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
|
||||
|
@ -21,37 +21,77 @@ crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int
|
||||
layer->crop_width = crop_width;
|
||||
layer->crop_height = crop_height;
|
||||
layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float));
|
||||
layer->delta = calloc(crop_width*crop_height * c*batch, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_cl = cl_make_array(layer->output, crop_width*crop_height*c*batch);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
|
||||
void forward_crop_layer(const crop_layer layer, float *input)
|
||||
{
|
||||
int i,j,c,b;
|
||||
int i,j,c,b,row,col;
|
||||
int index;
|
||||
int count = 0;
|
||||
int flip = (layer.flip && rand()%2);
|
||||
int dh = rand()%(layer.h - layer.crop_height);
|
||||
int dw = rand()%(layer.w - layer.crop_width);
|
||||
int count = 0;
|
||||
if(layer.flip && rand()%2){
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(c = 0; c < layer.c; ++c){
|
||||
for(i = dh; i < dh+layer.crop_height; ++i){
|
||||
for(j = dw+layer.crop_width-1; j >= dw; --j){
|
||||
int index = j+layer.w*(i+layer.h*(c + layer.c*b));
|
||||
layer.output[count++] = input[index];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for(i = 0; i < layer.crop_height; ++i){
|
||||
for(j = 0; j < layer.crop_width; ++j){
|
||||
if(flip){
|
||||
col = layer.w - dw - j - 1;
|
||||
}else{
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(c = 0; c < layer.c; ++c){
|
||||
for(i = dh; i < dh+layer.crop_height; ++i){
|
||||
for(j = dw; j < dw+layer.crop_width; ++j){
|
||||
int index = j+layer.w*(i+layer.h*(c + layer.c*b));
|
||||
layer.output[count++] = input[index];
|
||||
col = j + dw;
|
||||
}
|
||||
row = i + dh;
|
||||
index = col+layer.w*(row+layer.h*(c + layer.c*b));
|
||||
layer.output[count++] = input[index];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
cl_kernel get_crop_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/crop_layer.cl", "forward", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void forward_crop_layer_gpu(crop_layer layer, cl_mem input)
|
||||
{
|
||||
int flip = (layer.flip && rand()%2);
|
||||
int dh = rand()%(layer.h - layer.crop_height);
|
||||
int dw = rand()%(layer.w - layer.crop_width);
|
||||
int size = layer.batch*layer.c*layer.crop_width*layer.crop_height;
|
||||
|
||||
cl_kernel kernel = get_crop_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.crop_height), (void*) &layer.crop_height);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.crop_width), (void*) &layer.crop_width);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(dh), (void*) &dh);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(dw), (void*) &dw);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(flip), (void*) &flip);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {size};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
16
src/crop_layer.cl
Normal file
16
src/crop_layer.cl
Normal file
@ -0,0 +1,16 @@
|
||||
__kernel void forward(__global float *input, int c, int h, int w, int crop_height, int crop_width, int dh, int dw, int flip, __global float *output)
|
||||
{
|
||||
int id = get_global_id(0);
|
||||
int count = id;
|
||||
int j = id % crop_width;
|
||||
id /= crop_width;
|
||||
int i = id % crop_height;
|
||||
id /= crop_height;
|
||||
int k = id % c;
|
||||
id /= c;
|
||||
int b = id;
|
||||
int col = (flip) ? w - dw - j - 1 : j + dw;
|
||||
int row = i + dh;
|
||||
int index = col+w*(row+h*(k + c*b));
|
||||
output[count] = input[index];
|
||||
}
|
@ -1,6 +1,7 @@
|
||||
#ifndef CROP_LAYER_H
|
||||
#define CROP_LAYER_H
|
||||
|
||||
#include "opencl.h"
|
||||
#include "image.h"
|
||||
|
||||
typedef struct {
|
||||
@ -9,14 +10,19 @@ typedef struct {
|
||||
int crop_width;
|
||||
int crop_height;
|
||||
int flip;
|
||||
float *delta;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
cl_mem output_cl;
|
||||
#endif
|
||||
} crop_layer;
|
||||
|
||||
image get_crop_image(crop_layer layer);
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip);
|
||||
void forward_crop_layer(const crop_layer layer, float *input);
|
||||
void backward_crop_layer(const crop_layer layer, float *input, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_crop_layer_gpu(crop_layer layer, cl_mem input);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -125,6 +125,9 @@ float *get_network_output_layer(network net, int i)
|
||||
} else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
} else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
} else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
@ -402,6 +405,9 @@ int get_network_input_size_layer(network net, int i)
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
||||
return layer.inputs;
|
||||
} else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *) net.layers[i];
|
||||
return layer.c*layer.h*layer.w;
|
||||
}
|
||||
else if(net.types[i] == FREEWEIGHT){
|
||||
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
|
||||
@ -411,6 +417,7 @@ int get_network_input_size_layer(network net, int i)
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.inputs;
|
||||
}
|
||||
printf("Can't find input size\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -425,6 +432,10 @@ int get_network_output_size_layer(network net, int i)
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
image output = get_maxpool_image(layer);
|
||||
return output.h*output.w*output.c;
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *) net.layers[i];
|
||||
return layer.c*layer.crop_height*layer.crop_width;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
@ -442,6 +453,7 @@ int get_network_output_size_layer(network net, int i)
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.inputs;
|
||||
}
|
||||
printf("Can't find output size\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -55,6 +55,11 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
forward_dropout_layer_gpu(layer, input);
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
forward_crop_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
//printf("%d %f\n", i, sec(clock()-time));
|
||||
/*
|
||||
else if(net.types[i] == CROP){
|
||||
@ -142,6 +147,10 @@ cl_mem get_network_output_cl_layer(network net, int i)
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
|
Loading…
Reference in New Issue
Block a user