mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
267 lines
7.7 KiB
C
267 lines
7.7 KiB
C
#include "connected_layer.h"
|
|
#include "convolutional_layer.h"
|
|
#include "maxpool_layer.h"
|
|
#include "network.h"
|
|
#include "image.h"
|
|
#include "parser.h"
|
|
|
|
#include <time.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
void test_convolve()
|
|
{
|
|
image dog = load_image("dog.jpg");
|
|
//show_image_layers(dog, "Dog");
|
|
printf("dog channels %d\n", dog.c);
|
|
image kernel = make_random_image(3,3,dog.c);
|
|
image edge = make_image(dog.h, dog.w, 1);
|
|
int i;
|
|
clock_t start = clock(), end;
|
|
for(i = 0; i < 1000; ++i){
|
|
convolve(dog, kernel, 1, 0, edge);
|
|
}
|
|
end = clock();
|
|
printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
show_image_layers(edge, "Test Convolve");
|
|
}
|
|
|
|
void test_color()
|
|
{
|
|
image dog = load_image("test_color.png");
|
|
show_image_layers(dog, "Test Color");
|
|
}
|
|
|
|
void test_convolutional_layer()
|
|
{
|
|
srand(0);
|
|
image dog = load_image("dog.jpg");
|
|
int i;
|
|
int n = 3;
|
|
int stride = 1;
|
|
int size = 3;
|
|
convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
|
char buff[256];
|
|
for(i = 0; i < n; ++i) {
|
|
sprintf(buff, "Kernel %d", i);
|
|
show_image(layer.kernels[i], buff);
|
|
}
|
|
run_convolutional_layer(dog, layer);
|
|
|
|
maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2);
|
|
run_maxpool_layer(layer.output,mlayer);
|
|
|
|
show_image_layers(mlayer.output, "Test Maxpool Layer");
|
|
}
|
|
|
|
void test_load()
|
|
{
|
|
image dog = load_image("dog.jpg");
|
|
show_image(dog, "Test Load");
|
|
show_image_layers(dog, "Test Load");
|
|
}
|
|
void test_upsample()
|
|
{
|
|
image dog = load_image("dog.jpg");
|
|
int n = 3;
|
|
image up = make_image(n*dog.h, n*dog.w, dog.c);
|
|
upsample_image(dog, n, up);
|
|
show_image(up, "Test Upsample");
|
|
show_image_layers(up, "Test Upsample");
|
|
}
|
|
|
|
void test_rotate()
|
|
{
|
|
int i;
|
|
image dog = load_image("dog.jpg");
|
|
clock_t start = clock(), end;
|
|
for(i = 0; i < 1001; ++i){
|
|
rotate_image(dog);
|
|
}
|
|
end = clock();
|
|
printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
show_image(dog, "Test Rotate");
|
|
|
|
image random = make_random_image(3,3,3);
|
|
show_image(random, "Test Rotate Random");
|
|
rotate_image(random);
|
|
show_image(random, "Test Rotate Random");
|
|
rotate_image(random);
|
|
show_image(random, "Test Rotate Random");
|
|
}
|
|
|
|
void test_network()
|
|
{
|
|
network net;
|
|
net.n = 11;
|
|
net.layers = calloc(net.n, sizeof(void *));
|
|
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
|
net.types[0] = CONVOLUTIONAL;
|
|
net.types[1] = MAXPOOL;
|
|
net.types[2] = CONVOLUTIONAL;
|
|
net.types[3] = MAXPOOL;
|
|
net.types[4] = CONVOLUTIONAL;
|
|
net.types[5] = CONVOLUTIONAL;
|
|
net.types[6] = CONVOLUTIONAL;
|
|
net.types[7] = MAXPOOL;
|
|
net.types[8] = CONNECTED;
|
|
net.types[9] = CONNECTED;
|
|
net.types[10] = CONNECTED;
|
|
|
|
image dog = load_image("test_hinton.jpg");
|
|
|
|
int n = 48;
|
|
int stride = 4;
|
|
int size = 11;
|
|
convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
|
maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2);
|
|
|
|
n = 128;
|
|
size = 5;
|
|
stride = 1;
|
|
convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride);
|
|
maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2);
|
|
|
|
n = 192;
|
|
size = 3;
|
|
convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride);
|
|
convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride);
|
|
n = 128;
|
|
convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride);
|
|
maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4);
|
|
connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU);
|
|
connected_layer nl2 = *make_connected_layer(4096, 4096, RELU);
|
|
connected_layer nl3 = *make_connected_layer(4096, 1000, RELU);
|
|
|
|
net.layers[0] = &cl;
|
|
net.layers[1] = &ml;
|
|
net.layers[2] = &cl2;
|
|
net.layers[3] = &ml2;
|
|
net.layers[4] = &cl3;
|
|
net.layers[5] = &cl4;
|
|
net.layers[6] = &cl5;
|
|
net.layers[7] = &ml3;
|
|
net.layers[8] = &nl;
|
|
net.layers[9] = &nl2;
|
|
net.layers[10] = &nl3;
|
|
|
|
int i;
|
|
clock_t start = clock(), end;
|
|
for(i = 0; i < 10; ++i){
|
|
run_network(dog, net);
|
|
rotate_image(dog);
|
|
}
|
|
end = clock();
|
|
printf("Ran %lf second per iteration\n", (double)(end-start)/CLOCKS_PER_SEC/10);
|
|
|
|
show_image_layers(get_network_image(net), "Test Network Layer");
|
|
}
|
|
|
|
void test_backpropagate()
|
|
{
|
|
int n = 3;
|
|
int size = 4;
|
|
int stride = 10;
|
|
image dog = load_image("dog.jpg");
|
|
show_image(dog, "Test Backpropagate Input");
|
|
image dog_copy = copy_image(dog);
|
|
convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
|
run_convolutional_layer(dog, cl);
|
|
show_image(cl.output, "Test Backpropagate Output");
|
|
int i;
|
|
clock_t start = clock(), end;
|
|
for(i = 0; i < 100; ++i){
|
|
backpropagate_convolutional_layer(dog_copy, cl);
|
|
}
|
|
end = clock();
|
|
printf("Backpropagate: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
start = clock();
|
|
for(i = 0; i < 100; ++i){
|
|
backpropagate_convolutional_layer_convolve(dog, cl);
|
|
}
|
|
end = clock();
|
|
printf("Backpropagate Using Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
show_image(dog_copy, "Test Backpropagate 1");
|
|
show_image(dog, "Test Backpropagate 2");
|
|
subtract_image(dog, dog_copy);
|
|
show_image(dog, "Test Backpropagate Difference");
|
|
}
|
|
|
|
void test_ann()
|
|
{
|
|
network net;
|
|
net.n = 3;
|
|
net.layers = calloc(net.n, sizeof(void *));
|
|
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
|
net.types[0] = CONNECTED;
|
|
net.types[1] = CONNECTED;
|
|
net.types[2] = CONNECTED;
|
|
|
|
connected_layer nl = *make_connected_layer(1, 20, RELU);
|
|
connected_layer nl2 = *make_connected_layer(20, 20, RELU);
|
|
connected_layer nl3 = *make_connected_layer(20, 1, RELU);
|
|
|
|
net.layers[0] = &nl;
|
|
net.layers[1] = &nl2;
|
|
net.layers[2] = &nl3;
|
|
|
|
image t = make_image(1,1,1);
|
|
int count = 0;
|
|
|
|
double avgerr = 0;
|
|
while(1){
|
|
double v = ((double)rand()/RAND_MAX);
|
|
double truth = v*v;
|
|
set_pixel(t,0,0,0,v);
|
|
run_network(t, net);
|
|
double *out = get_network_output(net);
|
|
double err = pow((out[0]-truth),2.);
|
|
avgerr = .99 * avgerr + .01 * err;
|
|
//if(++count % 100000 == 0) printf("%f\n", avgerr);
|
|
if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
|
|
out[0] = truth - out[0];
|
|
learn_network(t, net);
|
|
update_network(net, .001);
|
|
}
|
|
|
|
}
|
|
|
|
void test_parser()
|
|
{
|
|
network net = parse_network_cfg("test.cfg");
|
|
image t = make_image(1,1,1);
|
|
int count = 0;
|
|
|
|
double avgerr = 0;
|
|
while(1){
|
|
double v = ((double)rand()/RAND_MAX);
|
|
double truth = v*v;
|
|
set_pixel(t,0,0,0,v);
|
|
run_network(t, net);
|
|
double *out = get_network_output(net);
|
|
double err = pow((out[0]-truth),2.);
|
|
avgerr = .99 * avgerr + .01 * err;
|
|
//if(++count % 100000 == 0) printf("%f\n", avgerr);
|
|
if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
|
|
out[0] = truth - out[0];
|
|
learn_network(t, net);
|
|
update_network(net, .001);
|
|
}
|
|
}
|
|
|
|
int main()
|
|
{
|
|
test_parser();
|
|
//test_backpropagate();
|
|
//test_ann();
|
|
//test_convolve();
|
|
//test_upsample();
|
|
//test_rotate();
|
|
//test_load();
|
|
//test_network();
|
|
//test_convolutional_layer();
|
|
//test_color();
|
|
cvWaitKey(0);
|
|
return 0;
|
|
}
|