darknet/examples/dice.c
2017-05-31 21:06:35 -07:00

119 lines
3.6 KiB
C

#include "darknet/network.h"
#include "darknet/utils.h"
#include "darknet/parser.h"
char *dice_labels[] = {"face1","face2","face3","face4","face5","face6"};
void train_dice(char *cfgfile, char *weightfile)
{
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
char *backup_directory = "/home/pjreddie/backup/";
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = *net.seen/imgs;
char **labels = dice_labels;
list *plist = get_paths("data/dice/dice.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
while(1){
++i;
time=clock();
data train = load_data_old(paths, imgs, plist->size, labels, 6, net.w, net.h);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
free_data(train);
if((i % 100) == 0) net.learning_rate *= .1;
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i);
save_weights(net, buff);
}
}
}
void validate_dice(char *filename, char *weightfile)
{
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
char **labels = dice_labels;
list *plist = get_paths("data/dice/dice.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
data val = load_data_old(paths, m, 0, labels, 6, net.w, net.h);
float *acc = network_accuracies(net, val, 2);
printf("Validation Accuracy: %f, %d images\n", acc[0], m);
free_data(val);
}
void test_dice(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char **names = dice_labels;
char buff[256];
char *input = buff;
int indexes[6];
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, net.w, net.h);
float *X = im.data;
float *predictions = network_predict(net, X);
top_predictions(net, 6, indexes);
for(i = 0; i < 6; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
if (filename) break;
}
}
void run_dice(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "test")) test_dice(cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_dice(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_dice(cfg, weights);
}