mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
185 lines
6.0 KiB
C
185 lines
6.0 KiB
C
#include "network.h"
|
|
#include "utils.h"
|
|
#include "parser.h"
|
|
|
|
|
|
void train_captcha(char *cfgfile, char *weightfile)
|
|
{
|
|
float avg_loss = -1;
|
|
srand(time(0));
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
int imgs = 1024;
|
|
int i = net.seen/imgs;
|
|
list *plist = get_paths("/data/captcha/train.auto5");
|
|
char **paths = (char **)list_to_array(plist);
|
|
printf("%d\n", plist->size);
|
|
clock_t time;
|
|
while(1){
|
|
++i;
|
|
time=clock();
|
|
data train = load_data_captcha(paths, imgs, plist->size, 10, 200, 60);
|
|
translate_data_rows(train, -128);
|
|
scale_data_rows(train, 1./128);
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
net.seen += imgs;
|
|
if(avg_loss == -1) avg_loss = loss;
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
|
|
free_data(train);
|
|
if(i%10==0){
|
|
char buff[256];
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
|
|
save_weights(net, buff);
|
|
}
|
|
}
|
|
}
|
|
|
|
void decode_captcha(char *cfgfile, char *weightfile)
|
|
{
|
|
setbuf(stdout, NULL);
|
|
srand(time(0));
|
|
network net = parse_network_cfg(cfgfile);
|
|
set_batch_network(&net, 1);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
char filename[256];
|
|
while(1){
|
|
printf("Enter filename: ");
|
|
fgets(filename, 256, stdin);
|
|
strtok(filename, "\n");
|
|
image im = load_image_color(filename, 300, 57);
|
|
scale_image(im, 1./255.);
|
|
float *X = im.data;
|
|
float *predictions = network_predict(net, X);
|
|
image out = float_to_image(300, 57, 1, predictions);
|
|
show_image(out, "decoded");
|
|
cvWaitKey(0);
|
|
free_image(im);
|
|
}
|
|
}
|
|
|
|
void encode_captcha(char *cfgfile, char *weightfile)
|
|
{
|
|
float avg_loss = -1;
|
|
srand(time(0));
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
int imgs = 1024;
|
|
int i = net.seen/imgs;
|
|
list *plist = get_paths("/data/captcha/encode.list");
|
|
char **paths = (char **)list_to_array(plist);
|
|
printf("%d\n", plist->size);
|
|
clock_t time;
|
|
while(1){
|
|
++i;
|
|
time=clock();
|
|
data train = load_data_captcha_encode(paths, imgs, plist->size, 300, 57);
|
|
scale_data_rows(train, 1./255);
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
net.seen += imgs;
|
|
if(avg_loss == -1) avg_loss = loss;
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
|
|
free_matrix(train.X);
|
|
if(i%100==0){
|
|
char buff[256];
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
|
|
save_weights(net, buff);
|
|
}
|
|
}
|
|
}
|
|
|
|
void validate_captcha(char *cfgfile, char *weightfile)
|
|
{
|
|
srand(time(0));
|
|
char *base = basecfg(cfgfile);
|
|
printf("%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
int numchars = 37;
|
|
list *plist = get_paths("/data/captcha/solved.hard");
|
|
char **paths = (char **)list_to_array(plist);
|
|
int imgs = plist->size;
|
|
data valid = load_data_captcha(paths, imgs, 0, 10, 200, 60);
|
|
translate_data_rows(valid, -128);
|
|
scale_data_rows(valid, 1./128);
|
|
matrix pred = network_predict_data(net, valid);
|
|
int i, k;
|
|
int correct = 0;
|
|
int total = 0;
|
|
int accuracy = 0;
|
|
for(i = 0; i < imgs; ++i){
|
|
int allcorrect = 1;
|
|
for(k = 0; k < 10; ++k){
|
|
char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars));
|
|
char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars));
|
|
if (truth != prediction) allcorrect=0;
|
|
if (truth != '.' && truth == prediction) ++correct;
|
|
if (truth != '.' || truth != prediction) ++total;
|
|
}
|
|
accuracy += allcorrect;
|
|
}
|
|
printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total);
|
|
free_data(valid);
|
|
}
|
|
|
|
void test_captcha(char *cfgfile, char *weightfile)
|
|
{
|
|
setbuf(stdout, NULL);
|
|
srand(time(0));
|
|
//char *base = basecfg(cfgfile);
|
|
//printf("%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
|
set_batch_network(&net, 1);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
char filename[256];
|
|
while(1){
|
|
//printf("Enter filename: ");
|
|
fgets(filename, 256, stdin);
|
|
strtok(filename, "\n");
|
|
image im = load_image_color(filename, 200, 60);
|
|
translate_image(im, -128);
|
|
scale_image(im, 1/128.);
|
|
float *X = im.data;
|
|
float *predictions = network_predict(net, X);
|
|
print_letters(predictions, 10);
|
|
free_image(im);
|
|
}
|
|
}
|
|
void run_captcha(int argc, char **argv)
|
|
{
|
|
if(argc < 4){
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
return;
|
|
}
|
|
|
|
char *cfg = argv[3];
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
if(0==strcmp(argv[2], "test")) test_captcha(cfg, weights);
|
|
else if(0==strcmp(argv[2], "train")) train_captcha(cfg, weights);
|
|
else if(0==strcmp(argv[2], "encode")) encode_captcha(cfg, weights);
|
|
else if(0==strcmp(argv[2], "decode")) decode_captcha(cfg, weights);
|
|
else if(0==strcmp(argv[2], "valid")) validate_captcha(cfg, weights);
|
|
}
|
|
|