mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
111 lines
3.0 KiB
C
111 lines
3.0 KiB
C
// Oh boy, why am I about to do this....
|
|
#ifndef NETWORK_H
|
|
#define NETWORK_H
|
|
|
|
#include "image.h"
|
|
#include "layer.h"
|
|
#include "data.h"
|
|
|
|
typedef enum {
|
|
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
|
|
} learning_rate_policy;
|
|
|
|
typedef struct network{
|
|
int n;
|
|
int batch;
|
|
int *seen;
|
|
float epoch;
|
|
int subdivisions;
|
|
float momentum;
|
|
float decay;
|
|
layer *layers;
|
|
int outputs;
|
|
float *output;
|
|
learning_rate_policy policy;
|
|
|
|
float learning_rate;
|
|
float gamma;
|
|
float scale;
|
|
float power;
|
|
int time_steps;
|
|
int step;
|
|
int max_batches;
|
|
float *scales;
|
|
int *steps;
|
|
int num_steps;
|
|
|
|
int inputs;
|
|
int h, w, c;
|
|
int max_crop;
|
|
int min_crop;
|
|
|
|
#ifdef GPU
|
|
float **input_gpu;
|
|
float **truth_gpu;
|
|
#endif
|
|
} network;
|
|
|
|
typedef struct network_state {
|
|
float *truth;
|
|
float *input;
|
|
float *delta;
|
|
int train;
|
|
int index;
|
|
network net;
|
|
} network_state;
|
|
|
|
#ifdef GPU
|
|
float train_network_datum_gpu(network net, float *x, float *y);
|
|
float *network_predict_gpu(network net, float *input);
|
|
float * get_network_output_gpu_layer(network net, int i);
|
|
float * get_network_delta_gpu_layer(network net, int i);
|
|
float *get_network_output_gpu(network net);
|
|
void forward_network_gpu(network net, network_state state);
|
|
void backward_network_gpu(network net, network_state state);
|
|
void update_network_gpu(network net);
|
|
#endif
|
|
|
|
float get_current_rate(network net);
|
|
int get_current_batch(network net);
|
|
void free_network(network net);
|
|
void compare_networks(network n1, network n2, data d);
|
|
char *get_layer_string(LAYER_TYPE a);
|
|
|
|
network make_network(int n);
|
|
void forward_network(network net, network_state state);
|
|
void backward_network(network net, network_state state);
|
|
void update_network(network net);
|
|
|
|
float train_network(network net, data d);
|
|
float train_network_batch(network net, data d, int n);
|
|
float train_network_sgd(network net, data d, int n);
|
|
float train_network_datum(network net, float *x, float *y);
|
|
|
|
matrix network_predict_data(network net, data test);
|
|
float *network_predict(network net, float *input);
|
|
float network_accuracy(network net, data d);
|
|
float *network_accuracies(network net, data d, int n);
|
|
float network_accuracy_multi(network net, data d, int n);
|
|
void top_predictions(network net, int n, int *index);
|
|
float *get_network_output(network net);
|
|
float *get_network_output_layer(network net, int i);
|
|
float *get_network_delta_layer(network net, int i);
|
|
float *get_network_delta(network net);
|
|
int get_network_output_size_layer(network net, int i);
|
|
int get_network_output_size(network net);
|
|
image get_network_image(network net);
|
|
image get_network_image_layer(network net, int i);
|
|
int get_predicted_class_network(network net);
|
|
void print_network(network net);
|
|
void visualize_network(network net);
|
|
int resize_network(network *net, int w, int h);
|
|
void set_batch_network(network *net, int b);
|
|
int get_network_input_size(network net);
|
|
float get_network_cost(network net);
|
|
|
|
int get_network_nuisance(network net);
|
|
int get_network_background(network net);
|
|
|
|
#endif
|
|
|