mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
646 lines
16 KiB
C
646 lines
16 KiB
C
#include <stdio.h>
|
|
#include <time.h>
|
|
#include <assert.h>
|
|
#include "network.h"
|
|
#include "image.h"
|
|
#include "data.h"
|
|
#include "utils.h"
|
|
#include "blas.h"
|
|
|
|
#include "crop_layer.h"
|
|
#include "connected_layer.h"
|
|
#include "gru_layer.h"
|
|
#include "rnn_layer.h"
|
|
#include "crnn_layer.h"
|
|
#include "local_layer.h"
|
|
#include "convolutional_layer.h"
|
|
#include "activation_layer.h"
|
|
#include "detection_layer.h"
|
|
#include "region_layer.h"
|
|
#include "normalization_layer.h"
|
|
#include "batchnorm_layer.h"
|
|
#include "maxpool_layer.h"
|
|
#include "reorg_layer.h"
|
|
#include "avgpool_layer.h"
|
|
#include "cost_layer.h"
|
|
#include "softmax_layer.h"
|
|
#include "dropout_layer.h"
|
|
#include "route_layer.h"
|
|
#include "shortcut_layer.h"
|
|
#include "parser.h"
|
|
#include "data.h"
|
|
|
|
load_args get_base_args(network net)
|
|
{
|
|
load_args args = {0};
|
|
args.w = net.w;
|
|
args.h = net.h;
|
|
args.size = net.w;
|
|
|
|
args.min = net.min_crop;
|
|
args.max = net.max_crop;
|
|
args.angle = net.angle;
|
|
args.aspect = net.aspect;
|
|
args.exposure = net.exposure;
|
|
args.center = net.center;
|
|
args.saturation = net.saturation;
|
|
args.hue = net.hue;
|
|
return args;
|
|
}
|
|
|
|
network load_network(char *cfg, char *weights, int clear)
|
|
{
|
|
network net = parse_network_cfg(cfg);
|
|
if(weights && weights[0] != 0){
|
|
load_weights(&net, weights);
|
|
}
|
|
if(clear) *net.seen = 0;
|
|
return net;
|
|
}
|
|
|
|
network *load_network_p(char *cfg, char *weights, int clear)
|
|
{
|
|
network *net = calloc(1, sizeof(network));
|
|
*net = load_network(cfg, weights, clear);
|
|
return net;
|
|
}
|
|
|
|
size_t get_current_batch(network net)
|
|
{
|
|
size_t batch_num = (*net.seen)/(net.batch*net.subdivisions);
|
|
return batch_num;
|
|
}
|
|
|
|
void reset_momentum(network net)
|
|
{
|
|
if (net.momentum == 0) return;
|
|
net.learning_rate = 0;
|
|
net.momentum = 0;
|
|
net.decay = 0;
|
|
#ifdef GPU
|
|
//if(net.gpu_index >= 0) update_network_gpu(net);
|
|
#endif
|
|
}
|
|
|
|
float get_current_rate(network net)
|
|
{
|
|
size_t batch_num = get_current_batch(net);
|
|
int i;
|
|
float rate;
|
|
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
|
switch (net.policy) {
|
|
case CONSTANT:
|
|
return net.learning_rate;
|
|
case STEP:
|
|
return net.learning_rate * pow(net.scale, batch_num/net.step);
|
|
case STEPS:
|
|
rate = net.learning_rate;
|
|
for(i = 0; i < net.num_steps; ++i){
|
|
if(net.steps[i] > batch_num) return rate;
|
|
rate *= net.scales[i];
|
|
//if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
|
|
}
|
|
return rate;
|
|
case EXP:
|
|
return net.learning_rate * pow(net.gamma, batch_num);
|
|
case POLY:
|
|
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
|
case RANDOM:
|
|
return net.learning_rate * pow(rand_uniform(0,1), net.power);
|
|
case SIG:
|
|
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
|
|
default:
|
|
fprintf(stderr, "Policy is weird!\n");
|
|
return net.learning_rate;
|
|
}
|
|
}
|
|
|
|
char *get_layer_string(LAYER_TYPE a)
|
|
{
|
|
switch(a){
|
|
case CONVOLUTIONAL:
|
|
return "convolutional";
|
|
case ACTIVE:
|
|
return "activation";
|
|
case LOCAL:
|
|
return "local";
|
|
case DECONVOLUTIONAL:
|
|
return "deconvolutional";
|
|
case CONNECTED:
|
|
return "connected";
|
|
case RNN:
|
|
return "rnn";
|
|
case GRU:
|
|
return "gru";
|
|
case LSTM:
|
|
return "lstm";
|
|
case CRNN:
|
|
return "crnn";
|
|
case MAXPOOL:
|
|
return "maxpool";
|
|
case REORG:
|
|
return "reorg";
|
|
case AVGPOOL:
|
|
return "avgpool";
|
|
case SOFTMAX:
|
|
return "softmax";
|
|
case DETECTION:
|
|
return "detection";
|
|
case REGION:
|
|
return "region";
|
|
case DROPOUT:
|
|
return "dropout";
|
|
case CROP:
|
|
return "crop";
|
|
case COST:
|
|
return "cost";
|
|
case ROUTE:
|
|
return "route";
|
|
case SHORTCUT:
|
|
return "shortcut";
|
|
case NORMALIZATION:
|
|
return "normalization";
|
|
case BATCHNORM:
|
|
return "batchnorm";
|
|
default:
|
|
break;
|
|
}
|
|
return "none";
|
|
}
|
|
|
|
network make_network(int n)
|
|
{
|
|
network net = {0};
|
|
net.n = n;
|
|
net.layers = calloc(net.n, sizeof(layer));
|
|
net.seen = calloc(1, sizeof(int));
|
|
net.t = calloc(1, sizeof(int));
|
|
net.cost = calloc(1, sizeof(float));
|
|
return net;
|
|
}
|
|
|
|
void forward_network(network net)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
net.index = i;
|
|
layer l = net.layers[i];
|
|
if(l.delta){
|
|
fill_cpu(l.outputs * l.batch, 0, l.delta, 1);
|
|
}
|
|
l.forward(l, net);
|
|
net.input = l.output;
|
|
if(l.truth) {
|
|
net.truth = l.output;
|
|
}
|
|
}
|
|
calc_network_cost(net);
|
|
}
|
|
|
|
void update_network(network net)
|
|
{
|
|
int i;
|
|
update_args a = {0};
|
|
a.batch = net.batch*net.subdivisions;
|
|
a.learning_rate = get_current_rate(net);
|
|
a.momentum = net.momentum;
|
|
a.decay = net.decay;
|
|
a.adam = net.adam;
|
|
a.B1 = net.B1;
|
|
a.B2 = net.B2;
|
|
a.eps = net.eps;
|
|
++*net.t;
|
|
a.t = *net.t;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
layer l = net.layers[i];
|
|
if(l.update){
|
|
l.update(l, a);
|
|
}
|
|
}
|
|
}
|
|
|
|
void calc_network_cost(network net)
|
|
{
|
|
int i;
|
|
float sum = 0;
|
|
int count = 0;
|
|
for(i = 0; i < net.n; ++i){
|
|
if(net.layers[i].cost){
|
|
sum += net.layers[i].cost[0];
|
|
++count;
|
|
}
|
|
}
|
|
*net.cost = sum/count;
|
|
}
|
|
|
|
int get_predicted_class_network(network net)
|
|
{
|
|
return max_index(net.output, net.outputs);
|
|
}
|
|
|
|
void backward_network(network net)
|
|
{
|
|
int i;
|
|
network orig = net;
|
|
for(i = net.n-1; i >= 0; --i){
|
|
layer l = net.layers[i];
|
|
if(l.stopbackward) break;
|
|
if(i == 0){
|
|
net = orig;
|
|
}else{
|
|
layer prev = net.layers[i-1];
|
|
net.input = prev.output;
|
|
net.delta = prev.delta;
|
|
}
|
|
net.index = i;
|
|
l.backward(l, net);
|
|
}
|
|
}
|
|
|
|
float train_network_datum(network net)
|
|
{
|
|
#ifdef GPU
|
|
if(gpu_index >= 0) return train_network_datum_gpu(net);
|
|
#endif
|
|
*net.seen += net.batch;
|
|
net.train = 1;
|
|
forward_network(net);
|
|
backward_network(net);
|
|
float error = *net.cost;
|
|
if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
|
|
return error;
|
|
}
|
|
|
|
float train_network_sgd(network net, data d, int n)
|
|
{
|
|
int batch = net.batch;
|
|
|
|
int i;
|
|
float sum = 0;
|
|
for(i = 0; i < n; ++i){
|
|
get_random_batch(d, batch, net.input, net.truth);
|
|
float err = train_network_datum(net);
|
|
sum += err;
|
|
}
|
|
return (float)sum/(n*batch);
|
|
}
|
|
|
|
float train_network(network net, data d)
|
|
{
|
|
assert(d.X.rows % net.batch == 0);
|
|
int batch = net.batch;
|
|
int n = d.X.rows / batch;
|
|
|
|
int i;
|
|
float sum = 0;
|
|
for(i = 0; i < n; ++i){
|
|
get_next_batch(d, batch, i*batch, net.input, net.truth);
|
|
float err = train_network_datum(net);
|
|
sum += err;
|
|
}
|
|
return (float)sum/(n*batch);
|
|
}
|
|
|
|
void set_batch_network(network *net, int b)
|
|
{
|
|
net->batch = b;
|
|
int i;
|
|
for(i = 0; i < net->n; ++i){
|
|
net->layers[i].batch = b;
|
|
#ifdef CUDNN
|
|
if(net->layers[i].type == CONVOLUTIONAL){
|
|
cudnn_convolutional_setup(net->layers + i);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
int resize_network(network *net, int w, int h)
|
|
{
|
|
#ifdef GPU
|
|
cuda_set_device(net->gpu_index);
|
|
cuda_free(net->workspace);
|
|
#endif
|
|
int i;
|
|
//if(w == net->w && h == net->h) return 0;
|
|
net->w = w;
|
|
net->h = h;
|
|
int inputs = 0;
|
|
size_t workspace_size = 0;
|
|
//fprintf(stderr, "Resizing to %d x %d...\n", w, h);
|
|
//fflush(stderr);
|
|
for (i = 0; i < net->n; ++i){
|
|
layer l = net->layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
resize_convolutional_layer(&l, w, h);
|
|
}else if(l.type == CROP){
|
|
resize_crop_layer(&l, w, h);
|
|
}else if(l.type == MAXPOOL){
|
|
resize_maxpool_layer(&l, w, h);
|
|
}else if(l.type == REGION){
|
|
resize_region_layer(&l, w, h);
|
|
}else if(l.type == ROUTE){
|
|
resize_route_layer(&l, net);
|
|
}else if(l.type == REORG){
|
|
resize_reorg_layer(&l, w, h);
|
|
}else if(l.type == AVGPOOL){
|
|
resize_avgpool_layer(&l, w, h);
|
|
}else if(l.type == NORMALIZATION){
|
|
resize_normalization_layer(&l, w, h);
|
|
}else if(l.type == COST){
|
|
resize_cost_layer(&l, inputs);
|
|
}else{
|
|
error("Cannot resize this type of layer");
|
|
}
|
|
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
|
inputs = l.outputs;
|
|
net->layers[i] = l;
|
|
w = l.out_w;
|
|
h = l.out_h;
|
|
if(l.type == AVGPOOL) break;
|
|
}
|
|
layer out = get_network_output_layer(*net);
|
|
net->inputs = net->layers[0].inputs;
|
|
net->outputs = out.outputs;
|
|
net->truths = out.outputs;
|
|
if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths;
|
|
net->output = out.output;
|
|
free(net->input);
|
|
free(net->truth);
|
|
net->input = calloc(net->inputs*net->batch, sizeof(float));
|
|
net->truth = calloc(net->truths*net->batch, sizeof(float));
|
|
#ifdef GPU
|
|
if(gpu_index >= 0){
|
|
cuda_free(net->input_gpu);
|
|
cuda_free(net->truth_gpu);
|
|
net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
|
|
net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
|
|
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
|
|
}else {
|
|
free(net->workspace);
|
|
net->workspace = calloc(1, workspace_size);
|
|
}
|
|
#else
|
|
free(net->workspace);
|
|
net->workspace = calloc(1, workspace_size);
|
|
#endif
|
|
//fprintf(stderr, " Done!\n");
|
|
return 0;
|
|
}
|
|
|
|
detection_layer get_network_detection_layer(network net)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
if(net.layers[i].type == DETECTION){
|
|
return net.layers[i];
|
|
}
|
|
}
|
|
fprintf(stderr, "Detection layer not found!!\n");
|
|
detection_layer l = {0};
|
|
return l;
|
|
}
|
|
|
|
image get_network_image_layer(network net, int i)
|
|
{
|
|
layer l = net.layers[i];
|
|
#ifdef GPU
|
|
//cuda_pull_array(l.output_gpu, l.output, l.outputs);
|
|
#endif
|
|
if (l.out_w && l.out_h && l.out_c){
|
|
return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
|
|
}
|
|
image def = {0};
|
|
return def;
|
|
}
|
|
|
|
image get_network_image(network net)
|
|
{
|
|
int i;
|
|
for(i = net.n-1; i >= 0; --i){
|
|
image m = get_network_image_layer(net, i);
|
|
if(m.h != 0) return m;
|
|
}
|
|
image def = {0};
|
|
return def;
|
|
}
|
|
|
|
void visualize_network(network net)
|
|
{
|
|
image *prev = 0;
|
|
int i;
|
|
char buff[256];
|
|
for(i = 0; i < net.n; ++i){
|
|
sprintf(buff, "Layer %d", i);
|
|
layer l = net.layers[i];
|
|
if(l.type == CONVOLUTIONAL){
|
|
prev = visualize_convolutional_layer(l, buff, prev);
|
|
}
|
|
}
|
|
}
|
|
|
|
void top_predictions(network net, int k, int *index)
|
|
{
|
|
top_k(net.output, net.outputs, k, index);
|
|
}
|
|
|
|
|
|
float *network_predict(network net, float *input)
|
|
{
|
|
#ifdef GPU
|
|
if(gpu_index >= 0) return network_predict_gpu(net, input);
|
|
#endif
|
|
net.input = input;
|
|
net.truth = 0;
|
|
net.train = 0;
|
|
net.delta = 0;
|
|
forward_network(net);
|
|
return net.output;
|
|
}
|
|
|
|
float *network_predict_p(network *net, float *input)
|
|
{
|
|
return network_predict(*net, input);
|
|
}
|
|
|
|
float *network_predict_image(network *net, image im)
|
|
{
|
|
image imr = letterbox_image(im, net->w, net->h);
|
|
set_batch_network(net, 1);
|
|
float *p = network_predict(*net, imr.data);
|
|
free_image(imr);
|
|
return p;
|
|
}
|
|
|
|
int network_width(network *net){return net->w;}
|
|
int network_height(network *net){return net->h;}
|
|
|
|
matrix network_predict_data_multi(network net, data test, int n)
|
|
{
|
|
int i,j,b,m;
|
|
int k = net.outputs;
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
float *X = calloc(net.batch*test.X.rows, sizeof(float));
|
|
for(i = 0; i < test.X.rows; i += net.batch){
|
|
for(b = 0; b < net.batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
|
}
|
|
for(m = 0; m < n; ++m){
|
|
float *out = network_predict(net, X);
|
|
for(b = 0; b < net.batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
for(j = 0; j < k; ++j){
|
|
pred.vals[i+b][j] += out[j+b*k]/n;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free(X);
|
|
return pred;
|
|
}
|
|
|
|
matrix network_predict_data(network net, data test)
|
|
{
|
|
int i,j,b;
|
|
int k = net.outputs;
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
|
for(i = 0; i < test.X.rows; i += net.batch){
|
|
for(b = 0; b < net.batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
|
}
|
|
float *out = network_predict(net, X);
|
|
for(b = 0; b < net.batch; ++b){
|
|
if(i+b == test.X.rows) break;
|
|
for(j = 0; j < k; ++j){
|
|
pred.vals[i+b][j] = out[j+b*k];
|
|
}
|
|
}
|
|
}
|
|
free(X);
|
|
return pred;
|
|
}
|
|
|
|
void print_network(network net)
|
|
{
|
|
int i,j;
|
|
for(i = 0; i < net.n; ++i){
|
|
layer l = net.layers[i];
|
|
float *output = l.output;
|
|
int n = l.outputs;
|
|
float mean = mean_array(output, n);
|
|
float vari = variance_array(output, n);
|
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
|
if(n > 100) n = 100;
|
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
|
|
if(n == 100)fprintf(stderr,".....\n");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
void compare_networks(network n1, network n2, data test)
|
|
{
|
|
matrix g1 = network_predict_data(n1, test);
|
|
matrix g2 = network_predict_data(n2, test);
|
|
int i;
|
|
int a,b,c,d;
|
|
a = b = c = d = 0;
|
|
for(i = 0; i < g1.rows; ++i){
|
|
int truth = max_index(test.y.vals[i], test.y.cols);
|
|
int p1 = max_index(g1.vals[i], g1.cols);
|
|
int p2 = max_index(g2.vals[i], g2.cols);
|
|
if(p1 == truth){
|
|
if(p2 == truth) ++d;
|
|
else ++c;
|
|
}else{
|
|
if(p2 == truth) ++b;
|
|
else ++a;
|
|
}
|
|
}
|
|
printf("%5d %5d\n%5d %5d\n", a, b, c, d);
|
|
float num = pow((abs(b - c) - 1.), 2.);
|
|
float den = b + c;
|
|
printf("%f\n", num/den);
|
|
}
|
|
|
|
float network_accuracy(network net, data d)
|
|
{
|
|
matrix guess = network_predict_data(net, d);
|
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
|
free_matrix(guess);
|
|
return acc;
|
|
}
|
|
|
|
float *network_accuracies(network net, data d, int n)
|
|
{
|
|
static float acc[2];
|
|
matrix guess = network_predict_data(net, d);
|
|
acc[0] = matrix_topk_accuracy(d.y, guess, 1);
|
|
acc[1] = matrix_topk_accuracy(d.y, guess, n);
|
|
free_matrix(guess);
|
|
return acc;
|
|
}
|
|
|
|
layer get_network_output_layer(network net)
|
|
{
|
|
int i;
|
|
for(i = net.n - 1; i >= 0; --i){
|
|
if(net.layers[i].type != COST) break;
|
|
}
|
|
return net.layers[i];
|
|
}
|
|
|
|
float network_accuracy_multi(network net, data d, int n)
|
|
{
|
|
matrix guess = network_predict_data_multi(net, d, n);
|
|
float acc = matrix_topk_accuracy(d.y, guess,1);
|
|
free_matrix(guess);
|
|
return acc;
|
|
}
|
|
|
|
void free_network(network net)
|
|
{
|
|
int i;
|
|
for(i = 0; i < net.n; ++i){
|
|
free_layer(net.layers[i]);
|
|
}
|
|
free(net.layers);
|
|
if(net.input) free(net.input);
|
|
if(net.truth) free(net.truth);
|
|
#ifdef GPU
|
|
if(net.input_gpu) cuda_free(net.input_gpu);
|
|
if(net.truth_gpu) cuda_free(net.truth_gpu);
|
|
#endif
|
|
}
|
|
|
|
// Some day...
|
|
|
|
|
|
layer network_output_layer(network net)
|
|
{
|
|
int i;
|
|
for(i = net.n - 1; i >= 0; --i){
|
|
if(net.layers[i].type != COST) break;
|
|
}
|
|
return net.layers[i];
|
|
}
|
|
|
|
int network_inputs(network net)
|
|
{
|
|
return net.layers[0].inputs;
|
|
}
|
|
|
|
int network_outputs(network net)
|
|
{
|
|
return network_output_layer(net).outputs;
|
|
}
|
|
|
|
float *network_output(network net)
|
|
{
|
|
return network_output_layer(net).output;
|
|
}
|
|
|