mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
76 lines
2.4 KiB
Plaintext
76 lines
2.4 KiB
Plaintext
extern "C" {
|
|
#include "activations.h"
|
|
#include "cuda.h"
|
|
}
|
|
|
|
__device__ float linear_activate_kernel(float x){return x;}
|
|
__device__ float sigmoid_activate_kernel(float x){return 1./(1. + exp(-x));}
|
|
__device__ float relu_activate_kernel(float x){return x*(x>0);}
|
|
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;}
|
|
//__device__ float ramp_activate_kernel(float x){return 0;}
|
|
__device__ float tanh_activate_kernel(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
|
|
|
|
__device__ float linear_gradient_kernel(float x){return 1;}
|
|
__device__ float sigmoid_gradient_kernel(float x){return (1-x)*x;}
|
|
__device__ float relu_gradient_kernel(float x){return (x>0);}
|
|
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1;}
|
|
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
|
|
|
|
__device__ float activate_kernel(float x, ACTIVATION a)
|
|
{
|
|
switch(a){
|
|
case LINEAR:
|
|
return linear_activate_kernel(x);
|
|
case SIGMOID:
|
|
return sigmoid_activate_kernel(x);
|
|
case RELU:
|
|
return relu_activate_kernel(x);
|
|
case RAMP:
|
|
return ramp_activate_kernel(x);
|
|
case TANH:
|
|
return tanh_activate_kernel(x);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__device__ float gradient_kernel(float x, ACTIVATION a)
|
|
{
|
|
switch(a){
|
|
case LINEAR:
|
|
return linear_gradient_kernel(x);
|
|
case SIGMOID:
|
|
return sigmoid_gradient_kernel(x);
|
|
case RELU:
|
|
return relu_gradient_kernel(x);
|
|
case RAMP:
|
|
return ramp_gradient_kernel(x);
|
|
case TANH:
|
|
return tanh_gradient_kernel(x);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
|
|
{
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(i < n) x[i] = activate_kernel(x[i], a);
|
|
}
|
|
|
|
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
|
|
{
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
if(i < n) delta[i] *= gradient_kernel(x[i], a);
|
|
}
|
|
|
|
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
|
|
{
|
|
activate_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|
|
|
|
extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
|
|
{
|
|
gradient_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a, delta);
|
|
check_error(cudaPeekAtLastError());
|
|
}
|