mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
not sure
This commit is contained in:
parent
9942d48412
commit
054e2b1954
6
Makefile
6
Makefile
@ -1,5 +1,5 @@
|
||||
GPU=1
|
||||
OPENCV=1
|
||||
GPU=0
|
||||
OPENCV=0
|
||||
DEBUG=0
|
||||
|
||||
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
|
||||
@ -34,7 +34,7 @@ CFLAGS+= -DGPU
|
||||
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
|
||||
endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo2.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS+= -lstdc++
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
||||
|
@ -65,6 +65,8 @@ float get_current_rate(network net)
|
||||
return net.learning_rate * pow(net.gamma, batch_num);
|
||||
case POLY:
|
||||
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
||||
case RANDOM:
|
||||
return net.learning_rate * pow(rand_uniform(0,1), net.power);
|
||||
case SIG:
|
||||
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
|
||||
default:
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include "data.h"
|
||||
|
||||
typedef enum {
|
||||
CONSTANT, STEP, EXP, POLY, STEPS, SIG
|
||||
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
|
||||
} learning_rate_policy;
|
||||
|
||||
typedef struct network{
|
||||
|
@ -432,6 +432,7 @@ route_layer parse_route(list *options, size_params params, network net)
|
||||
|
||||
learning_rate_policy get_policy(char *s)
|
||||
{
|
||||
if (strcmp(s, "random")==0) return RANDOM;
|
||||
if (strcmp(s, "poly")==0) return POLY;
|
||||
if (strcmp(s, "constant")==0) return CONSTANT;
|
||||
if (strcmp(s, "step")==0) return STEP;
|
||||
@ -497,7 +498,7 @@ void parse_net_options(list *options, network *net)
|
||||
} else if (net->policy == SIG){
|
||||
net->gamma = option_find_float(options, "gamma", 1);
|
||||
net->step = option_find_int(options, "step", 1);
|
||||
} else if (net->policy == POLY){
|
||||
} else if (net->policy == POLY || net->policy == RANDOM){
|
||||
net->power = option_find_float(options, "power", 1);
|
||||
}
|
||||
net->max_batches = option_find_int(options, "max_batches", 0);
|
||||
|
171
src/rnn.c
171
src/rnn.c
@ -13,6 +13,76 @@ typedef struct {
|
||||
float *y;
|
||||
} float_pair;
|
||||
|
||||
int *read_tokenized_data(char *filename, size_t *read)
|
||||
{
|
||||
size_t size = 512;
|
||||
size_t count = 0;
|
||||
FILE *fp = fopen(filename, "r");
|
||||
int *d = calloc(size, sizeof(int));
|
||||
int n, one;
|
||||
one = fscanf(fp, "%d", &n);
|
||||
while(one == 1){
|
||||
++count;
|
||||
if(count > size){
|
||||
size = size*2;
|
||||
d = realloc(d, size*sizeof(int));
|
||||
}
|
||||
d[count-1] = n;
|
||||
one = fscanf(fp, "%d", &n);
|
||||
}
|
||||
fclose(fp);
|
||||
d = realloc(d, count*sizeof(int));
|
||||
*read = count;
|
||||
return d;
|
||||
}
|
||||
|
||||
char **read_tokens(char *filename, size_t *read)
|
||||
{
|
||||
size_t size = 512;
|
||||
size_t count = 0;
|
||||
FILE *fp = fopen(filename, "r");
|
||||
char **d = calloc(size, sizeof(char *));
|
||||
char *line;
|
||||
while((line=fgetl(fp)) != 0){
|
||||
++count;
|
||||
if(count > size){
|
||||
size = size*2;
|
||||
d = realloc(d, size*sizeof(char *));
|
||||
}
|
||||
d[count-1] = line;
|
||||
}
|
||||
fclose(fp);
|
||||
d = realloc(d, count*sizeof(char *));
|
||||
*read = count;
|
||||
return d;
|
||||
}
|
||||
|
||||
float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps)
|
||||
{
|
||||
float *x = calloc(batch * steps * characters, sizeof(float));
|
||||
float *y = calloc(batch * steps * characters, sizeof(float));
|
||||
int i,j;
|
||||
for(i = 0; i < batch; ++i){
|
||||
for(j = 0; j < steps; ++j){
|
||||
int curr = tokens[(offsets[i])%len];
|
||||
int next = tokens[(offsets[i] + 1)%len];
|
||||
|
||||
x[(j*batch + i)*characters + curr] = 1;
|
||||
y[(j*batch + i)*characters + next] = 1;
|
||||
|
||||
offsets[i] = (offsets[i] + 1) % len;
|
||||
|
||||
if(curr >= characters || curr < 0 || next >= characters || next < 0){
|
||||
error("Bad char");
|
||||
}
|
||||
}
|
||||
}
|
||||
float_pair p;
|
||||
p.x = x;
|
||||
p.y = y;
|
||||
return p;
|
||||
}
|
||||
|
||||
float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps)
|
||||
{
|
||||
float *x = calloc(batch * steps * characters, sizeof(float));
|
||||
@ -47,8 +117,8 @@ void reset_rnn_state(network net, int b)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < net.n; ++i) {
|
||||
layer l = net.layers[i];
|
||||
#ifdef GPU
|
||||
layer l = net.layers[i];
|
||||
if(l.state_gpu){
|
||||
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
||||
}
|
||||
@ -56,19 +126,26 @@ void reset_rnn_state(network net, int b)
|
||||
}
|
||||
}
|
||||
|
||||
void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear)
|
||||
void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized)
|
||||
{
|
||||
srand(time(0));
|
||||
data_seed = time(0);
|
||||
FILE *fp = fopen(filename, "rb");
|
||||
unsigned char *text = 0;
|
||||
int *tokens = 0;
|
||||
size_t size;
|
||||
if(tokenized){
|
||||
tokens = read_tokenized_data(filename, &size);
|
||||
} else {
|
||||
FILE *fp = fopen(filename, "rb");
|
||||
|
||||
fseek(fp, 0, SEEK_END);
|
||||
size_t size = ftell(fp);
|
||||
fseek(fp, 0, SEEK_SET);
|
||||
fseek(fp, 0, SEEK_END);
|
||||
size = ftell(fp);
|
||||
fseek(fp, 0, SEEK_SET);
|
||||
|
||||
unsigned char *text = calloc(size+1, sizeof(char));
|
||||
fread(text, 1, size, fp);
|
||||
fclose(fp);
|
||||
text = calloc(size+1, sizeof(char));
|
||||
fread(text, 1, size, fp);
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
char *base = basecfg(cfgfile);
|
||||
@ -97,7 +174,12 @@ void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear)
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
float_pair p = get_rnn_data(text, offsets, inputs, size, streams, steps);
|
||||
float_pair p;
|
||||
if(tokenized){
|
||||
p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps);
|
||||
}else{
|
||||
p = get_rnn_data(text, offsets, inputs, size, streams, steps);
|
||||
}
|
||||
|
||||
float loss = train_network_datum(net, p.x, p.y) / (batch);
|
||||
free(p.x);
|
||||
@ -133,8 +215,22 @@ void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear)
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed)
|
||||
void print_symbol(int n, char **tokens){
|
||||
if(tokens){
|
||||
printf("%s ", tokens[n]);
|
||||
} else {
|
||||
printf("%c", n);
|
||||
}
|
||||
}
|
||||
|
||||
void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
|
||||
{
|
||||
char **tokens = 0;
|
||||
if(token_file){
|
||||
size_t n;
|
||||
tokens = read_tokens(token_file, &n);
|
||||
}
|
||||
|
||||
srand(rseed);
|
||||
char *base = basecfg(cfgfile);
|
||||
fprintf(stderr, "%s\n", base);
|
||||
@ -147,38 +243,39 @@ void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float t
|
||||
|
||||
int i, j;
|
||||
for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
|
||||
unsigned char c;
|
||||
int c = 0;
|
||||
int len = strlen(seed);
|
||||
float *input = calloc(inputs, sizeof(float));
|
||||
|
||||
/*
|
||||
fill_cpu(inputs, 0, input, 1);
|
||||
for(i = 0; i < 10; ++i){
|
||||
network_predict(net, input);
|
||||
}
|
||||
fill_cpu(inputs, 0, input, 1);
|
||||
*/
|
||||
/*
|
||||
fill_cpu(inputs, 0, input, 1);
|
||||
for(i = 0; i < 10; ++i){
|
||||
network_predict(net, input);
|
||||
}
|
||||
fill_cpu(inputs, 0, input, 1);
|
||||
*/
|
||||
|
||||
for(i = 0; i < len-1; ++i){
|
||||
c = seed[i];
|
||||
input[(int)c] = 1;
|
||||
input[c] = 1;
|
||||
network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
printf("%c", c);
|
||||
input[c] = 0;
|
||||
print_symbol(c, tokens);
|
||||
}
|
||||
c = seed[len-1];
|
||||
if(len) c = seed[len-1];
|
||||
print_symbol(c, tokens);
|
||||
for(i = 0; i < num; ++i){
|
||||
printf("%c", c);
|
||||
input[(int)c] = 1;
|
||||
input[c] = 1;
|
||||
float *out = network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
input[c] = 0;
|
||||
for(j = 32; j < 127; ++j){
|
||||
//printf("%d %c %f\n",j, j, out[j]);
|
||||
}
|
||||
for(j = 0; j < inputs; ++j){
|
||||
//if (out[j] < .0001) out[j] = 0;
|
||||
if (out[j] < .0001) out[j] = 0;
|
||||
}
|
||||
c = sample_array(out, inputs);
|
||||
print_symbol(c, tokens);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
@ -195,6 +292,7 @@ void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||
int inputs = get_network_input_size(net);
|
||||
|
||||
int count = 0;
|
||||
int words = 1;
|
||||
int c;
|
||||
int len = strlen(seed);
|
||||
float *input = calloc(inputs, sizeof(float));
|
||||
@ -213,12 +311,13 @@ void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||
if(next == EOF) break;
|
||||
if(next < 0 || next >= 255) error("Out of range character");
|
||||
++count;
|
||||
if(next == ' ' || next == '\n' || next == '\t') ++words;
|
||||
input[c] = 1;
|
||||
float *out = network_predict(net, input);
|
||||
input[c] = 0;
|
||||
sum += log(out[next])/log2;
|
||||
c = next;
|
||||
printf("%d Perplexity: %f\n", count, pow(2, -sum/count));
|
||||
printf("%d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words));
|
||||
}
|
||||
}
|
||||
|
||||
@ -254,13 +353,15 @@ void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||
network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
}
|
||||
c = ' ';
|
||||
input[(int)c] = 1;
|
||||
network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
c = ' ';
|
||||
input[(int)c] = 1;
|
||||
network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
|
||||
layer l = net.layers[0];
|
||||
#ifdef GPU
|
||||
cuda_pull_array(l.output_gpu, l.output, l.outputs);
|
||||
#endif
|
||||
printf("%s", line);
|
||||
for(i = 0; i < l.outputs; ++i){
|
||||
printf(",%g", l.output[i]);
|
||||
@ -281,11 +382,13 @@ void run_char_rnn(int argc, char **argv)
|
||||
float temp = find_float_arg(argc, argv, "-temp", .7);
|
||||
int rseed = find_int_arg(argc, argv, "-srand", time(0));
|
||||
int clear = find_arg(argc, argv, "-clear");
|
||||
int tokenized = find_arg(argc, argv, "-tokenized");
|
||||
char *tokens = find_char_arg(argc, argv, "-tokens", 0);
|
||||
|
||||
char *cfg = argv[3];
|
||||
char *weights = (argc > 4) ? argv[4] : 0;
|
||||
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear);
|
||||
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
|
||||
else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
|
||||
else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
|
||||
else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed);
|
||||
else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user