mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
352 lines
9.2 KiB
C
352 lines
9.2 KiB
C
#include "blas.h"
|
|
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
|
|
{
|
|
int b,i,j,k;
|
|
int out_c = c/(stride*stride);
|
|
|
|
for(b = 0; b < batch; ++b){
|
|
for(k = 0; k < c; ++k){
|
|
for(j = 0; j < h; ++j){
|
|
for(i = 0; i < w; ++i){
|
|
int in_index = i + w*(j + h*(k + c*b));
|
|
int c2 = k % out_c;
|
|
int offset = k / out_c;
|
|
int w2 = i*stride + offset % stride;
|
|
int h2 = j*stride + offset / stride;
|
|
int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b));
|
|
if(forward) out[out_index] = x[in_index];
|
|
else out[in_index] = x[out_index];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void flatten(float *x, int size, int layers, int batch, int forward)
|
|
{
|
|
float *swap = calloc(size*layers*batch, sizeof(float));
|
|
int i,c,b;
|
|
for(b = 0; b < batch; ++b){
|
|
for(c = 0; c < layers; ++c){
|
|
for(i = 0; i < size; ++i){
|
|
int i1 = b*layers*size + c*size + i;
|
|
int i2 = b*layers*size + i*layers + c;
|
|
if (forward) swap[i2] = x[i1];
|
|
else swap[i1] = x[i2];
|
|
}
|
|
}
|
|
}
|
|
memcpy(x, swap, size*layers*batch*sizeof(float));
|
|
free(swap);
|
|
}
|
|
|
|
void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0);
|
|
}
|
|
}
|
|
|
|
void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
if(da) da[i] += dc[i] * s[i];
|
|
if(db) db[i] += dc[i] * (1-s[i]);
|
|
ds[i] += dc[i] * (a[i] - b[i]);
|
|
}
|
|
}
|
|
|
|
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out)
|
|
{
|
|
int stride = w1/w2;
|
|
int sample = w2/w1;
|
|
assert(stride == h1/h2);
|
|
assert(sample == h2/h1);
|
|
if(stride < 1) stride = 1;
|
|
if(sample < 1) sample = 1;
|
|
int minw = (w1 < w2) ? w1 : w2;
|
|
int minh = (h1 < h2) ? h1 : h2;
|
|
int minc = (c1 < c2) ? c1 : c2;
|
|
|
|
int i,j,k,b;
|
|
for(b = 0; b < batch; ++b){
|
|
for(k = 0; k < minc; ++k){
|
|
for(j = 0; j < minh; ++j){
|
|
for(i = 0; i < minw; ++i){
|
|
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
|
|
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
|
|
out[out_index] = s1*out[out_index] + s2*add[add_index];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
|
|
{
|
|
float scale = 1./(batch * spatial);
|
|
int i,j,k;
|
|
for(i = 0; i < filters; ++i){
|
|
mean[i] = 0;
|
|
for(j = 0; j < batch; ++j){
|
|
for(k = 0; k < spatial; ++k){
|
|
int index = j*filters*spatial + i*spatial + k;
|
|
mean[i] += x[index];
|
|
}
|
|
}
|
|
mean[i] *= scale;
|
|
}
|
|
}
|
|
|
|
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
|
|
{
|
|
float scale = 1./(batch * spatial - 1);
|
|
int i,j,k;
|
|
for(i = 0; i < filters; ++i){
|
|
variance[i] = 0;
|
|
for(j = 0; j < batch; ++j){
|
|
for(k = 0; k < spatial; ++k){
|
|
int index = j*filters*spatial + i*spatial + k;
|
|
variance[i] += pow((x[index] - mean[i]), 2);
|
|
}
|
|
}
|
|
variance[i] *= scale;
|
|
}
|
|
}
|
|
|
|
void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial)
|
|
{
|
|
int b,f,i;
|
|
for(b = 0; b < batch; ++b){
|
|
for(i = 0; i < spatial; ++i){
|
|
float sum = 0;
|
|
for(f = 0; f < filters; ++f){
|
|
int index = b*filters*spatial + f*spatial + i;
|
|
sum += powf(x[index], 2);
|
|
}
|
|
sum = sqrtf(sum);
|
|
for(f = 0; f < filters; ++f){
|
|
int index = b*filters*spatial + f*spatial + i;
|
|
x[index] /= sum;
|
|
dx[index] = (1 - x[index]) / sum;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
|
|
{
|
|
int b, f, i;
|
|
for(b = 0; b < batch; ++b){
|
|
for(f = 0; f < filters; ++f){
|
|
for(i = 0; i < spatial; ++i){
|
|
int index = b*filters*spatial + f*spatial + i;
|
|
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void const_cpu(int N, float ALPHA, float *X, int INCX)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
|
|
}
|
|
|
|
void mul_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX];
|
|
}
|
|
|
|
void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA);
|
|
}
|
|
|
|
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX];
|
|
}
|
|
|
|
void scal_cpu(int N, float ALPHA, float *X, int INCX)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA;
|
|
}
|
|
|
|
void fill_cpu(int N, float ALPHA, float *X, int INCX)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
|
|
}
|
|
|
|
void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
|
|
{
|
|
int i, j;
|
|
int index = 0;
|
|
for(j = 0; j < B; ++j) {
|
|
for(i = 0; i < NX; ++i){
|
|
if(X) X[j*NX + i] += OUT[index];
|
|
++index;
|
|
}
|
|
for(i = 0; i < NY; ++i){
|
|
if(Y) Y[j*NY + i] += OUT[index];
|
|
++index;
|
|
}
|
|
}
|
|
}
|
|
|
|
void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
|
|
{
|
|
int i, j;
|
|
int index = 0;
|
|
for(j = 0; j < B; ++j) {
|
|
for(i = 0; i < NX; ++i){
|
|
OUT[index++] = X[j*NX + i];
|
|
}
|
|
for(i = 0; i < NY; ++i){
|
|
OUT[index++] = Y[j*NY + i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];
|
|
}
|
|
|
|
void mult_add_into_cpu(int N, float *X, float *Y, float *Z)
|
|
{
|
|
int i;
|
|
for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i];
|
|
}
|
|
|
|
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
float diff = truth[i] - pred[i];
|
|
float abs_val = fabs(diff);
|
|
if(abs_val < 1) {
|
|
error[i] = diff * diff;
|
|
delta[i] = diff;
|
|
}
|
|
else {
|
|
error[i] = 2*abs_val - 1;
|
|
delta[i] = (diff < 0) ? 1 : -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
float diff = truth[i] - pred[i];
|
|
error[i] = fabs(diff);
|
|
delta[i] = diff > 0 ? 1 : -1;
|
|
}
|
|
}
|
|
|
|
void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
float t = truth[i];
|
|
float p = pred[i];
|
|
error[i] = (t) ? -log(p) : 0;
|
|
delta[i] = t-p;
|
|
}
|
|
}
|
|
|
|
void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
float t = truth[i];
|
|
float p = pred[i];
|
|
error[i] = -t*log(p) - (1-t)*log(1-p);
|
|
delta[i] = t-p;
|
|
}
|
|
}
|
|
|
|
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i){
|
|
float diff = truth[i] - pred[i];
|
|
error[i] = diff * diff;
|
|
delta[i] = diff;
|
|
}
|
|
}
|
|
|
|
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
|
{
|
|
int i;
|
|
float dot = 0;
|
|
for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY];
|
|
return dot;
|
|
}
|
|
|
|
void softmax(float *input, int n, float temp, int stride, float *output)
|
|
{
|
|
int i;
|
|
float sum = 0;
|
|
float largest = -FLT_MAX;
|
|
for(i = 0; i < n; ++i){
|
|
if(input[i*stride] > largest) largest = input[i*stride];
|
|
}
|
|
for(i = 0; i < n; ++i){
|
|
float e = exp(input[i*stride]/temp - largest/temp);
|
|
sum += e;
|
|
output[i*stride] = e;
|
|
}
|
|
for(i = 0; i < n; ++i){
|
|
output[i*stride] /= sum;
|
|
}
|
|
}
|
|
|
|
|
|
void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output)
|
|
{
|
|
int g, b;
|
|
for(b = 0; b < batch; ++b){
|
|
for(g = 0; g < groups; ++g){
|
|
softmax(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
|
|
{
|
|
int i, j, k, b;
|
|
for(b = 0; b < batch; ++b){
|
|
for(k = 0; k < c; ++k){
|
|
for(j = 0; j < h*stride; ++j){
|
|
for(i = 0; i < w*stride; ++i){
|
|
int in_index = b*w*h*c + k*w*h + (j/stride)*w + i/stride;
|
|
int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i;
|
|
if(forward) out[out_index] = scale*in[in_index];
|
|
else in[in_index] += scale*out[out_index];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|