darknet/src/compare.c
2017-06-12 16:19:08 -07:00

353 lines
11 KiB
C

#include <stdio.h>
#include "network.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
void train_compare(char *cfgfile, char *weightfile)
{
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
char *backup_directory = "/home/pjreddie/backup/";
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
list *plist = get_paths("data/compare.train.list");
char **paths = (char **)list_to_array(plist);
int N = plist->size;
printf("%d\n", N);
clock_t time;
pthread_t load_thread;
data train;
data buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.classes = 20;
args.n = imgs;
args.m = N;
args.d = &buffer;
args.type = COMPARE_DATA;
load_thread = load_data_in_thread(args);
int epoch = *net.seen/N;
int i = 0;
while(1){
++i;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%.3f: %f, %f avg, %lf seconds, %ld images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen);
free_data(train);
if(i%100 == 0){
char buff[256];
sprintf(buff, "%s/%s_%d_minor_%d.weights",backup_directory,base, epoch, i);
save_weights(net, buff);
}
if(*net.seen/N > epoch){
epoch = *net.seen/N;
i = 0;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
if(epoch%22 == 0) net.learning_rate *= .1;
}
}
pthread_join(load_thread, 0);
free_data(buffer);
free_network(net);
free_ptrs((void**)paths, plist->size);
free_list(plist);
free(base);
}
void validate_compare(char *filename, char *weightfile)
{
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
list *plist = get_paths("data/compare.val.list");
//list *plist = get_paths("data/compare.val.old");
char **paths = (char **)list_to_array(plist);
int N = plist->size/2;
free_list(plist);
clock_t time;
int correct = 0;
int total = 0;
int splits = 10;
int num = (i+1)*N/splits - i*N/splits;
data val, buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.classes = 20;
args.n = num;
args.m = 0;
args.d = &buffer;
args.type = COMPARE_DATA;
pthread_t load_thread = load_data_in_thread(args);
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*N/splits - i*N/splits;
char **part = paths+(i*N/splits);
if(i != splits){
args.paths = part;
load_thread = load_data_in_thread(args);
}
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
matrix pred = network_predict_data(net, val);
int j,k;
for(j = 0; j < val.y.rows; ++j){
for(k = 0; k < 20; ++k){
if(val.y.vals[j][k*2] != val.y.vals[j][k*2+1]){
++total;
if((val.y.vals[j][k*2] < val.y.vals[j][k*2+1]) == (pred.vals[j][k*2] < pred.vals[j][k*2+1])){
++correct;
}
}
}
}
free_matrix(pred);
printf("%d: Acc: %f, %lf seconds, %d images\n", i, (float)correct/total, sec(clock()-time), val.X.rows);
free_data(val);
}
}
typedef struct {
network net;
char *filename;
int class;
int classes;
float elo;
float *elos;
} sortable_bbox;
int total_compares = 0;
int current_class = 0;
int elo_comparator(const void*a, const void *b)
{
sortable_bbox box1 = *(sortable_bbox*)a;
sortable_bbox box2 = *(sortable_bbox*)b;
if(box1.elos[current_class] == box2.elos[current_class]) return 0;
if(box1.elos[current_class] > box2.elos[current_class]) return -1;
return 1;
}
int bbox_comparator(const void *a, const void *b)
{
++total_compares;
sortable_bbox box1 = *(sortable_bbox*)a;
sortable_bbox box2 = *(sortable_bbox*)b;
network net = box1.net;
int class = box1.class;
image im1 = load_image_color(box1.filename, net.w, net.h);
image im2 = load_image_color(box2.filename, net.w, net.h);
float *X = calloc(net.w*net.h*net.c, sizeof(float));
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float));
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float));
float *predictions = network_predict(net, X);
free_image(im1);
free_image(im2);
free(X);
if (predictions[class*2] > predictions[class*2+1]){
return 1;
}
return -1;
}
void bbox_update(sortable_bbox *a, sortable_bbox *b, int class, int result)
{
int k = 32;
float EA = 1./(1+pow(10, (b->elos[class] - a->elos[class])/400.));
float EB = 1./(1+pow(10, (a->elos[class] - b->elos[class])/400.));
float SA = result ? 1 : 0;
float SB = result ? 0 : 1;
a->elos[class] += k*(SA - EA);
b->elos[class] += k*(SB - EB);
}
void bbox_fight(network net, sortable_bbox *a, sortable_bbox *b, int classes, int class)
{
image im1 = load_image_color(a->filename, net.w, net.h);
image im2 = load_image_color(b->filename, net.w, net.h);
float *X = calloc(net.w*net.h*net.c, sizeof(float));
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float));
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float));
float *predictions = network_predict(net, X);
++total_compares;
int i;
for(i = 0; i < classes; ++i){
if(class < 0 || class == i){
int result = predictions[i*2] > predictions[i*2+1];
bbox_update(a, b, i, result);
}
}
free_image(im1);
free_image(im2);
free(X);
}
void SortMaster3000(char *filename, char *weightfile)
{
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
set_batch_network(&net, 1);
list *plist = get_paths("data/compare.sort.list");
//list *plist = get_paths("data/compare.val.old");
char **paths = (char **)list_to_array(plist);
int N = plist->size;
free_list(plist);
sortable_bbox *boxes = calloc(N, sizeof(sortable_bbox));
printf("Sorting %d boxes...\n", N);
for(i = 0; i < N; ++i){
boxes[i].filename = paths[i];
boxes[i].net = net;
boxes[i].class = 7;
boxes[i].elo = 1500;
}
clock_t time=clock();
qsort(boxes, N, sizeof(sortable_bbox), bbox_comparator);
for(i = 0; i < N; ++i){
printf("%s\n", boxes[i].filename);
}
printf("Sorted in %d compares, %f secs\n", total_compares, sec(clock()-time));
}
void BattleRoyaleWithCheese(char *filename, char *weightfile)
{
int classes = 20;
int i,j;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
set_batch_network(&net, 1);
list *plist = get_paths("data/compare.sort.list");
//list *plist = get_paths("data/compare.small.list");
//list *plist = get_paths("data/compare.cat.list");
//list *plist = get_paths("data/compare.val.old");
char **paths = (char **)list_to_array(plist);
int N = plist->size;
int total = N;
free_list(plist);
sortable_bbox *boxes = calloc(N, sizeof(sortable_bbox));
printf("Battling %d boxes...\n", N);
for(i = 0; i < N; ++i){
boxes[i].filename = paths[i];
boxes[i].net = net;
boxes[i].classes = classes;
boxes[i].elos = calloc(classes, sizeof(float));;
for(j = 0; j < classes; ++j){
boxes[i].elos[j] = 1500;
}
}
int round;
clock_t time=clock();
for(round = 1; round <= 4; ++round){
clock_t round_time=clock();
printf("Round: %d\n", round);
shuffle(boxes, N, sizeof(sortable_bbox));
for(i = 0; i < N/2; ++i){
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, -1);
}
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
}
int class;
for (class = 0; class < classes; ++class){
N = total;
current_class = class;
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
N /= 2;
for(round = 1; round <= 100; ++round){
clock_t round_time=clock();
printf("Round: %d\n", round);
sorta_shuffle(boxes, N, sizeof(sortable_bbox), 10);
for(i = 0; i < N/2; ++i){
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, class);
}
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
if(round <= 20) N = (N*9/10)/2*2;
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
}
char buff[256];
sprintf(buff, "results/battle_%d.log", class);
FILE *outfp = fopen(buff, "w");
for(i = 0; i < N; ++i){
fprintf(outfp, "%s %f\n", boxes[i].filename, boxes[i].elos[class]);
}
fclose(outfp);
}
printf("Tournament in %d compares, %f secs\n", total_compares, sec(clock()-time));
}
void run_compare(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
//char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "train")) train_compare(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_compare(cfg, weights);
else if(0==strcmp(argv[2], "sort")) SortMaster3000(cfg, weights);
else if(0==strcmp(argv[2], "battle")) BattleRoyaleWithCheese(cfg, weights);
/*
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
*/
}