This commit is contained in:
Daniel Gordon 2018-03-14 19:11:09 -07:00
commit ffa8c699a8
48 changed files with 2154 additions and 847 deletions

View File

@ -57,8 +57,8 @@ CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o
EXECOBJA=captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o attention.o darknet.o
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o lstm_layer.o l2norm_layer.o
EXECOBJA=captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o darknet.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
@ -97,5 +97,5 @@ results:
.PHONY: clean
clean:
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ)
rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

View File

@ -1,12 +1,12 @@
[net]
# Train
batch=1
subdivisions=1
batch=128
subdivisions=1
# Test
# batch=1
# subdivisions=1
height=224
width=224
#batch=1
#subdivisions=1
height=256
width=256
channels=3
momentum=0.9
decay=0.0005
@ -88,7 +88,6 @@ activation=leaky
[maxpool]
size=2
stride=2
padding=1
[convolutional]
batch_normalize=1
@ -110,6 +109,3 @@ activation=leaky
[softmax]
groups=1
[cost]
type=sse

View File

@ -1,17 +1,31 @@
[net]
batch=128
subdivisions=1
height=224
width=224
# Training
#batch=128
#subdivisions=2
# Testing
batch=1
subdivisions=1
height=256
width=256
min_crop=128
max_crop=448
channels=3
momentum=0.9
decay=0.0005
max_crop=448
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=1600000
max_batches=800000
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1

View File

@ -1,6 +1,7 @@
classes=21842
train = /data/imagenet/imagenet22k.train.list
valid = /data/imagenet/imagenet22k.valid.list
#valid = /data/imagenet/imagenet1k.valid.list
backup = /home/pjreddie/backup/
labels = data/imagenet.labels.list
names = data/imagenet.shortnames.list

View File

@ -120,7 +120,7 @@ filters=425
activation=linear
[region]
anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
anchors = 18.3274,21.6763, 59.9827,66.001, 106.83,175.179, 252.25,112.889, 312.657,293.385
bias_match=1
classes=80
coords=4

View File

@ -1,10 +1,10 @@
[net]
# Testing
batch=1
subdivisions=1
# batch=1
# subdivisions=1
# Training
# batch=64
# subdivisions=8
batch=64
subdivisions=8
width=608
height=608
channels=3
@ -239,7 +239,7 @@ activation=linear
[region]
anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
anchors = 18.3274,21.6763, 59.9827,66.001, 106.83,175.179, 252.25,112.889, 312.657,293.385
bias_match=1
classes=80
coords=4

View File

@ -44,11 +44,17 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
list *options = read_data_cfg(datacfg);
char *backup_directory = option_find_str(options, "backup", "/backup/");
int tag = option_find_int_quiet(options, "tag", 0);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *train_list = option_find_str(options, "train", "data/train.list");
char *tree = option_find_str(options, "tree", 0);
if (tree) net->hierarchy = read_tree(tree);
int classes = option_find_int(options, "classes", 2);
char **labels = get_labels(label_list);
char **labels;
if(!tag){
labels = get_labels(label_list);
}
list *plist = get_paths(train_list);
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
@ -76,7 +82,11 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
args.n = imgs;
args.m = N;
args.labels = labels;
if (tag){
args.type = TAG_DATA;
} else {
args.type = CLASSIFICATION_DATA;
}
data train;
data buffer;
@ -385,15 +395,13 @@ void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
}
}
image im = load_image_color(paths[i], 0, 0);
image resized = resize_min(im, net->w);
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
image crop = center_crop_image(im, net->w, net->h);
//show_image(im, "orig");
//show_image(crop, "cropped");
//cvWaitKey(0);
float *pred = network_predict(net, crop.data);
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1);
if(resized.data != im.data) free_image(resized);
free_image(im);
free_image(crop);
top_k(pred, classes, topk, indexes);
@ -403,6 +411,7 @@ void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
if(indexes[j] == class) avg_topk += 1;
}
printf("%s, %d, %f, %f, \n", paths[i], class, pred[0], pred[1]);
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
}
}
@ -577,6 +586,8 @@ void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *fi
}
image im = load_image_color(input, 0, 0);
image r = letterbox_image(im, net->w, net->h);
//image r = resize_min(im, 320);
//printf("%d %d\n", r.w, r.h);
//resize_network(net, r.w, r.h);
//printf("%d %d\n", r.w, r.h);
@ -704,6 +715,44 @@ void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_
}
}
void file_output_classifier(char *datacfg, char *filename, char *weightfile, char *listfile)
{
int i,j;
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
//char *label_list = option_find_str(options, "names", "data/labels.list");
int classes = option_find_int(options, "classes", 2);
list *plist = get_paths(listfile);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
for(i = 0; i < m; ++i){
image im = load_image_color(paths[i], 0, 0);
image resized = resize_min(im, net->w);
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
float *pred = network_predict(net, crop.data);
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 0, 1);
if(resized.data != im.data) free_image(resized);
free_image(im);
free_image(crop);
printf("%s", paths[i]);
for(j = 0; j < classes; ++j){
printf("\t%g", pred[j]);
}
printf("\n");
}
}
void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
@ -914,6 +963,8 @@ void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
char *base = basecfg(cfgfile);
image **alphabet = load_alphabet();
printf("Classifier Demo\n");
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
@ -922,22 +973,33 @@ void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_ind
srand(2222222);
CvCapture * cap;
int w = 1280;
int h = 720;
if(filename){
cap = cvCaptureFromFile(filename);
}else{
cap = cvCaptureFromCAM(cam_index);
}
if(w){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w);
}
if(h){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h);
}
int top = option_find_int(options, "top", 1);
char *name_list = option_find_str(options, "names", 0);
char *label_list = option_find_str(options, "labels", 0);
char *name_list = option_find_str(options, "names", label_list);
char **names = get_labels(name_list);
int *indexes = calloc(top, sizeof(int));
if(!cap) error("Couldn't connect to webcam.\n");
cvNamedWindow("Classifier", CV_WINDOW_NORMAL);
cvResizeWindow("Classifier", 512, 512);
cvNamedWindow(base, CV_WINDOW_NORMAL);
cvResizeWindow(base, 512, 512);
float fps = 0;
int i;
@ -946,8 +1008,8 @@ void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_ind
gettimeofday(&tval_before, NULL);
image in = get_image_from_stream(cap);
image in_s = resize_image(in, net->w, net->h);
show_image(in, "Classifier");
//image in_s = resize_image(in, net->w, net->h);
image in_s = letterbox_image(in, net->w, net->h);
float *predictions = network_predict(net, in_s.data);
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
@ -957,11 +1019,24 @@ void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_ind
printf("\033[1;1H");
printf("\nFPS:%.0f\n",fps);
int lh = in.h*.03;
int toph = 3*lh;
float rgb[3] = {1,1,1};
for(i = 0; i < top; ++i){
printf("%d\n", toph);
int index = indexes[i];
printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
char buff[1024];
sprintf(buff, "%3.1f%%: %s\n", predictions[index]*100, names[index]);
image label = get_label(alphabet, buff, lh);
draw_label(in, toph, lh, label, rgb);
toph += 2*lh;
free_image(label);
}
show_image(in, base);
free_image(in_s);
free_image(in);
@ -998,6 +1073,7 @@ void run_classifier(int argc, char **argv)
char *layer_s = (argc > 7) ? argv[7]: 0;
int layer = layer_s ? atoi(layer_s) : -1;
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top);
else if(0==strcmp(argv[2], "fout")) file_output_classifier(data, cfg, weights, filename);
else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);

View File

@ -94,14 +94,14 @@ void train_coco(char *cfgfile, char *weightfile)
save_weights(net, buff);
}
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
static void print_cocos(FILE *fp, int image_id, detection *dets, int num_boxes, int classes, int w, int h)
{
int i, j;
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -114,7 +114,7 @@ void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxe
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
}
}
}
@ -140,17 +140,13 @@ void validate_coco(char *cfg, char *weights)
layer l = net->layers[net->n-1];
int classes = l.classes;
int side = l.side;
int j;
char buff[1024];
snprintf(buff, 1024, "%s/coco_results.json", base);
FILE *fp = fopen(buff, "w");
fprintf(fp, "[\n");
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -199,9 +195,9 @@ void validate_coco(char *cfg, char *weights)
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
fill_network_boxes(net, w, h, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, dets, l.side*l.side*l.n, classes, w, h);
free_image(val[t]);
free_image(val_resized[t]);
}
@ -235,9 +231,7 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -245,7 +239,6 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
float thresh = .001;
int nms = 0;
float iou_thresh = .5;
float nms_thresh = .5;
int total = 0;
int correct = 0;
@ -258,8 +251,9 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
fill_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, dets);
if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
@ -270,7 +264,7 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(probs[k][0] > thresh){
if(dets[k].objectness > thresh){
++proposals;
}
}
@ -279,8 +273,8 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
float iou = box_iou(dets[k].bbox, t);
if(dets[k].objectness > thresh && iou > best_iou){
best_iou = iou;
}
}
@ -308,10 +302,7 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
clock_t time;
char buff[256];
char *input = buff;
int j;
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
detection *dets = make_network_boxes(net);
while(1){
if(filename){
strncpy(input, filename, 256);
@ -328,9 +319,11 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, 0, coco_classes, alphabet, 80);
fill_network_boxes(net, 1, 1, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, dets, l.side*l.side*l.n, thresh, coco_classes, alphabet, 80);
save_image(im, "prediction");
show_image(im, "predictions");
free_image(im);

View File

@ -12,7 +12,6 @@ extern void run_coco(int argc, char **argv);
extern void run_captcha(int argc, char **argv);
extern void run_nightmare(int argc, char **argv);
extern void run_classifier(int argc, char **argv);
extern void run_attention(int argc, char **argv);
extern void run_regressor(int argc, char **argv);
extern void run_segmenter(int argc, char **argv);
extern void run_char_rnn(int argc, char **argv);
@ -189,6 +188,25 @@ void partial(char *cfgfile, char *weightfile, char *outfile, int max)
save_weights_upto(net, outfile, max);
}
void print_weights(char *cfgfile, char *weightfile, int n)
{
gpu_index = -1;
network *net = load_network(cfgfile, weightfile, 1);
layer l = net->layers[n];
int i, j;
//printf("[");
for(i = 0; i < l.n; ++i){
//printf("[");
for(j = 0; j < l.size*l.size*l.c; ++j){
//if(j > 0) printf(",");
printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
}
printf("\n");
//printf("]%s\n", (i == l.n-1)?"":",");
}
//printf("]");
}
void rescale_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
@ -432,8 +450,6 @@ int main(int argc, char **argv)
predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
} else if (0 == strcmp(argv[1], "classifier")){
run_classifier(argc, argv);
} else if (0 == strcmp(argv[1], "attention")){
run_attention(argc, argv);
} else if (0 == strcmp(argv[1], "regressor")){
run_regressor(argc, argv);
} else if (0 == strcmp(argv[1], "segmenter")){
@ -470,6 +486,8 @@ int main(int argc, char **argv)
oneoff(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "oneoff2")){
oneoff2(argv[2], argv[3], argv[4], atoi(argv[5]));
} else if (0 == strcmp(argv[1], "print")){
print_weights(argv[2], argv[3], atoi(argv[4]));
} else if (0 == strcmp(argv[1], "partial")){
partial(argv[2], argv[3], argv[4], atoi(argv[5]));
} else if (0 == strcmp(argv[1], "average")){

View File

@ -2,6 +2,7 @@
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
list *options = read_data_cfg(datacfg);
@ -73,6 +74,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
free_data(train);
load_thread = load_data(args);
#pragma omp parallel for
for(i = 0; i < ngpus; ++i){
resize_network(nets[i], dim, dim);
}
@ -158,15 +160,15 @@ static int get_coco_image_id(char *filename)
return atoi(p+1);
}
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
{
int i, j;
int image_id = get_coco_image_id(image_path);
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -179,19 +181,19 @@ static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, i
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
}
}
}
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2. + 1;
float xmax = boxes[i].x + boxes[i].w/2. + 1;
float ymin = boxes[i].y - boxes[i].h/2. + 1;
float ymax = boxes[i].y + boxes[i].h/2. + 1;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2. + 1;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2. + 1;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2. + 1;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2. + 1;
if (xmin < 1) xmin = 1;
if (ymin < 1) ymin = 1;
@ -199,20 +201,20 @@ void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs,
if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
xmin, ymin, xmax, ymax);
}
}
}
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -221,7 +223,7 @@ void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int
for(j = 0; j < classes; ++j){
int class = j;
if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, dets[i].prob[class],
xmin, ymin, xmax, ymax);
}
}
@ -277,10 +279,7 @@ void validate_detector_flip(char *datacfg, char *cfgfile, char *weightfile, char
}
}
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -334,14 +333,14 @@ void validate_detector_flip(char *datacfg, char *cfgfile, char *weightfile, char
network_predict(net, input.data);
int w = val[t].w;
int h = val[t].h;
get_region_boxes(l, w, h, net->w, net->h, thresh, probs, boxes, 0, 0, map, .5, 0);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
fill_network_boxes(net, w, h, thresh, .5, map, 0, dets);
if (nms) do_nms_sort(dets, l.w*l.h*l.n, classes, nms);
if (coco){
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_cocos(fp, path, dets, l.w*l.h*l.n, classes, w, h);
} else if (imagenet){
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_imagenet_detections(fp, i+t-nthreads+1, dets, l.w*l.h*l.n, classes, w, h);
} else {
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_detector_detections(fps, id, dets, l.w*l.h*l.n, classes, w, h);
}
free(id);
free_image(val[t]);
@ -410,10 +409,8 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *out
}
}
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *));
detection *dets = make_network_boxes(net);
int nboxes = num_boxes(net);
int m = plist->size;
int i=0;
@ -462,14 +459,14 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *out
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_region_boxes(l, w, h, net->w, net->h, thresh, probs, boxes, 0, 0, map, .5, 0);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
fill_network_boxes(net, w, h, thresh, .5, map, 0, dets);
if (nms) do_nms_sort(dets, nboxes, classes, nms);
if (coco){
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_cocos(fp, path, dets, nboxes, classes, w, h);
} else if (imagenet){
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_imagenet_detections(fp, i+t-nthreads+1, dets, nboxes, classes, w, h);
} else {
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_detector_detections(fps, id, dets, nboxes, classes, w, h);
}
free(id);
free_image(val[t]);
@ -498,12 +495,9 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
char **paths = (char **)list_to_array(plist);
layer l = net->layers[net->n-1];
int classes = l.classes;
int j, k;
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -516,6 +510,7 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
int correct = 0;
int proposals = 0;
float avg_iou = 0;
int nboxes = num_boxes(net);
for(i = 0; i < m; ++i){
char *path = paths[i];
@ -523,8 +518,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_region_boxes(l, sized.w, sized.h, net->w, net->h, thresh, probs, boxes, 0, 1, 0, .5, 1);
if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
fill_network_boxes(net, sized.w, sized.h, thresh, .5, 0, 1, dets);
if (nms) do_nms_obj(dets, nboxes, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
@ -534,8 +529,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < l.w*l.h*l.n; ++k){
if(probs[k][0] > thresh){
for(k = 0; k < nboxes; ++k){
if(dets[k].objectness > thresh){
++proposals;
}
}
@ -544,8 +539,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < l.w*l.h*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
float iou = box_iou(dets[k].bbox, t);
if(dets[k].objectness > thresh && iou > best_iou){
best_iou = iou;
}
}
@ -562,6 +557,7 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
}
}
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
{
list *options = read_data_cfg(datacfg);
@ -575,7 +571,6 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
double time;
char buff[256];
char *input = buff;
int j;
float nms=.3;
while(1){
if(filename){
@ -595,23 +590,18 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
//resize_network(net, sized.w, sized.h);
layer l = net->layers[net->n-1];
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));
float **masks = 0;
if (l.coords > 4){
masks = calloc(l.w*l.h*l.n, sizeof(float*));
for(j = 0; j < l.w*l.h*l.n; ++j) masks[j] = calloc(l.coords-4, sizeof(float *));
}
int nboxes = num_boxes(net);
printf("%d\n", nboxes);
float *X = sized.data;
time=what_time_is_it_now();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
get_region_boxes(l, im.w, im.h, net->w, net->h, thresh, probs, boxes, masks, 0, 0, hier_thresh, 1);
detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1);
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, masks, names, alphabet, l.classes);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
free_detections(dets, num_boxes(net));
if(outfile){
save_image(im, outfile);
}
@ -630,12 +620,190 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
free_image(im);
free_image(sized);
free(boxes);
free_ptrs((void **)probs, l.w*l.h*l.n);
if (filename) break;
}
}
void censor_detector(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename, int class, float thresh, int skip)
{
image **alphabet = load_alphabet();
char *base = basecfg(cfgfile);
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
list *options = read_data_cfg(datacfg);
srand(2222222);
CvCapture * cap;
int w = 1280;
int h = 720;
if(filename){
cap = cvCaptureFromFile(filename);
}else{
cap = cvCaptureFromCAM(cam_index);
}
if(w){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w);
}
if(h){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h);
}
int top = option_find_int(options, "top", 1);
char *label_list = option_find_str(options, "labels", 0);
char *name_list = option_find_str(options, "names", label_list);
char **names = get_labels(name_list);
int *indexes = calloc(top, sizeof(int));
if(!cap) error("Couldn't connect to webcam.\n");
cvNamedWindow(base, CV_WINDOW_NORMAL);
cvResizeWindow(base, 512, 512);
float fps = 0;
int i;
int count = 0;
float nms = .45;
while(1){
image in = get_image_from_stream(cap);
//image in_s = resize_image(in, net->w, net->h);
image in_s = letterbox_image(in, net->w, net->h);
layer l = net->layers[net->n-1];
int nboxes = num_boxes(net);
float *X = in_s.data;
network_predict(net, X);
detection *dets = get_network_boxes(net, in.w, in.h, thresh, 0, 0, 0);
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
for(i = 0; i < nboxes; ++i){
if(dets[i].prob[class] > thresh){
box b = dets[i].bbox;
int left = b.x-b.w/2.;
int top = b.y-b.h/2.;
censor_image(in, left, top, b.w, b.h);
}
}
show_image(in, base);
cvWaitKey(10);
free_detections(dets, num_boxes(net));
free_image(in_s);
free_image(in);
float curr = 0;
fps = .9*fps + .1*curr;
for(i = 0; i < skip; ++i){
image in = get_image_from_stream(cap);
free_image(in);
}
}
}
void extract_detector(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename, int class, float thresh, int skip)
{
image **alphabet = load_alphabet();
char *base = basecfg(cfgfile);
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
list *options = read_data_cfg(datacfg);
srand(2222222);
CvCapture * cap;
int w = 1280;
int h = 720;
if(filename){
cap = cvCaptureFromFile(filename);
}else{
cap = cvCaptureFromCAM(cam_index);
}
if(w){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w);
}
if(h){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h);
}
int top = option_find_int(options, "top", 1);
char *label_list = option_find_str(options, "labels", 0);
char *name_list = option_find_str(options, "names", label_list);
char **names = get_labels(name_list);
int *indexes = calloc(top, sizeof(int));
if(!cap) error("Couldn't connect to webcam.\n");
cvNamedWindow(base, CV_WINDOW_NORMAL);
cvResizeWindow(base, 512, 512);
float fps = 0;
int i;
int count = 0;
float nms = .45;
while(1){
image in = get_image_from_stream(cap);
//image in_s = resize_image(in, net->w, net->h);
image in_s = letterbox_image(in, net->w, net->h);
layer l = net->layers[net->n-1];
int nboxes = num_boxes(net);
show_image(in, base);
float *X = in_s.data;
network_predict(net, X);
detection *dets = get_network_boxes(net, in.w, in.h, thresh, 0, 0, 1);
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
for(i = 0; i < nboxes; ++i){
if(dets[i].prob[class] > thresh){
box b = dets[i].bbox;
int size = b.w*in.w > b.h*in.h ? b.w*in.w : b.h*in.h;
int dx = b.x*in.w-size/2.;
int dy = b.y*in.h-size/2.;
image bim = crop_image(in, dx, dy, size, size);
char buff[2048];
sprintf(buff, "results/extract/%07d", count);
++count;
save_image(bim, buff);
free_image(bim);
}
}
free_detections(dets, num_boxes(net));
free_image(in_s);
free_image(in);
float curr = 0;
fps = .9*fps + .1*curr;
for(i = 0; i < skip; ++i){
image in = get_image_from_stream(cap);
free_image(in);
}
}
}
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, detection *dets)
{
network_predict_image(net, im);
layer l = net->layers[net->n-1];
int nboxes = num_boxes(net);
fill_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 0, dets);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
}
void run_detector(int argc, char **argv)
{
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
@ -677,12 +845,15 @@ void run_detector(int argc, char **argv)
int width = find_int_arg(argc, argv, "-w", 0);
int height = find_int_arg(argc, argv, "-h", 0);
int fps = find_int_arg(argc, argv, "-fps", 0);
int class = find_int_arg(argc, argv, "-class", 0);
char *datacfg = argv[3];
char *cfg = argv[4];
char *weights = (argc > 5) ? argv[5] : 0;
char *filename = (argc > 6) ? argv[6]: 0;
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, outfile, fullscreen);
else if(0==strcmp(argv[2], "extract")) extract_detector(datacfg, cfg, weights, cam_index, filename, class, thresh, frame_skip);
else if(0==strcmp(argv[2], "censor")) censor_detector(datacfg, cfg, weights, cam_index, filename, class, thresh, frame_skip);
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
else if(0==strcmp(argv[2], "valid2")) validate_detector_flip(datacfg, cfg, weights, outfile);

View File

@ -383,7 +383,31 @@ void train_pix2pix(char *cfg, char *weight, char *acfg, char *aweight, int clear
}
*/
void test_dcgan(char *cfgfile, char *weightfile)
void slerp(float *start, float *end, float s, int n, float *out)
{
float omega = acos(dot_cpu(n, start, 1, end, 1));
float so = sin(omega);
fill_cpu(n, 0, out, 1);
axpy_cpu(n, sin((1-s)*omega)/so, start, 1, out, 1);
axpy_cpu(n, sin(s*omega)/so, end, 1, out, 1);
float mag = mag_array(out, n);
scale_array(out, n, 1./mag);
}
image random_unit_vector_image(int w, int h, int c)
{
image im = make_image(w, h, c);
int i;
for(i = 0; i < im.w*im.h*im.c; ++i){
im.data[i] = rand_normal();
}
float mag = mag_array(im.data, im.w*im.h*im.c);
scale_array(im.data, im.w*im.h*im.c, 1./mag);
return im;
}
void inter_dcgan(char *cfgfile, char *weightfile)
{
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
@ -401,6 +425,62 @@ void test_dcgan(char *cfgfile, char *weightfile)
break;
}
}
image start = random_unit_vector_image(net->w, net->h, net->c);
image end = random_unit_vector_image(net->w, net->h, net->c);
image im = make_image(net->w, net->h, net->c);
image orig = copy_image(start);
int c = 0;
int count = 0;
int max_count = 15;
while(1){
++c;
if(count == max_count){
count = 0;
free_image(start);
start = end;
end = random_unit_vector_image(net->w, net->h, net->c);
if(c > 300){
end = orig;
}
if(c>300 + max_count) return;
}
++count;
slerp(start.data, end.data, (float)count / max_count, im.w*im.h*im.c, im.data);
float *X = im.data;
time=clock();
network_predict(net, X);
image out = get_network_image_layer(net, imlayer);
//yuv_to_rgb(out);
normalize_image(out);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
//char buff[256];
sprintf(buff, "out%05d", c);
show_image(out, "out");
save_image(out, "out");
save_image(out, buff);
#ifdef OPENCV
//cvWaitKey(0);
#endif
}
}
void test_dcgan(char *cfgfile, char *weightfile)
{
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
int i, imlayer = 0;
imlayer = net->n-1;
while(1){
image im = make_image(net->w, net->h, net->c);
@ -408,6 +488,8 @@ void test_dcgan(char *cfgfile, char *weightfile)
for(i = 0; i < im.w*im.h*im.c; ++i){
im.data[i] = rand_normal();
}
//float mag = mag_array(im.data, im.w*im.h*im.c);
//scale_array(im.data, im.w*im.h*im.c, 1./mag);
float *X = im.data;
time=clock();
@ -426,21 +508,177 @@ void test_dcgan(char *cfgfile, char *weightfile)
}
}
void dcgan_batch(network gnet, network anet)
void set_network_alpha_beta(network *net, float alpha, float beta)
{
//float *input = calloc(x_size, sizeof(float));
int i;
for(i = 0; i < net->n; ++i){
if(net->layers[i].type == SHORTCUT){
net->layers[i].alpha = alpha;
net->layers[i].beta = beta;
}
}
}
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images)
void train_prog(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch)
{
#ifdef GPU
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfg);
char *abase = basecfg(acfg);
printf("%s\n", base);
network *gnet = load_network(cfg, weight, clear);
network *anet = load_network(acfg, aweight, clear);
int i, j, k;
layer imlayer = gnet->layers[gnet->n-1];
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay);
int imgs = gnet->batch*gnet->subdivisions;
i = *gnet->seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
char **paths = (char **)list_to_array(plist);
load_args args= get_base_args(anet);
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.type = CLASSIFICATION_DATA;
args.threads=16;
args.classes = 1;
char *ls[2] = {"imagenet", "zzzzzzzz"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
gnet->train = 1;
anet->train = 1;
int x_size = gnet->inputs*gnet->batch;
int y_size = gnet->truths*gnet->batch;
float *imerror = cuda_make_array(0, y_size);
float aloss_avg = -1;
if (maxbatch == 0) maxbatch = gnet->max_batches;
while (get_current_batch(gnet) < maxbatch) {
{
int cb = get_current_batch(gnet);
float alpha = (float) cb / (maxbatch/2);
if(alpha > 1) alpha = 1;
float beta = 1 - alpha;
printf("%f %f\n", alpha, beta);
set_network_alpha_beta(gnet, alpha, beta);
set_network_alpha_beta(anet, beta, alpha);
}
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
data gen = copy_data(train);
for (j = 0; j < imgs; ++j) {
train.y.vals[j][0] = 1;
gen.y.vals[j][0] = 0;
}
time=clock();
for (j = 0; j < gnet->subdivisions; ++j) {
get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0);
int z;
for(z = 0; z < x_size; ++z){
gnet->input[z] = rand_normal();
}
/*
for(z = 0; z < gnet->batch; ++z){
float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs);
scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag);
}
*/
*gnet->seen += gnet->batch;
forward_network(gnet);
fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1);
copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1);
anet->delta_gpu = imerror;
forward_network(anet);
backward_network(anet);
float genaloss = *anet->cost / anet->batch;
scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1);
axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1);
backward_network(gnet);
for(k = 0; k < gnet->batch; ++k){
int index = j*gnet->batch + k;
copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1);
}
}
harmless_update_network_gpu(anet);
data merge = concat_data(train, gen);
float aloss = train_network(anet, merge);
#ifdef OPENCV
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
show_image(im, "gen");
show_image(im2, "train");
save_image(im, "gen");
save_image(im2, "train");
cvWaitKey(1);
}
#endif
update_network_gpu(gnet);
free_data(merge);
free_data(train);
free_data(gen);
if (aloss_avg < 0) aloss_avg = aloss;
aloss_avg = aloss_avg*.9 + aloss*.1;
printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
if(i%10000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(gnet, buff);
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
save_weights(anet, buff);
}
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(gnet, buff);
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(gnet, buff);
#endif
}
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch)
{
#ifdef GPU
//char *train_images = "/home/pjreddie/data/coco/train1.txt";
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
//char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
//char *train_images = "data/64.txt";
//char *train_images = "data/alp.txt";
//char *train_images = "data/cifar.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfg);
@ -450,7 +688,6 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
network *anet = load_network(acfg, aweight, clear);
//float orig_rate = anet->learning_rate;
int start = 0;
int i, j, k;
layer imlayer = {0};
for (i = 0; i < gnet->n; ++i) {
@ -497,8 +734,8 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
//data generated = copy_data(train);
while (get_current_batch(gnet) < gnet->max_batches) {
start += 1;
if (maxbatch == 0) maxbatch = gnet->max_batches;
while (get_current_batch(gnet) < maxbatch) {
i += 1;
time=clock();
pthread_join(load_thread, 0);
@ -513,8 +750,8 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
data gen = copy_data(train);
for (j = 0; j < imgs; ++j) {
train.y.vals[j][0] = .95;
gen.y.vals[j][0] = .05;
train.y.vals[j][0] = 1;
gen.y.vals[j][0] = 0;
}
time=clock();
@ -524,31 +761,50 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
for(z = 0; z < x_size; ++z){
gnet->input[z] = rand_normal();
}
for(z = 0; z < gnet->batch; ++z){
float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs);
scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag);
}
/*
for(z = 0; z < 100; ++z){
printf("%f, ", gnet->input[z]);
}
printf("\n");
printf("input: %f %f\n", mean_array(gnet->input, x_size), variance_array(gnet->input, x_size));
*/
cuda_push_array(gnet->input_gpu, gnet->input, x_size);
cuda_push_array(gnet->truth_gpu, gnet->truth, y_size);
//cuda_push_array(gnet->input_gpu, gnet->input, x_size);
//cuda_push_array(gnet->truth_gpu, gnet->truth, y_size);
*gnet->seen += gnet->batch;
forward_network_gpu(gnet);
forward_network(gnet);
fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
fill_gpu(anet->truths*anet->batch, .95, anet->truth_gpu, 1);
copy_gpu(anet->inputs*anet->batch, imlayer.output_gpu, 1, anet->input_gpu, 1);
fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1);
copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1);
anet->delta_gpu = imerror;
forward_network_gpu(anet);
backward_network_gpu(anet);
forward_network(anet);
backward_network(anet);
float genaloss = *anet->cost / anet->batch;
printf("%f\n", genaloss);
//printf("%f\n", genaloss);
scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
scal_gpu(imlayer.outputs*imlayer.batch, .00, gnet->layers[gnet->n-1].delta_gpu, 1);
scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1);
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch));
//printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
//printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch));
axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1);
backward_network_gpu(gnet);
backward_network(gnet);
/*
for(k = 0; k < gnet->n; ++k){
layer l = gnet->layers[k];
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
printf("%d: %f %f\n", k, mean_array(l.output, l.outputs*l.batch), variance_array(l.output, l.outputs*l.batch));
}
*/
for(k = 0; k < gnet->batch; ++k){
int index = j*gnet->batch + k;
@ -565,17 +821,19 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
//scale_image(im, .5);
//translate_image(im2, 1);
//scale_image(im2, .5);
#ifdef OPENCV
#ifdef OPENCV
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
show_image(im, "gen");
show_image(im2, "train");
cvWaitKey(50);
save_image(im, "gen");
save_image(im2, "train");
cvWaitKey(1);
}
#endif
#endif
/*
/*
if(aloss < .1){
anet->learning_rate = 0;
} else if (aloss > .3){
@ -747,15 +1005,15 @@ void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int cle
update_network_gpu(net);
#ifdef OPENCV
#ifdef OPENCV
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gray.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
show_image(im, "gen");
show_image(im2, "train");
cvWaitKey(50);
cvWaitKey(1);
}
#endif
#endif
free_data(merge);
free_data(train);
free_data(gray);
@ -786,101 +1044,101 @@ void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int cle
}
/*
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear)
{
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear)
{
#ifdef GPU
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net->seen = 0;
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net->seen = 0;
char *abase = basecfg(acfgfile);
network anet = parse_network_cfg(acfgfile);
if(aweightfile){
load_weights(&anet, aweightfile);
}
if(clear) *anet->seen = 0;
char *abase = basecfg(acfgfile);
network anet = parse_network_cfg(acfgfile);
if(aweightfile){
load_weights(&anet, aweightfile);
}
if(clear) *anet->seen = 0;
int i, j, k;
layer imlayer = {0};
for (i = 0; i < net->n; ++i) {
if (net->layers[i].out_c == 3) {
imlayer = net->layers[i];
break;
}
}
int i, j, k;
layer imlayer = {0};
for (i = 0; i < net->n; ++i) {
if (net->layers[i].out_c == 3) {
imlayer = net->layers[i];
break;
}
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
i = *net->seen/imgs;
data train, buffer;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
i = *net->seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
network_state gstate = {0};
gstate.index = 0;
gstate.net = net;
int x_size = get_network_input_size(net)*net->batch;
int y_size = 1*net->batch;
gstate.input = cuda_make_array(0, x_size);
gstate.truth = 0;
gstate.delta = 0;
gstate.train = 1;
float *X = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
network_state gstate = {0};
gstate.index = 0;
gstate.net = net;
int x_size = get_network_input_size(net)*net->batch;
int y_size = 1*net->batch;
gstate.input = cuda_make_array(0, x_size);
gstate.truth = 0;
gstate.delta = 0;
gstate.train = 1;
float *X = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ay_size = get_network_output_size(anet)*anet->batch;
astate.input = 0;
astate.truth = 0;
astate.delta = 0;
astate.train = 1;
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ay_size = get_network_output_size(anet)*anet->batch;
astate.input = 0;
astate.truth = 0;
astate.delta = 0;
astate.train = 1;
float *imerror = cuda_make_array(0, imlayer.outputs);
float *ones_gpu = cuda_make_array(0, ay_size);
fill_gpu(ay_size, 1, ones_gpu, 1);
float *imerror = cuda_make_array(0, imlayer.outputs);
float *ones_gpu = cuda_make_array(0, ay_size);
fill_gpu(ay_size, 1, ones_gpu, 1);
float aloss_avg = -1;
float gloss_avg = -1;
float aloss_avg = -1;
float gloss_avg = -1;
//data generated = copy_data(train);
//data generated = copy_data(train);
while (get_current_batch(net) < net->max_batches) {
while (get_current_batch(net) < net->max_batches) {
i += 1;
time=clock();
pthread_join(load_thread, 0);
@ -953,17 +1211,17 @@ void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfi
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
#endif
}
*/
/*
void train_lsd(char *cfgfile, char *weightfile, int clear)
{
void train_lsd(char *cfgfile, char *weightfile, int clear)
{
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
@ -982,63 +1240,63 @@ void train_lsd(char *cfgfile, char *weightfile, int clear)
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net->max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net->max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
*/
@ -1107,6 +1365,7 @@ void run_lsd(int argc, char **argv)
int clear = find_arg(argc, argv, "-clear");
int display = find_arg(argc, argv, "-display");
int batches = find_int_arg(argc, argv, "-b", 0);
char *file = find_char_arg(argc, argv, "-file", "/home/pjreddie/data/imagenet/imagenet1k.train.list");
char *cfg = argv[3];
@ -1118,9 +1377,11 @@ void run_lsd(int argc, char **argv)
//else if(0==strcmp(argv[2], "train2")) train_lsd2(cfg, weights, acfg, aweights, clear);
//else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear);
//else if(0==strcmp(argv[2], "train3")) train_lsd3(argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], clear);
if(0==strcmp(argv[2], "traingan")) train_dcgan(cfg, weights, acfg, aweights, clear, display, file);
if(0==strcmp(argv[2], "traingan")) train_dcgan(cfg, weights, acfg, aweights, clear, display, file, batches);
else if(0==strcmp(argv[2], "trainprog")) train_prog(cfg, weights, acfg, aweights, clear, display, file, batches);
else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear, display);
else if(0==strcmp(argv[2], "gan")) test_dcgan(cfg, weights);
else if(0==strcmp(argv[2], "inter")) inter_dcgan(cfg, weights);
else if(0==strcmp(argv[2], "test")) test_lsd(cfg, weights, filename, 0);
else if(0==strcmp(argv[2], "color")) test_lsd(cfg, weights, filename, 1);
/*

View File

@ -83,6 +83,10 @@ void optimize_picture(network *net, image orig, int max_layer, float scale, floa
*/
//rate = rate / abs_mean(out.data, out.w*out.h*out.c);
image gray = make_image(out.w, out.h, out.c);
fill_image(gray, .5);
axpy_cpu(orig.w*orig.h*orig.c, -1, orig.data, 1, gray.data, 1);
axpy_cpu(orig.w*orig.h*orig.c, .1, gray.data, 1, out.data, 1);
if(norm) normalize_array(out.data, out.w*out.h*out.c);
axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1);

View File

@ -32,6 +32,7 @@ void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
char *backup_directory = option_find_str(options, "backup", "/backup/");
char *train_list = option_find_str(options, "train", "data/train.list");
int classes = option_find_int(options, "classes", 1);
list *plist = get_paths(train_list);
char **paths = (char **)list_to_array(plist);
@ -43,9 +44,10 @@ void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
args.w = net->w;
args.h = net->h;
args.threads = 32;
args.classes = classes;
args.min = net->min_crop;
args.max = net->max_crop;
args.min = net->min_ratio*net->w;
args.max = net->max_ratio*net->w;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
@ -160,6 +162,10 @@ void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
}else{
cap = cvCaptureFromCAM(cam_index);
}
list *options = read_data_cfg(datacfg);
int classes = option_find_int(options, "classes", 1);
char *name_list = option_find_str(options, "names", 0);
char **names = get_labels(name_list);
if(!cap) error("Couldn't connect to webcam.\n");
cvNamedWindow("Regressor", CV_WINDOW_NORMAL);
@ -171,19 +177,23 @@ void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
gettimeofday(&tval_before, NULL);
image in = get_image_from_stream(cap);
image in_s = letterbox_image(in, net->w, net->h);
show_image(in, "Regressor");
image crop = center_crop_image(in, net->w, net->h);
grayscale_image_3c(crop);
show_image(crop, "Regressor");
float *predictions = network_predict(net, in_s.data);
float *predictions = network_predict(net, crop.data);
printf("\033[2J");
printf("\033[1;1H");
printf("\nFPS:%.0f\n",fps);
printf("People: %f\n", predictions[0]);
int i;
for(i = 0; i < classes; ++i){
printf("%s: %f\n", names[i], predictions[i]);
}
free_image(in_s);
free_image(in);
free_image(crop);
cvWaitKey(10);

View File

@ -93,6 +93,8 @@ void test_super(char *cfgfile, char *weightfile, char *filename)
image out = get_network_image(net);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
save_image(out, "out");
show_image(out, "out");
cvWaitKey(0);
free_image(im);
if (filename) break;

View File

@ -74,14 +74,14 @@ void train_yolo(char *cfgfile, char *weightfile)
save_weights(net, buff);
}
void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_yolo_detections(FILE **fps, char *id, int total, int classes, int w, int h, detection *dets)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -89,7 +89,7 @@ void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int
if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
xmin, ymin, xmax, ymax);
}
}
@ -118,9 +118,6 @@ void validate_yolo(char *cfg, char *weights)
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
@ -136,6 +133,7 @@ void validate_yolo(char *cfg, char *weights)
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
detection *dets = make_network_boxes(net);
load_args args = {0};
args.w = net->w;
@ -169,9 +167,9 @@ void validate_yolo(char *cfg, char *weights)
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, classes, iou_thresh);
print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h);
fill_network_boxes(net, w, h, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
print_yolo_detections(fps, id, l.side*l.side*l.n, classes, w, h, dets);
free(id);
free_image(val[t]);
free_image(val_resized[t]);
@ -202,9 +200,7 @@ void validate_yolo_recall(char *cfg, char *weights)
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -224,8 +220,9 @@ void validate_yolo_recall(char *cfg, char *weights)
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
fill_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, dets);
if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
@ -236,7 +233,7 @@ void validate_yolo_recall(char *cfg, char *weights)
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(probs[k][0] > thresh){
if(dets[k].objectness > thresh){
++proposals;
}
}
@ -245,8 +242,8 @@ void validate_yolo_recall(char *cfg, char *weights)
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
float iou = box_iou(dets[k].bbox, t);
if(dets[k].objectness > thresh && iou > best_iou){
best_iou = iou;
}
}
@ -273,11 +270,8 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
clock_t time;
char buff[256];
char *input = buff;
int j;
float nms=.4;
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
detection *dets = make_network_boxes(net);
while(1){
if(filename){
strncpy(input, filename, 256);
@ -294,9 +288,11 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, 0, voc_names, alphabet, 20);
fill_network_boxes(net, 1, 1, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, dets, l.side*l.side*l.n, thresh, voc_names, alphabet, 20);
save_image(im, "predictions");
show_image(im, "predictions");

View File

@ -51,6 +51,7 @@ typedef struct{
int *group_size;
int *group_offset;
} tree;
tree *read_tree(char *filename);
typedef enum{
LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN
@ -85,11 +86,14 @@ typedef enum {
XNOR,
REGION,
REORG,
UPSAMPLE,
LOGXENT,
L2NORM,
BLANK
} LAYER_TYPE;
typedef enum{
SSE, MASKED, L1, SEG, SMOOTH
SSE, MASKED, L1, SEG, SMOOTH,WGAN
} COST_TYPE;
typedef struct{
@ -160,18 +164,20 @@ struct layer{
float shift;
float ratio;
float learning_rate_scale;
float clip;
int softmax;
int classes;
int coords;
int background;
int rescore;
int objectness;
int does_cost;
int joint;
int noadjust;
int reorg;
int log;
int tanh;
int *mask;
int total;
float alpha;
float beta;
@ -184,13 +190,17 @@ struct layer{
float class_scale;
int bias_match;
int random;
float ignore_thresh;
float truth_thresh;
float thresh;
float focus;
int classfix;
int absolute;
int onlyforward;
int stopbackward;
int dontload;
int dontsave;
int dontloadscales;
float temperature;
@ -228,6 +238,7 @@ struct layer{
float * delta;
float * output;
float * loss;
float * squared;
float * norms;
@ -389,6 +400,7 @@ struct layer{
float * scale_change_gpu;
float * output_gpu;
float * loss_gpu;
float * delta_gpu;
float * rand_gpu;
float * squared_gpu;
@ -470,6 +482,7 @@ typedef struct network{
int train;
int index;
float *cost;
float clip;
#ifdef GPU
float *input_gpu;
@ -501,6 +514,15 @@ typedef struct{
float x, y, w, h;
} box;
typedef struct detection{
box bbox;
int classes;
float *prob;
float *mask;
float objectness;
int sort_class;
} detection;
typedef struct matrix{
int rows, cols;
float **vals;
@ -590,9 +612,11 @@ void backward_network(network *net);
void update_network(network *net);
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
void scal_cpu(int N, float ALPHA, float *X, int INCX);
void fill_cpu(int N, float ALPHA, float * X, int INCX);
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
void softmax(float *input, int n, float temp, int stride, float *output);
@ -618,6 +642,8 @@ float train_networks(network **nets, int n, data d, int interval);
void sync_nets(network **nets, int n, int interval);
void harmless_update_network_gpu(network *net);
#endif
image get_label(image **characters, char *string, int size);
void draw_label(image a, int r, int c, image label, const float *rgb);
void save_image_png(image im, const char *name);
void get_next_batch(data d, int n, int offset, float *X, float *y);
void grayscale_image_3c(image im);
@ -644,7 +670,7 @@ void rgbgr_weights(layer l);
image *get_weights(layer l);
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int frame_skip, char *prefix, int avg, float hier_thresh, int w, int h, int fps, int fullscreen);
void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
void get_detection_detections(layer l, int w, int h, float thresh, detection *dets);
char *option_find_str(list *l, char *key, char *def);
int option_find_int(list *l, char *key, int def);
@ -656,7 +682,7 @@ void save_weights_upto(network *net, char *filename, int cutoff);
void load_weights_upto(network *net, char *filename, int start, int cutoff);
void zero_objectness(layer l);
void get_region_boxes(layer l, int w, int h, int netw, int neth, float thresh, float **probs, box *boxes, float **masks, int only_objectness, int *map, float tree_thresh, int relative);
void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets);
void free_network(network *net);
void set_batch_network(network *net, int b);
void set_temp_network(network *net, float t);
@ -664,8 +690,10 @@ image load_image(char *filename, int w, int h, int c);
image load_image_color(char *filename, int w, int h);
image make_image(int w, int h, int c);
image resize_image(image im, int w, int h);
void censor_image(image im, int dx, int dy, int w, int h);
image letterbox_image(image im, int w, int h);
image crop_image(image im, int dx, int dy, int w, int h);
image center_crop_image(image im, int w, int h);
image resize_min(image im, int min);
image resize_max(image im, int max);
image threshold_image(image im, float thresh);
@ -697,11 +725,10 @@ double what_time_is_it_now();
image rotate_image(image m, float rad);
void visualize_network(network *net);
float box_iou(box a, box b);
void do_nms(box *boxes, float **probs, int total, int classes, float thresh);
data load_all_cifar10();
box_label *read_boxes(char *filename, int *n);
box float_to_box(float *f, int stride);
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, float **masks, char **names, image **alphabet, int classes);
void draw_detections(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes);
matrix network_predict_data(network *net, data test);
image **load_alphabet();
@ -711,15 +738,18 @@ float *network_predict(network *net, float *input);
int network_width(network *net);
int network_height(network *net);
float *network_predict_image(network *net, image im);
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, box *boxes, float **probs);
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, detection *dets);
int num_boxes(network *net);
box *make_boxes(network *net);
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative);
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets);
detection *make_network_boxes(network *net);
void free_detections(detection *dets, int n);
void reset_network_state(network *net, int b);
char **get_labels(char *filename);
void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh);
void do_nms_obj(box *boxes, float **probs, int total, int classes, float thresh);
void do_nms_obj(detection *dets, int total, int classes, float thresh);
void do_nms_sort(detection *dets, int total, int classes, float thresh);
matrix make_matrix(int rows, int cols);
@ -758,11 +788,13 @@ void free_list(list *l);
float mse_array(float *a, int n);
float variance_array(float *a, int n);
float mag_array(float *a, int n);
void scale_array(float *a, int n, float s);
float mean_array(float *a, int n);
float sum_array(float *a, int n);
void normalize_array(float *a, int n);
int *read_intlist(char *s, int *n, int d);
size_t rand_size_t();
float rand_normal();
float rand_uniform(float min, float max);
#endif

View File

@ -23,6 +23,15 @@ class BOX(Structure):
("w", c_float),
("h", c_float)]
class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("mask", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int)]
class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
@ -53,9 +62,16 @@ make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE
make_boxes = lib.make_boxes
make_boxes.argtypes = [c_void_p]
make_boxes.restype = POINTER(BOX)
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int]
get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
@ -64,12 +80,8 @@ num_boxes = lib.num_boxes
num_boxes.argtypes = [c_void_p]
num_boxes.restype = c_int
make_probs = lib.make_probs
make_probs.argtypes = [c_void_p]
make_probs.restype = POINTER(POINTER(c_float))
detect = lib.network_predict
detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))]
network_predict = lib.network_predict
network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
@ -78,6 +90,12 @@ load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image
free_image.argtypes = [IMAGE]
@ -100,21 +118,6 @@ predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
network_detect = lib.network_detect
network_detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))]
import numpy
def array_to_image(arr):
arr = arr.copy()
arr = arr.transpose(2,0,1)
c = arr.shape[0]
h = arr.shape[1]
w = arr.shape[2]
arr = (arr.astype(numpy.float32)/255.0).flatten()
data = c_array(c_float, arr)
im = IMAGE(w,h,c,data)
return im
def classify(net, meta, im):
out = predict_image(net, im)
res = []
@ -124,24 +127,21 @@ def classify(net, meta, im):
return res
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
if type(image) == numpy.ndarray:
im = array_to_image(image)
else:
im = load_image(image, 0, 0)
boxes = make_boxes(net)
probs = make_probs(net)
num = num_boxes(net)
network_detect(net, im, thresh, hier_thresh, nms, boxes, probs)
predict_image(net, im)
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0)
if (nms): do_nms_obj(dets, num, meta.classes, nms);
res = []
for j in range(num):
for i in range(meta.classes):
if probs[j][i] > 0:
res.append((meta.names[i], probs[j][i], (boxes[j].x, boxes[j].y, boxes[j].w, boxes[j].h)))
if dets[j].prob[i] > 0:
b = dets[j].bbox
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
res = sorted(res, key=lambda x: -x[1])
if type(image) != numpy.ndarray:
free_image(im)
free_ptrs(cast(probs, POINTER(c_void_p)), num)
free_detections(dets, num)
return res
if __name__ == "__main__":
@ -153,6 +153,4 @@ if __name__ == "__main__":
net = load_net("cfg/tiny-yolo.cfg", "tiny-yolo.weights", 0)
meta = load_meta("cfg/coco.data")
r = detect(net, meta, "data/dog.jpg")
print(r)
print r

View File

@ -65,7 +65,7 @@ void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, floa
}
}
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out)
{
int stride = w1/w2;
int sample = w2/w1;
@ -84,7 +84,7 @@ void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2,
for(i = 0; i < minw; ++i){
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
out[out_index] += add[add_index];
out[out_index] = s1*out[out_index] + s2*add[add_index];
}
}
}
@ -123,6 +123,27 @@ void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, fl
}
}
void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial)
{
int b,f,i;
for(b = 0; b < batch; ++b){
for(i = 0; i < spatial; ++i){
float sum = 0;
for(f = 0; f < filters; ++f){
int index = b*filters*spatial + f*spatial + i;
sum += powf(x[index], 2);
}
sum = sqrtf(sum);
for(f = 0; f < filters; ++f){
int index = b*filters*spatial + f*spatial + i;
x[index] /= sum;
dx[index] = (1 - x[index]) / sum;
}
}
}
}
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
int b, f, i;
@ -241,6 +262,28 @@ void l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
}
}
void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
for(i = 0; i < n; ++i){
float t = truth[i];
float p = pred[i];
error[i] = (t) ? -log(p) : 0;
delta[i] = t-p;
}
}
void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
for(i = 0; i < n; ++i){
float t = truth[i];
float p = pred[i];
error[i] = -t*log(p) - (1-t)*log(1-p);
delta[i] = t-p;
}
}
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error)
{
int i;
@ -288,3 +331,21 @@ void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, i
}
}
void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
{
int i, j, k, b;
for(b = 0; b < batch; ++b){
for(k = 0; k < c; ++k){
for(j = 0; j < h*stride; ++j){
for(i = 0; i < w*stride; ++i){
int in_index = b*w*h*c + k*w*h + (j/stride)*w + i/stride;
int out_index = b*w*h*c + k*w*h + j*w + i;
if(forward) out[out_index] = scale*in[in_index];
else in[in_index] += scale*out[out_index];
}
}
}
}
}

View File

@ -19,10 +19,8 @@ void constrain_gpu(int N, float ALPHA, float * X, int INCX);
void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
void mul_cpu(int N, float *X, int INCX, float *Y, int INCY);
void fill_cpu(int N, float ALPHA, float * X, int INCX);
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
int test_gpu_blas();
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out);
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean);
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
@ -32,15 +30,19 @@ void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size,
void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta);
void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial);
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error);
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error);
void l1_cpu(int n, float *pred, float *truth, float *delta, float *error);
void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error);
void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error);
void weighted_sum_cpu(float *a, float *b, float *s, int num, float *c);
void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc);
void softmax(float *input, int n, float temp, int stride, float *output);
void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output);
void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out);
#ifdef GPU
#include "cuda.h"
@ -52,7 +54,7 @@ void copy_gpu(int N, float * X, int INCX, float * Y, int INCY);
void copy_gpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
void add_gpu(int N, float ALPHA, float * X, int INCX);
void supp_gpu(int N, float ALPHA, float * X, int INCX);
void mask_gpu(int N, float * X, float mask_num, float * mask);
void mask_gpu(int N, float * X, float mask_num, float * mask, float val);
void scale_mask_gpu(int N, float * X, float mask_num, float * mask, float scale);
void const_gpu(int N, float ALPHA, float *X, int INCX);
void pow_gpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
@ -61,6 +63,7 @@ void mul_gpu(int N, float *X, int INCX, float *Y, int INCY);
void mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
void l2normalize_gpu(float *x, float *dx, int batch, int filters, int spatial);
void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
@ -69,16 +72,19 @@ void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *varianc
void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out);
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size);
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates);
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size);
void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
void logistic_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error);
void softmax_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error);
void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error);
void l2_gpu(int n, float *pred, float *truth, float *delta, float *error);
void l1_gpu(int n, float *pred, float *truth, float *delta, float *error);
void wgan_gpu(int n, float *pred, float *truth, float *delta, float *error);
void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc);
void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c);
void mult_add_into_gpu(int num, float *a, float *b, float *c);
@ -93,6 +99,7 @@ void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rat
void flatten_gpu(float *x, int spatial, int layers, int batch, int forward, float *out);
void softmax_tree(float *input, int spatial, int batch, int stride, float temp, float *output, tree hier);
void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out);
#endif
#endif

View File

@ -165,7 +165,10 @@ __global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
x[index] = x[index] + (rate * sqrtf(1.f-powf(B2, t)) / (1.f-powf(B1, t)) * m[index] / (sqrtf(v[index]) + eps));
float mhat = m[index] / (1.f - powf(B1, t));
float vhat = v[index] / (1.f - powf(B2, t));
x[index] = x[index] + rate * mhat / (sqrtf(vhat) + eps);
}
extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
@ -446,12 +449,6 @@ __global__ void fill_kernel(int N, float ALPHA, float *X, int INCX)
if(i < N) X[i*INCX] = ALPHA;
}
__global__ void mask_kernel(int n, float *x, float mask_num, float *mask)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < n && mask[i] == mask_num) x[i] = mask_num;
}
__global__ void copy_kernel(int N, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@ -472,6 +469,35 @@ extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch,
check_error(cudaPeekAtLastError());
}
__global__ void l2norm_kernel(int N, float *x, float *dx, int batch, int filters, int spatial)
{
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
int b = index / spatial;
int i = index % spatial;
int f;
float sum = 0;
for(f = 0; f < filters; ++f){
int index = b*filters*spatial + f*spatial + i;
sum += powf(x[index], 2);
}
sum = sqrtf(sum);
if(sum == 0) sum = 1;
//printf("%f\n", sum);
for(f = 0; f < filters; ++f){
int index = b*filters*spatial + f*spatial + i;
x[index] /= sum;
dx[index] = (1 - x[index]) / sum;
}
}
extern "C" void l2normalize_gpu(float *x, float *dx, int batch, int filters, int spatial)
{
size_t N = batch*spatial;
l2norm_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, dx, batch, filters, spatial);
check_error(cudaPeekAtLastError());
}
__global__ void fast_mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
{
const int threads = BLOCK;
@ -621,6 +647,18 @@ extern "C" void reorg_gpu(float *x, int w, int h, int c, int batch, int stride,
check_error(cudaPeekAtLastError());
}
__global__ void mask_kernel(int n, float *x, float mask_num, float *mask, float val)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < n && mask[i] == mask_num) x[i] = val;
}
extern "C" void mask_gpu(int N, float * X, float mask_num, float * mask, float val)
{
mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask, val);
check_error(cudaPeekAtLastError());
}
__global__ void scale_mask_kernel(int n, float *x, float mask_num, float *mask, float scale)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@ -633,12 +671,6 @@ extern "C" void scale_mask_gpu(int N, float * X, float mask_num, float * mask, f
check_error(cudaPeekAtLastError());
}
extern "C" void mask_gpu(int N, float * X, float mask_num, float * mask)
{
mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
check_error(cudaPeekAtLastError());
}
extern "C" void const_gpu(int N, float ALPHA, float * X, int INCX)
{
const_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
@ -676,7 +708,7 @@ extern "C" void fill_gpu(int N, float ALPHA, float * X, int INCX)
check_error(cudaPeekAtLastError());
}
__global__ void shortcut_kernel(int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
__global__ void shortcut_kernel(int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (id >= size) return;
@ -690,10 +722,11 @@ __global__ void shortcut_kernel(int size, int minw, int minh, int minc, int stri
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
out[out_index] += add[add_index];
out[out_index] = s1*out[out_index] + s2*add[add_index];
//out[out_index] += add[add_index];
}
extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out)
{
int minw = (w1 < w2) ? w1 : w2;
int minh = (h1 < h2) ? h1 : h2;
@ -707,7 +740,7 @@ extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int
if(sample < 1) sample = 1;
int size = batch * minw * minh * minc;
shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, s1, s2, out);
check_error(cudaPeekAtLastError());
}
@ -734,6 +767,40 @@ extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, fl
check_error(cudaPeekAtLastError());
}
__global__ void softmax_x_ent_kernel(int n, float *pred, float *truth, float *delta, float *error)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < n){
float t = truth[i];
float p = pred[i];
error[i] = (t) ? -log(p) : 0;
delta[i] = t-p;
}
}
extern "C" void softmax_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error)
{
softmax_x_ent_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error);
check_error(cudaPeekAtLastError());
}
__global__ void logistic_x_ent_kernel(int n, float *pred, float *truth, float *delta, float *error)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < n){
float t = truth[i];
float p = pred[i];
error[i] = -t*log(p+.0000001) - (1-t)*log(1-p+.0000001);
delta[i] = t-p;
}
}
extern "C" void logistic_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error)
{
logistic_x_ent_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error);
check_error(cudaPeekAtLastError());
}
__global__ void l2_kernel(int n, float *pred, float *truth, float *delta, float *error)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@ -766,6 +833,21 @@ extern "C" void l1_gpu(int n, float *pred, float *truth, float *delta, float *er
check_error(cudaPeekAtLastError());
}
__global__ void wgan_kernel(int n, float *pred, float *truth, float *delta, float *error)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < n){
error[i] = truth[i] ? -pred[i] : pred[i];
delta[i] = (truth[i] > 0) ? 1 : -1;
}
}
extern "C" void wgan_gpu(int n, float *pred, float *truth, float *delta, float *error)
{
wgan_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta, error);
check_error(cudaPeekAtLastError());
}
@ -920,3 +1002,34 @@ extern "C" void softmax_gpu(float *input, int n, int batch, int batch_offset, in
softmax_kernel<<<cuda_gridsize(batch*groups), BLOCK>>>(input, n, batch, batch_offset, groups, group_offset, stride, temp, output);
check_error(cudaPeekAtLastError());
}
__global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
{
size_t i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i >= N) return;
int out_index = i;
int out_w = i%(w*stride);
i = i/(w*stride);
int out_h = i%(h*stride);
i = i/(h*stride);
int out_c = i%c;
i = i/c;
int b = i%batch;
int in_w = out_w / stride;
int in_h = out_h / stride;
int in_c = out_c;
int in_index = b*w*h*c + in_c*w*h + in_h*w + in_w;
if(forward) out[out_index] += scale * x[in_index];
else atomicAdd(x+in_index, scale * out[out_index]);
}
extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
{
size_t size = w*h*c*batch*stride*stride;
upsample_kernel<<<cuda_gridsize(size), BLOCK>>>(size, in, w, h, c, batch, stride, forward, scale, out);
check_error(cudaPeekAtLastError());
}

149
src/box.c
View File

@ -3,9 +3,83 @@
#include <math.h>
#include <stdlib.h>
int nms_comparator(const void *pa, const void *pb)
{
detection a = *(detection *)pa;
detection b = *(detection *)pb;
float diff = 0;
if(b.sort_class >= 0){
diff = a.prob[b.sort_class] - b.prob[b.sort_class];
} else {
diff = a.objectness - b.objectness;
}
if(diff < 0) return 1;
else if(diff > 0) return -1;
return 0;
}
void do_nms_obj(detection *dets, int total, int classes, float thresh)
{
int i, j, k;
for(i = 0; i < total; ++i){
dets[i].sort_class = -1;
}
qsort(dets, total, sizeof(detection), nms_comparator);
for(i = 0; i < total; ++i){
if(dets[i].objectness == 0) continue;
box a = dets[i].bbox;
for(j = i+1; j < total; ++j){
if(dets[j].objectness == 0) continue;
box b = dets[j].bbox;
if (box_iou(a, b) > thresh){
dets[j].objectness = 0;
for(k = 0; k < classes; ++k){
dets[j].prob[k] = 0;
}
}
}
}
}
void do_nms_sort(detection *dets, int total, int classes, float thresh)
{
int i, j, k;
k = total-1;
for(i = 0; i <= k; ++i){
if(dets[i].objectness == 0){
detection swap = dets[i];
dets[i] = dets[k];
dets[k] = swap;
--k;
--i;
}
}
total = k+1;
for(k = 0; k < classes; ++k){
for(i = 0; i < total; ++i){
dets[i].sort_class = k;
}
qsort(dets, total, sizeof(detection), nms_comparator);
for(i = 0; i < total; ++i){
if(dets[i].prob[k] == 0) continue;
box a = dets[i].bbox;
for(j = i+1; j < total; ++j){
box b = dets[j].bbox;
if (box_iou(a, b) > thresh){
dets[j].prob[k] = 0;
}
}
}
}
}
box float_to_box(float *f, int stride)
{
box b;
box b = {0};
b.x = f[0];
b.y = f[1*stride];
b.w = f[2*stride];
@ -230,79 +304,6 @@ dbox diou(box a, box b)
return dd;
}
typedef struct{
int index;
int class;
float **probs;
} sortable_bbox;
int nms_comparator(const void *pa, const void *pb)
{
sortable_bbox a = *(sortable_bbox *)pa;
sortable_bbox b = *(sortable_bbox *)pb;
float diff = a.probs[a.index][b.class] - b.probs[b.index][b.class];
if(diff < 0) return 1;
else if(diff > 0) return -1;
return 0;
}
void do_nms_obj(box *boxes, float **probs, int total, int classes, float thresh)
{
int i, j, k;
sortable_bbox *s = calloc(total, sizeof(sortable_bbox));
for(i = 0; i < total; ++i){
s[i].index = i;
s[i].class = classes;
s[i].probs = probs;
}
qsort(s, total, sizeof(sortable_bbox), nms_comparator);
for(i = 0; i < total; ++i){
if(probs[s[i].index][classes] == 0) continue;
box a = boxes[s[i].index];
for(j = i+1; j < total; ++j){
box b = boxes[s[j].index];
if (box_iou(a, b) > thresh){
for(k = 0; k < classes+1; ++k){
probs[s[j].index][k] = 0;
}
}
}
}
free(s);
}
void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh)
{
int i, j, k;
sortable_bbox *s = calloc(total, sizeof(sortable_bbox));
for(i = 0; i < total; ++i){
s[i].index = i;
s[i].class = 0;
s[i].probs = probs;
}
for(k = 0; k < classes; ++k){
for(i = 0; i < total; ++i){
s[i].class = k;
}
qsort(s, total, sizeof(sortable_bbox), nms_comparator);
for(i = 0; i < total; ++i){
if(probs[s[i].index][k] == 0) continue;
box a = boxes[s[i].index];
for(j = i+1; j < total; ++j){
box b = boxes[s[j].index];
if (box_iou(a, b) > thresh){
probs[s[j].index][k] = 0;
}
}
}
}
free(s);
}
void do_nms(box *boxes, float **probs, int total, int classes, float thresh)
{

View File

@ -314,6 +314,9 @@ void update_convolutional_layer_gpu(layer l, update_args a)
scal_gpu(l.n, momentum, l.scale_updates_gpu, 1);
}
}
if(l.clip){
constrain_gpu(l.nweights, l.clip, l.weights_gpu, 1);
}
}

View File

@ -203,6 +203,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
// float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c/l.groups));
//printf("convscale %f\n", scale);
//scale = .02;
//for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal();
@ -321,7 +322,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
l.workspace_size = get_workspace_size(l);
l.activation = activation;
fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BFLOPs\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, (2.0 * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w)/1000000000.);
return l;
}

View File

@ -14,6 +14,7 @@ COST_TYPE get_cost_type(char *s)
if (strcmp(s, "masked")==0) return MASKED;
if (strcmp(s, "smooth")==0) return SMOOTH;
if (strcmp(s, "L1")==0) return L1;
if (strcmp(s, "wgan")==0) return WGAN;
fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
return SSE;
}
@ -31,6 +32,8 @@ char *get_cost_string(COST_TYPE a)
return "smooth";
case L1:
return "L1";
case WGAN:
return "wgan";
}
return "sse";
}
@ -123,19 +126,18 @@ int float_abs_compare (const void * a, const void * b)
void forward_cost_layer_gpu(cost_layer l, network net)
{
if (!net.truth_gpu) return;
if (!net.truth) return;
if(l.smooth){
scal_gpu(l.batch*l.inputs, (1-l.smooth), net.truth_gpu, 1);
add_gpu(l.batch*l.inputs, l.smooth * 1./l.inputs, net.truth_gpu, 1);
}
if (l.cost_type == MASKED) {
mask_gpu(l.batch*l.inputs, net.input_gpu, SECRET_NUM, net.truth_gpu);
}
if(l.cost_type == SMOOTH){
smooth_l1_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu);
} else if (l.cost_type == L1){
l1_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu);
} else if (l.cost_type == WGAN){
wgan_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu);
} else {
l2_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu);
}
@ -144,6 +146,9 @@ void forward_cost_layer_gpu(cost_layer l, network net)
scale_mask_gpu(l.batch*l.inputs, l.delta_gpu, 0, net.truth_gpu, l.noobject_scale);
scale_mask_gpu(l.batch*l.inputs, l.output_gpu, 0, net.truth_gpu, l.noobject_scale);
}
if (l.cost_type == MASKED) {
mask_gpu(l.batch*l.inputs, net.delta_gpu, SECRET_NUM, net.truth_gpu, 0);
}
if(l.ratio){
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);

View File

@ -230,7 +230,7 @@ void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx,
int id;
int i;
for (i = 0; i < count && i < 30; ++i) {
for (i = 0; i < count && i < 90; ++i) {
x = boxes[i].x;
y = boxes[i].y;
w = boxes[i].w;
@ -424,6 +424,7 @@ void fill_truth_detection(char *path, int num_boxes, float *truth, int classes,
float x,y,w,h;
int id;
int i;
int sub = 0;
for (i = 0; i < count; ++i) {
x = boxes[i].x;
@ -432,13 +433,16 @@ void fill_truth_detection(char *path, int num_boxes, float *truth, int classes,
h = boxes[i].h;
id = boxes[i].id;
if ((w < .001 || h < .001)) continue;
if ((w < .001 || h < .001)) {
++sub;
continue;
}
truth[i*5+0] = x;
truth[i*5+1] = y;
truth[i*5+2] = w;
truth[i*5+3] = h;
truth[i*5+4] = id;
truth[(i-sub)*5+0] = x;
truth[(i-sub)*5+1] = y;
truth[(i-sub)*5+2] = w;
truth[(i-sub)*5+3] = h;
truth[(i-sub)*5+4] = id;
}
free(boxes);
}
@ -506,6 +510,7 @@ void fill_truth(char *path, char **labels, int k, float *truth)
if(strstr(path, labels[i])){
truth[i] = 1;
++count;
//printf("%s %s %d\n", path, labels[i], i);
}
}
if(count != 1 && (k != 1 || count != 0)) printf("Too many or too few labels: %d, %s\n", count, path);
@ -543,19 +548,31 @@ void fill_hierarchy(float *truth, int k, tree *hierarchy)
}
}
matrix load_regression_labels_paths(char **paths, int n)
matrix load_regression_labels_paths(char **paths, int n, int k)
{
matrix y = make_matrix(n, 1);
int i;
matrix y = make_matrix(n, k);
int i,j;
for(i = 0; i < n; ++i){
char labelpath[4096];
find_replace(paths[i], "images", "targets", labelpath);
find_replace(labelpath, "JPEGImages", "targets", labelpath);
find_replace(paths[i], "images", "labels", labelpath);
find_replace(labelpath, "JPEGImages", "labels", labelpath);
find_replace(labelpath, ".BMP", ".txt", labelpath);
find_replace(labelpath, ".JPEG", ".txt", labelpath);
find_replace(labelpath, ".JPG", ".txt", labelpath);
find_replace(labelpath, ".JPeG", ".txt", labelpath);
find_replace(labelpath, ".Jpeg", ".txt", labelpath);
find_replace(labelpath, ".PNG", ".txt", labelpath);
find_replace(labelpath, ".TIF", ".txt", labelpath);
find_replace(labelpath, ".bmp", ".txt", labelpath);
find_replace(labelpath, ".jpeg", ".txt", labelpath);
find_replace(labelpath, ".jpg", ".txt", labelpath);
find_replace(labelpath, ".png", ".txt", labelpath);
find_replace(labelpath, ".tif", ".txt", labelpath);
FILE *file = fopen(labelpath, "r");
fscanf(file, "%f", &(y.vals[i][0]));
for(j = 0; j < k; ++j){
fscanf(file, "%f", &(y.vals[i][j]));
}
fclose(file);
}
return y;
@ -578,18 +595,14 @@ matrix load_tags_paths(char **paths, int n, int k)
{
matrix y = make_matrix(n, k);
int i;
int count = 0;
//int count = 0;
for(i = 0; i < n; ++i){
char label[4096];
find_replace(paths[i], "imgs", "labels", label);
find_replace(label, "_iconl.jpeg", ".txt", label);
find_replace(paths[i], "images", "labels", label);
find_replace(label, ".jpg", ".txt", label);
FILE *file = fopen(label, "r");
if(!file){
find_replace(label, "labels", "labels2", label);
file = fopen(label, "r");
if(!file) continue;
}
++count;
if (!file) continue;
//++count;
int tag;
while(fscanf(file, "%d", &tag) == 1){
if(tag < k){
@ -598,7 +611,7 @@ matrix load_tags_paths(char **paths, int n, int k)
}
fclose(file);
}
printf("%d/%d\n", count, n);
//printf("%d/%d\n", count, n);
return y;
}
@ -906,7 +919,7 @@ data load_data_swag(char **paths, int n, int classes, float jitter)
d.X.vals = calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*3;
int k = (4+classes)*30;
int k = (4+classes)*90;
d.y = make_matrix(1, k);
int dw = w*jitter;
@ -1005,7 +1018,7 @@ void *load_thread(void *ptr)
if (a.type == OLD_CLASSIFICATION_DATA){
*a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
} else if (a.type == REGRESSION_DATA){
*a.d = load_data_regression(a.paths, a.n, a.m, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
*a.d = load_data_regression(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
} else if (a.type == CLASSIFICATION_DATA){
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.hierarchy, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure, a.center);
} else if (a.type == SUPER_DATA){
@ -1161,13 +1174,13 @@ data load_data_super(char **paths, int n, int m, int w, int h, int scale)
return d;
}
data load_data_regression(char **paths, int n, int m, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
data load_data_regression(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{
if(m) paths = get_random_paths(paths, n, m);
data d = {0};
d.shallow = 0;
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure, 0);
d.y = load_regression_labels_paths(paths, n);
d.y = load_regression_labels_paths(paths, n, k);
if(m) free(paths);
return d;
}

View File

@ -29,7 +29,7 @@ data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size
matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure, int center);
data load_data_super(char **paths, int n, int m, int w, int h, int scale);
data load_data_augment(char **paths, int n, int m, char **labels, int k, tree *hierarchy, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure, int center);
data load_data_regression(char **paths, int n, int m, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure);
data load_data_regression(char **paths, int n, int m, int classes, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure);
data load_go(char *filename);

View File

@ -45,7 +45,7 @@ extern "C" void backward_deconvolutional_layer_gpu(layer l, network net)
{
int i;
constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
//constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
if(l.batch_normalize){
@ -116,18 +116,16 @@ void update_deconvolutional_layer_gpu(layer l, update_args a)
float decay = a.decay;
int batch = a.batch;
int size = l.size*l.size*l.c*l.n;
if(a.adam){
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, size, batch, a.t);
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t);
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
if(l.scales_gpu){
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
}
}else{
axpy_gpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
axpy_gpu(size, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
scal_gpu(size, momentum, l.weight_updates_gpu, 1);
axpy_gpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
axpy_gpu(l.nweights, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
scal_gpu(l.nweights, momentum, l.weight_updates_gpu, 1);
axpy_gpu(l.n, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
scal_gpu(l.n, momentum, l.bias_updates_gpu, 1);

View File

@ -15,6 +15,22 @@ static size_t get_workspace_size(layer l){
return (size_t)l.h*l.w*l.size*l.size*l.n*sizeof(float);
}
void bilinear_init(layer l)
{
int i,j,f;
float center = (l.size-1) / 2.;
for(f = 0; f < l.n; ++f){
for(j = 0; j < l.size; ++j){
for(i = 0; i < l.size; ++i){
float val = (1 - fabs(i - center)) * (1 - fabs(j - center));
int c = f%l.c;
int ind = f*l.size*l.size*l.c + c*l.size*l.size + j*l.size + i;
l.weights[ind] = val;
}
}
}
}
layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int adam)
{
@ -38,8 +54,11 @@ layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
//float scale = n/(size*size*c);
//printf("scale: %f\n", scale);
float scale = .02;
for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal();
//bilinear_init(l);
for(i = 0; i < n; ++i){
l.biases[i] = 0;
}
@ -51,6 +70,8 @@ layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size
l.outputs = l.out_w * l.out_h * l.out_c;
l.inputs = l.w * l.h * l.c;
scal_cpu(l.nweights, (float)l.out_w*l.out_h/(l.w*l.h), l.weights, 1);
l.output = calloc(l.batch*l.outputs, sizeof(float));
l.delta = calloc(l.batch*l.outputs, sizeof(float));
@ -121,7 +142,7 @@ layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size
l.mean_delta_gpu = cuda_make_array(0, n);
l.variance_delta_gpu = cuda_make_array(0, n);
l.scales_gpu = cuda_make_array(0, n);
l.scales_gpu = cuda_make_array(l.scales, n);
l.scale_updates_gpu = cuda_make_array(0, n);
l.x_gpu = cuda_make_array(0, l.batch*l.out_h*l.out_w*n);

View File

@ -17,8 +17,6 @@ static char **demo_names;
static image **demo_alphabet;
static int demo_classes;
static float **probs;
static box *boxes;
static network *net;
static image buff [3];
static image buff_letter[3];
@ -31,13 +29,19 @@ static float demo_hier = .5;
static int running = 0;
static int demo_frame = 3;
static int demo_detections = 0;
static float **predictions;
static int demo_index = 0;
static int demo_detections = 0;
//static float **predictions;
static detection **dets;
static detection *avg;
//static float *avg;
static int demo_done = 0;
static float *avg;
double demo_time;
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative);
detection *make_network_boxes(network *net);
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets);
void *detect_in_thread(void *ptr)
{
running = 1;
@ -45,26 +49,45 @@ void *detect_in_thread(void *ptr)
layer l = net->layers[net->n-1];
float *X = buff_letter[(buff_index+2)%3].data;
float *prediction = network_predict(net, X);
network_predict(net, X);
memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
mean_arrays(predictions, demo_frame, l.outputs, avg);
l.output = avg;
/*
if(l.type == DETECTION){
get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
} else if (l.type == REGION){
get_region_boxes(l, buff[0].w, buff[0].h, net->w, net->h, demo_thresh, probs, boxes, 0, 0, 0, demo_hier, 1);
} else */
if (l.type == REGION){
fill_network_boxes(net, buff[0].w, buff[0].h, demo_thresh, demo_hier, 0, 1, dets[demo_index]);
} else {
error("Last layer must produce detections\n");
}
if (nms > 0) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
int i,j;
box zero = {0};
int classes = l.classes;
for(i = 0; i < demo_detections; ++i){
avg[i].objectness = 0;
avg[i].bbox = zero;
memset(avg[i].prob, 0, classes*sizeof(float));
for(j = 0; j < demo_frame; ++j){
axpy_cpu(classes, 1./demo_frame, dets[j][i].prob, 1, avg[i].prob, 1);
avg[i].objectness += dets[j][i].objectness * 1./demo_frame;
avg[i].bbox.x += dets[j][i].bbox.x * 1./demo_frame;
avg[i].bbox.y += dets[j][i].bbox.y * 1./demo_frame;
avg[i].bbox.w += dets[j][i].bbox.w * 1./demo_frame;
avg[i].bbox.h += dets[j][i].bbox.h * 1./demo_frame;
}
//copy_cpu(classes, dets[0][i].prob, 1, avg[i].prob, 1);
//avg[i].objectness = dets[0][i].objectness;
}
if (nms > 0) do_nms_obj(avg, demo_detections, l.classes, nms);
printf("\033[2J");
printf("\033[1;1H");
printf("\nFPS:%.1f\n",fps);
printf("Objects:\n\n");
image display = buff[(buff_index+2) % 3];
draw_detections(display, demo_detections, demo_thresh, boxes, probs, 0, demo_names, demo_alphabet, demo_classes);
draw_detections(display, avg, demo_detections, demo_thresh, demo_names, demo_alphabet, demo_classes);
demo_index = (demo_index + 1)%demo_frame;
running = 0;
@ -117,8 +140,7 @@ void *detect_loop(void *ptr)
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int delay, char *prefix, int avg_frames, float hier, int w, int h, int frames, int fullscreen)
{
demo_frame = avg_frames;
predictions = calloc(demo_frame, sizeof(float*));
//demo_frame = avg_frames;
image **alphabet = load_alphabet();
demo_names = names;
demo_alphabet = alphabet;
@ -152,16 +174,11 @@ void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const ch
if(!cap) error("Couldn't connect to webcam.\n");
layer l = net->layers[net->n-1];
demo_detections = l.n*l.w*l.h;
int j;
avg = (float *) calloc(l.outputs, sizeof(float));
for(j = 0; j < demo_frame; ++j) predictions[j] = (float *) calloc(l.outputs, sizeof(float));
boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float *)calloc(l.classes+1, sizeof(float));
demo_detections = num_boxes(net);
avg = make_network_boxes(net);
dets = calloc(demo_frame, sizeof(detection*));
int i;
for(i = 0; i < demo_frame; ++i) dets[i] = make_network_boxes(net);
buff[0] = get_image_from_stream(cap);
buff[1] = copy_image(buff[0]);
@ -203,6 +220,7 @@ void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const ch
}
}
/*
void demo_compare(char *cfg1, char *weight1, char *cfg2, char *weight2, float thresh, int cam_index, const char *filename, char **names, int classes, int delay, char *prefix, int avg_frames, float hier, int w, int h, int frames, int fullscreen)
{
demo_frame = avg_frames;
@ -290,6 +308,7 @@ void demo_compare(char *cfg1, char *weight1, char *cfg2, char *weight2, float th
++count;
}
}
*/
#else
void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int delay, char *prefix, int avg, float hier, int w, int h, int frames, int fullscreen)
{

View File

@ -222,7 +222,7 @@ void backward_detection_layer(const detection_layer l, network net)
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1);
}
void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
void get_detection_detections(layer l, int w, int h, float thresh, detection *dets)
{
int i,j,n;
float *predictions = l.output;
@ -235,17 +235,17 @@ void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box
int p_index = l.side*l.side*l.classes + i*l.n + n;
float scale = predictions[p_index];
int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
box b;
b.x = (predictions[box_index + 0] + col) / l.side * w;
b.y = (predictions[box_index + 1] + row) / l.side * h;
b.w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
b.h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
dets[index].bbox = b;
dets[index].objectness = scale;
for(j = 0; j < l.classes; ++j){
int class_index = i*l.classes;
float prob = scale*predictions[class_index+j];
probs[index][j] = (prob > thresh) ? prob : 0;
}
if(only_objectness){
probs[index][0] = scale;
dets[index].prob[j] = (prob > thresh) ? prob : 0;
}
}
}

View File

@ -131,6 +131,7 @@ image tile_images(image a, image b, int dx)
image get_label(image **characters, char *string, int size)
{
size = size/10;
if(size > 7) size = 7;
image label = make_empty_image(0,0,0);
while(*string){
@ -235,7 +236,7 @@ image **load_alphabet()
return alphabets;
}
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, float **masks, char **names, image **alphabet, int classes)
void draw_detections(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes)
{
int i,j;
@ -243,7 +244,7 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs,
char labelstr[4096] = {0};
int class = -1;
for(j = 0; j < classes; ++j){
if (probs[i][j] > thresh){
if (dets[i].prob[j] > thresh){
if (class < 0) {
strcat(labelstr, names[j]);
class = j;
@ -251,7 +252,7 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs,
strcat(labelstr, ", ");
strcat(labelstr, names[j]);
}
printf("%s: %.0f%%\n", names[j], probs[i][j]*100);
printf("%s: %.0f%%\n", names[j], dets[i].prob[j]*100);
}
}
if(class >= 0){
@ -276,7 +277,8 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs,
rgb[0] = red;
rgb[1] = green;
rgb[2] = blue;
box b = boxes[i];
box b = dets[i].bbox;
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
int left = (b.x-b.w/2.)*im.w;
int right = (b.x+b.w/2.)*im.w;
@ -290,12 +292,12 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs,
draw_box_width(im, left, top, right, bot, width, red, green, blue);
if (alphabet) {
image label = get_label(alphabet, labelstr, (im.h*.03)/10);
image label = get_label(alphabet, labelstr, (im.h*.03));
draw_label(im, top + width, left, label, rgb);
free_image(label);
}
if (masks){
image mask = float_to_image(14, 14, 1, masks[i]);
if (dets[i].mask){
image mask = float_to_image(14, 14, 1, dets[i].mask);
image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h);
image tmask = threshold_image(resized_mask, .5);
embed_image(tmask, im, left, top);
@ -394,6 +396,35 @@ void ghost_image(image source, image dest, int dx, int dy)
}
}
void blocky_image(image im, int s)
{
int i,j,k;
for(k = 0; k < im.c; ++k){
for(j = 0; j < im.h; ++j){
for(i = 0; i < im.w; ++i){
im.data[i + im.w*(j + im.h*k)] = im.data[i/s*s + im.w*(j/s*s + im.h*k)];
}
}
}
}
void censor_image(image im, int dx, int dy, int w, int h)
{
int i,j,k;
int s = 32;
if(dx < 0) dx = 0;
if(dy < 0) dy = 0;
for(k = 0; k < im.c; ++k){
for(j = dy; j < dy + h && j < im.h; ++j){
for(i = dx; i < dx + w && i < im.w; ++i){
im.data[i + im.w*(j + im.h*k)] = im.data[i/s*s + im.w*(j/s*s + im.h*k)];
//im.data[i + j*im.w + k*im.w*im.h] = 0;
}
}
}
}
void embed_image(image source, image dest, int dx, int dy)
{
int x,y,k;

View File

@ -22,12 +22,10 @@ void show_image_cv(image p, const char *name, IplImage *disp);
float get_color(int c, int x, int max);
void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b);
void draw_bbox(image a, box bbox, int w, float r, float g, float b);
void draw_label(image a, int r, int c, image label, const float *rgb);
void write_label(image a, int r, int c, image *characters, char *string, float *rgb);
image image_distance(image a, image b);
void scale_image(image m, float s);
image rotate_crop_image(image im, float rad, float s, int w, int h, float dx, float dy, float aspect);
image center_crop_image(image im, int w, int h);
image random_crop_image(image im, int w, int h);
image random_augment_image(image im, float angle, float aspect, int low, int high, int w, int h);
augment_args random_augment_args(image im, float angle, float aspect, int low, int high, int w, int h);

63
src/l2norm_layer.c Normal file
View File

@ -0,0 +1,63 @@
#include "l2norm_layer.h"
#include "activations.h"
#include "blas.h"
#include "cuda.h"
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
layer make_l2norm_layer(int batch, int inputs)
{
fprintf(stderr, "l2norm %4d\n", inputs);
layer l = {0};
l.type = L2NORM;
l.batch = batch;
l.inputs = inputs;
l.outputs = inputs;
l.output = calloc(inputs*batch, sizeof(float));
l.scales = calloc(inputs*batch, sizeof(float));
l.delta = calloc(inputs*batch, sizeof(float));
l.forward = forward_l2norm_layer;
l.backward = backward_l2norm_layer;
#ifdef GPU
l.forward_gpu = forward_l2norm_layer_gpu;
l.backward_gpu = backward_l2norm_layer_gpu;
l.output_gpu = cuda_make_array(l.output, inputs*batch);
l.scales_gpu = cuda_make_array(l.output, inputs*batch);
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
#endif
return l;
}
void forward_l2norm_layer(const layer l, network net)
{
copy_cpu(l.outputs*l.batch, net.input, 1, l.output, 1);
l2normalize_cpu(l.output, l.scales, l.batch, l.out_c, l.out_w*l.out_h);
}
void backward_l2norm_layer(const layer l, network net)
{
//axpy_cpu(l.inputs*l.batch, 1, l.scales, 1, l.delta, 1);
axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, net.delta, 1);
}
#ifdef GPU
void forward_l2norm_layer_gpu(const layer l, network net)
{
copy_gpu(l.outputs*l.batch, net.input_gpu, 1, l.output_gpu, 1);
l2normalize_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_w*l.out_h);
}
void backward_l2norm_layer_gpu(const layer l, network net)
{
axpy_gpu(l.batch*l.inputs, 1, l.scales_gpu, 1, l.delta_gpu, 1);
axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
}
#endif

15
src/l2norm_layer.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef L2NORM_LAYER_H
#define L2NORM_LAYER_H
#include "layer.h"
#include "network.h"
layer make_l2norm_layer(int batch, int inputs);
void forward_l2norm_layer(const layer l, network net);
void backward_l2norm_layer(const layer l, network net);
#ifdef GPU
void forward_l2norm_layer_gpu(const layer l, network net);
void backward_l2norm_layer_gpu(const layer l, network net);
#endif
#endif

71
src/logistic_layer.c Normal file
View File

@ -0,0 +1,71 @@
#include "logistic_layer.h"
#include "activations.h"
#include "blas.h"
#include "cuda.h"
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
layer make_logistic_layer(int batch, int inputs)
{
fprintf(stderr, "logistic x entropy %4d\n", inputs);
layer l = {0};
l.type = LOGXENT;
l.batch = batch;
l.inputs = inputs;
l.outputs = inputs;
l.loss = calloc(inputs*batch, sizeof(float));
l.output = calloc(inputs*batch, sizeof(float));
l.delta = calloc(inputs*batch, sizeof(float));
l.cost = calloc(1, sizeof(float));
l.forward = forward_logistic_layer;
l.backward = backward_logistic_layer;
#ifdef GPU
l.forward_gpu = forward_logistic_layer_gpu;
l.backward_gpu = backward_logistic_layer_gpu;
l.output_gpu = cuda_make_array(l.output, inputs*batch);
l.loss_gpu = cuda_make_array(l.loss, inputs*batch);
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
#endif
return l;
}
void forward_logistic_layer(const layer l, network net)
{
copy_cpu(l.outputs*l.batch, net.input, 1, l.output, 1);
activate_array(l.output, l.outputs*l.batch, LOGISTIC);
if(net.truth){
logistic_x_ent_cpu(l.batch*l.inputs, l.output, net.truth, l.delta, l.loss);
l.cost[0] = sum_array(l.loss, l.batch*l.inputs);
}
}
void backward_logistic_layer(const layer l, network net)
{
axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, net.delta, 1);
}
#ifdef GPU
void forward_logistic_layer_gpu(const layer l, network net)
{
copy_gpu(l.outputs*l.batch, net.input_gpu, 1, l.output_gpu, 1);
activate_array_gpu(l.output_gpu, l.outputs*l.batch, LOGISTIC);
if(net.truth){
logistic_x_ent_gpu(l.batch*l.inputs, l.output_gpu, net.truth_gpu, l.delta_gpu, l.loss_gpu);
cuda_pull_array(l.loss_gpu, l.loss, l.batch*l.inputs);
l.cost[0] = sum_array(l.loss, l.batch*l.inputs);
}
}
void backward_logistic_layer_gpu(const layer l, network net)
{
axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
}
#endif

15
src/logistic_layer.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef LOGISTIC_LAYER_H
#define LOGISTIC_LAYER_H
#include "layer.h"
#include "network.h"
layer make_logistic_layer(int batch, int inputs);
void forward_logistic_layer(const layer l, network net);
void backward_logistic_layer(const layer l, network net);
#ifdef GPU
void forward_logistic_layer_gpu(const layer l, network net);
void backward_logistic_layer_gpu(const layer l, network net);
#endif
#endif

View File

@ -26,6 +26,7 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
#include "upsample_layer.h"
#include "shortcut_layer.h"
#include "parser.h"
#include "data.h"
@ -377,6 +378,10 @@ int resize_network(network *net, int w, int h)
resize_region_layer(&l, w, h);
}else if(l.type == ROUTE){
resize_route_layer(&l, net);
}else if(l.type == SHORTCUT){
resize_shortcut_layer(&l, w, h);
}else if(l.type == UPSAMPLE){
resize_upsample_layer(&l, w, h);
}else if(l.type == REORG){
resize_reorg_layer(&l, w, h);
}else if(l.type == AVGPOOL){
@ -412,7 +417,9 @@ int resize_network(network *net, int w, int h)
cuda_free(net->truth_gpu);
net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
if(workspace_size){
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
}
}else {
free(net->workspace);
net->workspace = calloc(1, workspace_size);
@ -497,34 +504,62 @@ float *network_predict(network *net, float *input)
int num_boxes(network *net)
{
layer l = net->layers[net->n-1];
return l.w*l.h*l.n;
int i;
int s = 0;
for(i = 0; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == REGION || l.type == DETECTION){
s += l.w*l.h*l.n;
}
}
return s;
}
box *make_boxes(network *net)
detection *make_network_boxes(network *net)
{
layer l = net->layers[net->n-1];
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
return boxes;
layer l = net->layers[net->n - 1];
int i;
int nboxes = num_boxes(net);
detection *dets = calloc(nboxes, sizeof(detection));
for(i = 0; i < nboxes; ++i){
dets[i].prob = calloc(l.classes, sizeof(float));
if(l.coords > 4){
dets[i].mask = calloc(l.coords-4, sizeof(float));
}
}
return dets;
}
float **make_probs(network *net)
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets)
{
int j;
layer l = net->layers[net->n-1];
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));
return probs;
for(j = 0; j < net->n; ++j){
layer l = net->layers[j];
if(l.type == REGION){
get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
dets += l.w*l.h*l.n;
}
if(l.type == DETECTION){
get_detection_detections(l, w, h, thresh, dets);
dets += l.w*l.h*l.n;
}
}
}
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, box *boxes, float **probs)
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative)
{
network_predict_image(net, im);
layer l = net->layers[net->n-1];
if(l.type == REGION){
get_region_boxes(l, im.w, im.h, net->w, net->h, thresh, probs, boxes, 0, 0, 0, hier_thresh, 0);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
detection *dets = make_network_boxes(net);
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets);
return dets;
}
void free_detections(detection *dets, int n)
{
int i;
for(i = 0; i < n; ++i){
free(dets[i].prob);
if(dets[i].mask) free(dets[i].mask);
}
free(dets);
}
float *network_predict_image(network *net, image im)

View File

@ -4,6 +4,8 @@
#include <assert.h>
#include "activation_layer.h"
#include "logistic_layer.h"
#include "l2norm_layer.h"
#include "activations.h"
#include "avgpool_layer.h"
#include "batchnorm_layer.h"
@ -27,6 +29,7 @@
#include "reorg_layer.h"
#include "rnn_layer.h"
#include "route_layer.h"
#include "upsample_layer.h"
#include "shortcut_layer.h"
#include "softmax_layer.h"
#include "lstm_layer.h"
@ -53,6 +56,8 @@ LAYER_TYPE string_to_layer_type(char * type)
if (strcmp(type, "[deconv]")==0
|| strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL;
if (strcmp(type, "[activation]")==0) return ACTIVE;
if (strcmp(type, "[logistic]")==0) return LOGXENT;
if (strcmp(type, "[l2norm]")==0) return L2NORM;
if (strcmp(type, "[net]")==0
|| strcmp(type, "[network]")==0) return NETWORK;
if (strcmp(type, "[crnn]")==0) return CRNN;
@ -73,6 +78,7 @@ LAYER_TYPE string_to_layer_type(char * type)
if (strcmp(type, "[soft]")==0
|| strcmp(type, "[softmax]")==0) return SOFTMAX;
if (strcmp(type, "[route]")==0) return ROUTE;
if (strcmp(type, "[upsample]")==0) return UPSAMPLE;
return BLANK;
}
@ -275,9 +281,27 @@ layer parse_region(list *options, size_params params)
{
int coords = option_find_int(options, "coords", 4);
int classes = option_find_int(options, "classes", 20);
int num = option_find_int(options, "num", 1);
int total = option_find_int(options, "num", 1);
int num = total;
layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
char *a = option_find_str(options, "mask", 0);
int *mask = 0;
if(a){
int len = strlen(a);
int n = 1;
int i;
for(i = 0; i < len; ++i){
if (a[i] == ',') ++n;
}
mask = calloc(n, sizeof(int));
for(i = 0; i < n; ++i){
int val = atoi(a);
mask[i] = val;
a = strchr(a, ',')+1;
}
num = n;
}
layer l = make_region_layer(params.batch, params.w, params.h, num, total, mask, classes, coords);
assert(l.outputs == params.inputs);
l.log = option_find_int_quiet(options, "log", 0);
@ -285,11 +309,12 @@ layer parse_region(list *options, size_params params)
l.softmax = option_find_int(options, "softmax", 0);
l.background = option_find_int_quiet(options, "background", 0);
l.max_boxes = option_find_int_quiet(options, "max",30);
l.max_boxes = option_find_int_quiet(options, "max",90);
l.jitter = option_find_float(options, "jitter", .2);
l.rescore = option_find_int_quiet(options, "rescore",0);
l.thresh = option_find_float(options, "thresh", .5);
l.ignore_thresh = option_find_float(options, "ignore_thresh", .5);
l.truth_thresh = option_find_float(options, "truth_thresh", 1);
l.classfix = option_find_int_quiet(options, "classfix", 0);
l.absolute = option_find_int_quiet(options, "absolute", 0);
l.random = option_find_int_quiet(options, "random", 0);
@ -297,16 +322,17 @@ layer parse_region(list *options, size_params params)
l.coord_scale = option_find_float(options, "coord_scale", 1);
l.object_scale = option_find_float(options, "object_scale", 1);
l.noobject_scale = option_find_float(options, "noobject_scale", 1);
l.mask_scale = option_find_float(options, "mask_scale", 1);
l.mask_scale = option_find_float_quiet(options, "mask_scale", 1);
l.class_scale = option_find_float(options, "class_scale", 1);
l.bias_match = option_find_int_quiet(options, "bias_match",0);
l.focus = option_find_float_quiet(options, "focus", 0);
char *tree_file = option_find_str(options, "tree", 0);
if (tree_file) l.softmax_tree = read_tree(tree_file);
char *map_file = option_find_str(options, "map", 0);
if (map_file) l.map = read_map(map_file);
char *a = option_find_str(options, "anchors", 0);
a = option_find_str(options, "anchors", 0);
if(a){
int len = strlen(a);
int n = 1;
@ -334,7 +360,7 @@ detection_layer parse_detection(list *options, size_params params)
layer.softmax = option_find_int(options, "softmax", 0);
layer.sqrt = option_find_int(options, "sqrt", 0);
layer.max_boxes = option_find_int_quiet(options, "max",30);
layer.max_boxes = option_find_int_quiet(options, "max",90);
layer.coord_scale = option_find_float(options, "coord_scale", 1);
layer.forced = option_find_int(options, "forced", 0);
layer.object_scale = option_find_float(options, "object_scale", 1);
@ -470,10 +496,31 @@ layer parse_shortcut(list *options, size_params params, network *net)
char *activation_s = option_find_str(options, "activation", "linear");
ACTIVATION activation = get_activation(activation_s);
s.activation = activation;
s.alpha = option_find_float_quiet(options, "alpha", 1);
s.beta = option_find_float_quiet(options, "beta", 1);
return s;
}
layer parse_l2norm(list *options, size_params params)
{
layer l = make_l2norm_layer(params.batch, params.inputs);
l.h = l.out_h = params.h;
l.w = l.out_w = params.w;
l.c = l.out_c = params.c;
return l;
}
layer parse_logistic(list *options, size_params params)
{
layer l = make_logistic_layer(params.batch, params.inputs);
l.h = l.out_h = params.h;
l.w = l.out_w = params.w;
l.c = l.out_c = params.c;
return l;
}
layer parse_activation(list *options, size_params params)
{
char *activation_s = option_find_str(options, "activation", "linear");
@ -481,16 +528,22 @@ layer parse_activation(list *options, size_params params)
layer l = make_activation_layer(params.batch, params.inputs, activation);
l.out_h = params.h;
l.out_w = params.w;
l.out_c = params.c;
l.h = params.h;
l.w = params.w;
l.c = params.c;
l.h = l.out_h = params.h;
l.w = l.out_w = params.w;
l.c = l.out_c = params.c;
return l;
}
layer parse_upsample(list *options, size_params params, network *net)
{
int stride = option_find_int(options, "stride",2);
layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride);
l.scale = option_find_float_quiet(options, "scale", 1);
return l;
}
route_layer parse_route(list *options, size_params params, network *net)
{
char *l = option_find(options, "layers");
@ -575,6 +628,7 @@ void parse_net_options(list *options, network *net)
net->max_ratio = option_find_float_quiet(options, "max_ratio", (float) net->max_crop / net->w);
net->min_ratio = option_find_float_quiet(options, "min_ratio", (float) net->min_crop / net->w);
net->center = option_find_int_quiet(options, "center",0);
net->clip = option_find_float_quiet(options, "clip", 0);
net->angle = option_find_float_quiet(options, "angle", 0);
net->aspect = option_find_float_quiet(options, "aspect", 1);
@ -673,6 +727,10 @@ network *parse_network_cfg(char *filename)
l = parse_local(options, params);
}else if(lt == ACTIVE){
l = parse_activation(options, params);
}else if(lt == LOGXENT){
l = parse_logistic(options, params);
}else if(lt == L2NORM){
l = parse_l2norm(options, params);
}else if(lt == RNN){
l = parse_rnn(options, params);
}else if(lt == GRU){
@ -706,6 +764,8 @@ network *parse_network_cfg(char *filename)
l = parse_avgpool(options, params);
}else if(lt == ROUTE){
l = parse_route(options, params, net);
}else if(lt == UPSAMPLE){
l = parse_upsample(options, params, net);
}else if(lt == SHORTCUT){
l = parse_shortcut(options, params, net);
}else if(lt == DROPOUT){
@ -719,9 +779,11 @@ network *parse_network_cfg(char *filename)
}else{
fprintf(stderr, "Type not recognized: %s\n", s->type);
}
l.clip = net->clip;
l.truth = option_find_int_quiet(options, "truth", 0);
l.onlyforward = option_find_int_quiet(options, "onlyforward", 0);
l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
l.dontsave = option_find_int_quiet(options, "dontsave", 0);
l.dontload = option_find_int_quiet(options, "dontload", 0);
l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1);
@ -905,6 +967,7 @@ void save_weights_upto(network *net, char *filename, int cutoff)
int i;
for(i = 0; i < net->n && i < cutoff; ++i){
layer l = net->layers[i];
if (l.dontsave) continue;
if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){
save_convolutional_weights(l, fp);
} if(l.type == CONNECTED){

View File

@ -10,12 +10,14 @@
#include <string.h>
#include <stdlib.h>
layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
layer make_region_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int coords)
{
int i;
layer l = {0};
l.type = REGION;
l.n = n;
l.total = total;
l.batch = batch;
l.h = h;
l.w = w;
@ -26,15 +28,21 @@ layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
l.classes = classes;
l.coords = coords;
l.cost = calloc(1, sizeof(float));
l.biases = calloc(n*2, sizeof(float));
l.biases = calloc(total*2, sizeof(float));
if(mask) l.mask = mask;
else{
l.mask = calloc(n, sizeof(int));
for(i = 0; i < n; ++i){
l.mask[i] = i;
}
}
l.bias_updates = calloc(n*2, sizeof(float));
l.outputs = h*w*n*(classes + coords + 1);
l.inputs = l.outputs;
l.truths = 30*(l.coords + 1);
l.truths = 90*(l.coords + 1);
l.delta = calloc(batch*l.outputs, sizeof(float));
l.output = calloc(batch*l.outputs, sizeof(float));
int i;
for(i = 0; i < n*2; ++i){
for(i = 0; i < total*2; ++i){
l.biases[i] = .5;
}
@ -73,30 +81,37 @@ void resize_region_layer(layer *l, int w, int h)
#endif
}
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h, int stride)
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride)
{
box b;
b.x = (i + x[index + 0*stride]) / w;
b.y = (j + x[index + 1*stride]) / h;
b.x = (i + x[index + 0*stride]) / lw;
b.y = (j + x[index + 1*stride]) / lh;
b.w = exp(x[index + 2*stride]) * biases[2*n] / w;
b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h;
return b;
}
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale, int stride)
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride)
{
box pred = get_region_box(x, biases, n, index, i, j, w, h, stride);
box pred = get_region_box(x, biases, n, index, i, j, lw, lh, w, h, stride);
float iou = box_iou(pred, truth);
float tx = (truth.x*w - i);
float ty = (truth.y*h - j);
float tx = (truth.x*lw - i);
float ty = (truth.y*lh - j);
float tw = log(truth.w*w / biases[2*n]);
float th = log(truth.h*h / biases[2*n + 1]);
//printf("%f %f %f %f\n", tx, ty, tw, th);
delta[index + 0*stride] = scale * (tx - x[index + 0*stride]);
delta[index + 1*stride] = scale * (ty - x[index + 1*stride]);
delta[index + 2*stride] = scale * (tw - x[index + 2*stride]);
delta[index + 3*stride] = scale * (th - x[index + 3*stride]);
//printf("x: %f %f\n",tx , x[index + 0*stride]);
//printf("y: %f %f\n",ty , x[index + 1*stride]);
//printf("w: %f %f\n",tw , x[index + 2*stride]);
//printf("h: %f %f\n\n",th , x[index + 3*stride]);
//printf("%f %f %f %f\n", x[index + 0*stride], x[index + 1*stride], x[index + 2*stride], x[index + 3*stride]);
return iou;
}
@ -109,7 +124,7 @@ void delta_region_mask(float *truth, float *x, int n, int index, float *delta, i
}
void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, int stride, float *avg_cat, int tag)
void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, int stride, float *avg_cat, int tag, float focus)
{
int i, n;
if(hier){
@ -125,15 +140,30 @@ void delta_region_class(float *output, float *delta, int index, int class, int c
class = hier->parent[class];
}
*avg_cat += pred;
if(avg_cat) *avg_cat += pred;
} else {
if (delta[index] && tag){
if(focus){
float y = -1;
float p = output[index + stride*class];
float lg = p > .0000000001 ? log(p) : -10;
delta[index + stride*class] = y * pow(1-p, focus) * (focus*p*lg + p - 1);
}else{
delta[index + stride*class] = scale * (1 - output[index + stride*class]);
if(avg_cat) *avg_cat += output[index + stride*class];
}
return;
}
for(n = 0; n < classes; ++n){
if(focus){
float y = (n == class) ? -1 : 1;
float p = (n == class) ? output[index + stride*n] : 1 - output[index + stride*n];
float lg = p > .0000000001 ? log(p) : -10;
delta[index + stride*n] = y * pow(1-p, focus) * (focus*p*lg + p - 1);
}else{
delta[index + stride*n] = scale * (((n == class)?1 : 0) - output[index + stride*n]);
if(n == class) *avg_cat += output[index + stride*n];
}
if(n == class && avg_cat) *avg_cat += output[index + stride*n];
}
}
}
@ -189,6 +219,7 @@ void forward_region_layer(const layer l, network net)
if(!net.train) return;
float avg_iou = 0;
float recall = 0;
float recall75 = 0;
float avg_cat = 0;
float avg_obj = 0;
float avg_anyobj = 0;
@ -198,7 +229,7 @@ void forward_region_layer(const layer l, network net)
for (b = 0; b < l.batch; ++b) {
if(l.softmax_tree){
int onlyclass = 0;
for(t = 0; t < 30; ++t){
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
if(!truth.x) break;
int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords];
@ -218,7 +249,7 @@ void forward_region_layer(const layer l, network net)
}
int class_index = entry_index(l, b, maxi, l.coords + 1);
int obj_index = entry_index(l, b, maxi, l.coords);
delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax);
delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax, l.focus);
if(l.output[obj_index] < .3) l.delta[obj_index] = l.object_scale * (.3 - l.output[obj_index]);
else l.delta[obj_index] = 0;
l.delta[obj_index] = 0;
@ -233,36 +264,50 @@ void forward_region_layer(const layer l, network net)
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h);
box pred = get_region_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.w*l.h);
float best_iou = 0;
for(t = 0; t < 30; ++t){
int best_t = 0;
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
if(!truth.x) break;
float iou = box_iou(pred, truth);
if (iou > best_iou) {
best_iou = iou;
best_t = t;
}
}
int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, l.coords);
avg_anyobj += l.output[obj_index];
l.delta[obj_index] = l.noobject_scale * (0 - l.output[obj_index]);
if(l.background) l.delta[obj_index] = l.noobject_scale * (1 - l.output[obj_index]);
if (best_iou > l.thresh) {
if (best_iou > l.ignore_thresh) {
l.delta[obj_index] = 0;
}
if (best_iou > l.truth_thresh) {
l.delta[obj_index] = l.object_scale * (1 - l.output[obj_index]);
int class = net.truth[best_t*(l.coords + 1) + b*l.truths + l.coords];
if (l.map) class = l.map[class];
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, l.coords + 1);
delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, 0, !l.softmax, l.focus);
box truth = float_to_box(net.truth + best_t*(l.coords + 1) + b*l.truths, 1);
delta_region_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.delta, l.coord_scale*(2-truth.w*truth.h), l.w*l.h);
}
/*
if(*(net.seen) < 12800){
box truth = {0};
truth.x = (i + .5)/l.w;
truth.y = (j + .5)/l.h;
truth.w = l.biases[2*n]/l.w;
truth.h = l.biases[2*n+1]/l.h;
delta_region_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, l.delta, .01, l.w*l.h);
truth.w = l.biases[2*l.mask[n]]/net.w;
truth.h = l.biases[2*l.mask[n]+1]/net.h;
delta_region_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, net.w, net.h, l.delta, .01, l.w*l.h);
}
*/
}
}
}
}
for(t = 0; t < 30; ++t){
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
if(!truth.x) break;
@ -275,16 +320,11 @@ void forward_region_layer(const layer l, network net)
truth_shift.x = 0;
truth_shift.y = 0;
//printf("index %d %d\n",i, j);
for(n = 0; n < l.n; ++n){
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h);
if(l.bias_match){
pred.w = l.biases[2*n]/l.w;
pred.h = l.biases[2*n+1]/l.h;
}
for(n = 0; n < l.total; ++n){
box pred = {0};
pred.w = l.biases[2*n]/net.w;
pred.h = l.biases[2*n+1]/net.h;
//printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
pred.x = 0;
pred.y = 0;
float iou = box_iou(pred, truth_shift);
if (iou > best_iou){
best_iou = iou;
@ -293,17 +333,21 @@ void forward_region_layer(const layer l, network net)
}
//printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
int box_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 0);
float iou = delta_region_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, l.delta, l.coord_scale * (2 - truth.w*truth.h), l.w*l.h);
int mask_n = int_index(l.mask, best_n, l.n);
//printf("%d %d\n", best_n, mask_n);
if(mask_n >= 0){
int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
float iou = delta_region_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, net.w, net.h, l.delta, l.coord_scale*(2-truth.w*truth.h), l.w*l.h);
if(l.coords > 4){
int mask_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 4);
int mask_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
delta_region_mask(net.truth + t*(l.coords + 1) + b*l.truths + 5, l.output, l.coords - 4, mask_index, l.delta, l.w*l.h, l.mask_scale);
}
if(iou > .5) recall += 1;
if(iou > .75) recall75 += 1;
avg_iou += iou;
//l.delta[best_index + 4] = iou - l.output[best_index + 4];
int obj_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords);
int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, l.coords);
avg_obj += l.output[obj_index];
l.delta[obj_index] = l.object_scale * (1 - l.output[obj_index]);
if (l.rescore) {
@ -315,15 +359,16 @@ void forward_region_layer(const layer l, network net)
int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords];
if (l.map) class = l.map[class];
int class_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords + 1);
delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax);
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, l.coords + 1);
delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax, l.focus);
++count;
++class_count;
}
}
}
//printf("\n");
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", net.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count);
}
void backward_region_layer(const layer l, network net)
@ -339,7 +384,7 @@ void backward_region_layer(const layer l, network net)
*/
}
void correct_region_boxes(box *boxes, int n, int w, int h, int netw, int neth, int relative)
void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
{
int i;
int new_w=0;
@ -352,7 +397,7 @@ void correct_region_boxes(box *boxes, int n, int w, int h, int netw, int neth, i
new_w = (w * neth)/h;
}
for (i = 0; i < n; ++i){
box b = boxes[i];
box b = dets[i].bbox;
b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
b.w *= (float)netw/new_w;
@ -363,11 +408,11 @@ void correct_region_boxes(box *boxes, int n, int w, int h, int netw, int neth, i
b.y *= h;
b.h *= h;
}
boxes[i] = b;
dets[i].bbox = b;
}
}
void get_region_boxes(layer l, int w, int h, int netw, int neth, float thresh, float **probs, box *boxes, float **masks, int only_objectness, int *map, float tree_thresh, int relative)
void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
{
int i,j,n,z;
float *predictions = l.output;
@ -399,17 +444,19 @@ void get_region_boxes(layer l, int w, int h, int netw, int neth, float thresh, f
int col = i % l.w;
for(n = 0; n < l.n; ++n){
int index = n*l.w*l.h + i;
for(j = 0; j < l.classes; ++j){
probs[index][j] = 0;
for (j = 0; j < l.classes; ++j) {
dets[index].prob[j] = 0;
}
int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
float scale = l.background ? 1 : predictions[obj_index];
boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h, l.w*l.h);
if(masks){
dets[index].bbox = get_region_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h);
dets[index].objectness = scale > thresh ? scale : 0;
dets[index].classes = l.classes;
if(dets[index].mask){
for(j = 0; j < l.coords - 4; ++j){
masks[index][j] = l.output[mask_index + j*l.w*l.h];
dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
}
}
@ -421,39 +468,24 @@ void get_region_boxes(layer l, int w, int h, int netw, int neth, float thresh, f
for(j = 0; j < 200; ++j){
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
float prob = scale*predictions[class_index];
probs[index][j] = (prob > thresh) ? prob : 0;
dets[index].prob[j] = (prob > thresh) ? prob : 0;
}
} else {
int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
probs[index][j] = (scale > thresh) ? scale : 0;
probs[index][l.classes] = scale;
dets[index].prob[j] = (scale > thresh) ? scale : 0;
}
} else {
float max = 0;
if(dets[index].objectness){
for(j = 0; j < l.classes; ++j){
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
float prob = scale*predictions[class_index];
probs[index][j] = (prob > thresh) ? prob : 0;
if(prob > max) max = prob;
// TODO REMOVE
// if (j == 56 ) probs[index][j] = 0;
/*
if (j != 0) probs[index][j] = 0;
int blacklist[] = {121, 497, 482, 504, 122, 518,481, 418, 542, 491, 914, 478, 120, 510,500};
int bb;
for (bb = 0; bb < sizeof(blacklist)/sizeof(int); ++bb){
if(index == blacklist[bb]) probs[index][j] = 0;
}
*/
}
probs[index][l.classes] = max;
}
if(only_objectness){
probs[index][0] = scale;
dets[index].prob[j] = (prob > thresh) ? prob : 0;
}
}
}
correct_region_boxes(boxes, l.w*l.h*l.n, w, h, netw, neth, relative);
}
}
correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
}
#ifdef GPU
@ -573,13 +605,13 @@ void backward_region_layer_gpu(const layer l, network net)
for (b = 0; b < l.batch; ++b){
for(n = 0; n < l.n; ++n){
int index = entry_index(l, b, n*l.w*l.h, 0);
gradient_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC, l.delta_gpu + index);
//gradient_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC, l.delta_gpu + index);
if(l.coords > 4){
index = entry_index(l, b, n*l.w*l.h, 4);
gradient_array_gpu(l.output_gpu + index, (l.coords - 4)*l.w*l.h, LOGISTIC, l.delta_gpu + index);
}
index = entry_index(l, b, n*l.w*l.h, l.coords);
if(!l.background) gradient_array_gpu(l.output_gpu + index, l.w*l.h, LOGISTIC, l.delta_gpu + index);
//if(!l.background) gradient_array_gpu(l.output_gpu + index, l.w*l.h, LOGISTIC, l.delta_gpu + index);
}
}
axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);

View File

@ -5,7 +5,7 @@
#include "layer.h"
#include "network.h"
layer make_region_layer(int batch, int h, int w, int n, int classes, int coords);
layer make_region_layer(int batch, int h, int w, int n, int total, int *mask, int classes, int coords);
void forward_region_layer(const layer l, network net);
void backward_region_layer(const layer l, network net);
void resize_region_layer(layer *l, int w, int h);

View File

@ -8,7 +8,7 @@
layer make_shortcut_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2)
{
fprintf(stderr,"Shortcut Layer: %d\n", index);
fprintf(stderr, "res %3d %4d x%4d x%4d -> %4d x%4d x%4d\n",index, w2,h2,c2, w,h,c);
layer l = {0};
l.type = SHORTCUT;
l.batch = batch;
@ -38,32 +38,53 @@ layer make_shortcut_layer(int batch, int index, int w, int h, int c, int w2, int
return l;
}
void resize_shortcut_layer(layer *l, int w, int h)
{
assert(l->w == l->out_w);
assert(l->h == l->out_h);
l->w = l->out_w = w;
l->h = l->out_h = h;
l->outputs = w*h*l->out_c;
l->inputs = l->outputs;
l->delta = realloc(l->delta, l->outputs*l->batch*sizeof(float));
l->output = realloc(l->output, l->outputs*l->batch*sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
#endif
}
void forward_shortcut_layer(const layer l, network net)
{
copy_cpu(l.outputs*l.batch, net.input, 1, l.output, 1);
shortcut_cpu(l.batch, l.w, l.h, l.c, net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output);
shortcut_cpu(l.batch, l.w, l.h, l.c, net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.alpha, l.beta, l.output);
activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_shortcut_layer(const layer l, network net)
{
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, net.delta, 1);
shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, net.layers[l.index].delta);
axpy_cpu(l.outputs*l.batch, l.alpha, l.delta, 1, net.delta, 1);
shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, 1, l.beta, net.layers[l.index].delta);
}
#ifdef GPU
void forward_shortcut_layer_gpu(const layer l, network net)
{
copy_gpu(l.outputs*l.batch, net.input_gpu, 1, l.output_gpu, 1);
shortcut_gpu(l.batch, l.w, l.h, l.c, net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
shortcut_gpu(l.batch, l.w, l.h, l.c, net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.alpha, l.beta, l.output_gpu);
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation);
}
void backward_shortcut_layer_gpu(const layer l, network net)
{
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
axpy_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1, net.delta_gpu, 1);
shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, net.layers[l.index].delta_gpu);
axpy_gpu(l.outputs*l.batch, l.alpha, l.delta_gpu, 1, net.delta_gpu, 1);
shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, 1, l.beta, net.layers[l.index].delta_gpu);
}
#endif

View File

@ -7,6 +7,7 @@
layer make_shortcut_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2);
void forward_shortcut_layer(const layer l, network net);
void backward_shortcut_layer(const layer l, network net);
void resize_shortcut_layer(layer *l, int w, int h);
#ifdef GPU
void forward_shortcut_layer_gpu(const layer l, network net);

View File

@ -18,8 +18,10 @@ softmax_layer make_softmax_layer(int batch, int inputs, int groups)
l.groups = groups;
l.inputs = inputs;
l.outputs = inputs;
l.loss = calloc(inputs*batch, sizeof(float));
l.output = calloc(inputs*batch, sizeof(float));
l.delta = calloc(inputs*batch, sizeof(float));
l.cost = calloc(1, sizeof(float));
l.forward = forward_softmax_layer;
l.backward = backward_softmax_layer;
@ -28,6 +30,7 @@ softmax_layer make_softmax_layer(int batch, int inputs, int groups)
l.backward_gpu = backward_softmax_layer_gpu;
l.output_gpu = cuda_make_array(l.output, inputs*batch);
l.loss_gpu = cuda_make_array(l.loss, inputs*batch);
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
#endif
return l;
@ -46,6 +49,11 @@ void forward_softmax_layer(const softmax_layer l, network net)
} else {
softmax_cpu(net.input, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output);
}
if(net.truth){
softmax_x_ent_cpu(l.batch*l.inputs, l.output, net.truth, l.delta, l.loss);
l.cost[0] = sum_array(l.loss, l.batch*l.inputs);
}
}
void backward_softmax_layer(const softmax_layer l, network net)
@ -63,6 +71,8 @@ void pull_softmax_layer_output(const softmax_layer layer)
void forward_softmax_layer_gpu(const softmax_layer l, network net)
{
if(l.softmax_tree){
softmax_tree(net.input_gpu, 1, l.batch, l.inputs, l.temperature, l.output_gpu, *l.softmax_tree);
/*
int i;
int count = 0;
for (i = 0; i < l.softmax_tree->groups; ++i) {
@ -70,6 +80,7 @@ void forward_softmax_layer_gpu(const softmax_layer l, network net)
softmax_gpu(net.input_gpu + count, group_size, l.batch, l.inputs, 1, 0, 1, l.temperature, l.output_gpu + count);
count += group_size;
}
*/
} else {
if(l.spatial){
softmax_gpu(net.input_gpu, l.c, l.batch*l.c, l.inputs/l.c, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu);
@ -77,6 +88,15 @@ void forward_softmax_layer_gpu(const softmax_layer l, network net)
softmax_gpu(net.input_gpu, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output_gpu);
}
}
if(net.truth){
softmax_x_ent_gpu(l.batch*l.inputs, l.output_gpu, net.truth_gpu, l.delta_gpu, l.loss_gpu);
if(l.softmax_tree){
mask_gpu(l.batch*l.inputs, l.delta_gpu, SECRET_NUM, net.truth_gpu, 0);
mask_gpu(l.batch*l.inputs, l.loss_gpu, SECRET_NUM, net.truth_gpu, 0);
}
cuda_pull_array(l.loss_gpu, l.loss, l.batch*l.inputs);
l.cost[0] = sum_array(l.loss, l.batch*l.inputs);
}
}
void backward_softmax_layer_gpu(const softmax_layer layer, network net)

View File

@ -2,7 +2,6 @@
#define TREE_H
#include "darknet.h"
tree *read_tree(char *filename);
int hierarchy_top_prediction(float *predictions, tree *hier, float thresh, int stride);
float get_hierarchy_probability(float *x, tree *hier, int c, int stride);

106
src/upsample_layer.c Normal file
View File

@ -0,0 +1,106 @@
#include "upsample_layer.h"
#include "cuda.h"
#include "blas.h"
#include <stdio.h>
layer make_upsample_layer(int batch, int w, int h, int c, int stride)
{
layer l = {0};
l.type = UPSAMPLE;
l.batch = batch;
l.w = w;
l.h = h;
l.c = c;
l.out_w = w*stride;
l.out_h = h*stride;
l.out_c = c;
if(stride < 0){
stride = -stride;
l.reverse=1;
l.out_w = w/stride;
l.out_h = h/stride;
}
l.stride = stride;
l.outputs = l.out_w*l.out_h*l.out_c;
l.inputs = l.w*l.h*l.c;
l.delta = calloc(l.outputs*batch, sizeof(float));
l.output = calloc(l.outputs*batch, sizeof(float));;
l.forward = forward_upsample_layer;
l.backward = backward_upsample_layer;
#ifdef GPU
l.forward_gpu = forward_upsample_layer_gpu;
l.backward_gpu = backward_upsample_layer_gpu;
l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch);
l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
#endif
if(l.reverse) fprintf(stderr, "downsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
else fprintf(stderr, "upsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
return l;
}
void resize_upsample_layer(layer *l, int w, int h)
{
l->w = w;
l->h = h;
l->out_w = w*l->stride;
l->out_h = h*l->stride;
if(l->reverse){
l->out_w = w/l->stride;
l->out_h = h/l->stride;
}
l->outputs = l->out_w*l->out_h*l->out_c;
l->inputs = l->h*l->w*l->c;
l->delta = realloc(l->delta, l->outputs*l->batch*sizeof(float));
l->output = realloc(l->output, l->outputs*l->batch*sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
#endif
}
void forward_upsample_layer(const layer l, network net)
{
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
if(l.reverse){
upsample_cpu(l.output, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, net.input);
}else{
upsample_cpu(net.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output);
}
}
void backward_upsample_layer(const layer l, network net)
{
if(l.reverse){
upsample_cpu(l.delta, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, net.delta);
}else{
upsample_cpu(net.delta, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta);
}
}
#ifdef GPU
void forward_upsample_layer_gpu(const layer l, network net)
{
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1);
if(l.reverse){
upsample_gpu(l.output_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, net.input_gpu);
}else{
upsample_gpu(net.input_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output_gpu);
}
}
void backward_upsample_layer_gpu(const layer l, network net)
{
if(l.reverse){
upsample_gpu(l.delta_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, net.delta_gpu);
}else{
upsample_gpu(net.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta_gpu);
}
}
#endif

15
src/upsample_layer.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef UPSAMPLE_LAYER_H
#define UPSAMPLE_LAYER_H
#include "darknet.h"
layer make_upsample_layer(int batch, int w, int h, int c, int stride);
void forward_upsample_layer(const layer l, network net);
void backward_upsample_layer(const layer l, network net);
void resize_upsample_layer(layer *l, int w, int h);
#ifdef GPU
void forward_upsample_layer_gpu(const layer l, network net);
void backward_upsample_layer_gpu(const layer l, network net);
#endif
#endif

View File

@ -627,6 +627,15 @@ int max_index(float *a, int n)
return max_i;
}
int int_index(int *a, int val, int n)
{
int i;
for(i = 0; i < n; ++i){
if(a[i] == val) return i;
}
return -1;
}
int rand_int(int min, int max)
{
if (max < min){

View File

@ -37,11 +37,9 @@ list *parse_csv_line(char *line);
char *copy_string(char *s);
int count_fields(char *line);
float *parse_fields(char *line, int n);
void scale_array(float *a, int n, float s);
void translate_array(float *a, int n, float s);
float constrain(float min, float max, float a);
int constrain_int(int a, int min, int max);
float rand_uniform(float min, float max);
float rand_scale(float s);
int rand_int(int min, int max);
void mean_arrays(float **a, int n, int els, float *avg);
@ -49,6 +47,7 @@ float dist_array(float *a, float *b, int n, int sub);
float **one_hot_encode(float *a, int n, int k);
float sec(clock_t clocks);
void print_statistics(float *a, int n);
int int_index(int *a, int val, int n);
#endif