Switched to gif.js library. It's awesome 1

This commit is contained in:
jdescottes 2013-08-10 17:35:36 +02:00
parent c23de31e07
commit 39287e3400
9 changed files with 37 additions and 1599 deletions

View File

@ -1,571 +0,0 @@
/**
* This class lets you encode animated GIF files
* Base class : http://www.java2s.com/Code/Java/2D-Graphics-GUI/AnimatedGifEncoder.htm
* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
* @author Thibault Imbert (AS3 version - bytearray.org)
* @version 0.1 AS3 implementation
*/
//import flash.utils.ByteArray;
//import flash.display.BitmapData;
//import flash.display.Bitmap;
//import org.bytearray.gif.encoder.NeuQuant
//import flash.net.URLRequestHeader;
//import flash.net.URLRequestMethod;
//import flash.net.URLRequest;
//import flash.net.navigateToURL;
window.GIFEncoder = function()
{
for(var i = 0, chr = {}; i < 256; i++)
chr[i] = String.fromCharCode(i);
function ByteArray(){
this.bin = [];
}
ByteArray.prototype.getData = function(){
for(var v = '', l = this.bin.length, i = 0; i < l; i++)
v += chr[this.bin[i]];
return v;
}
ByteArray.prototype.writeByte = function(val){
this.bin.push(val);
}
ByteArray.prototype.writeUTFBytes = function(string){
for(var l = string.length, i = 0; i < l; i++)
this.writeByte(string.charCodeAt(i));
}
ByteArray.prototype.writeBytes = function(array, offset, length){
for(var l = length || array.length, i = offset||0; i < l; i++)
this.writeByte(array[i]);
}
var exports = {};
/*private*/ var width/*int*/ // image size
/*private*/ var height/*int*/;
/*private*/ var transparent/***/ = null; // transparent color if given
/*private*/ var transIndex/*int*/; // transparent index in color table
/*private*/ var repeat/*int*/ = -1; // no repeat
/*private*/ var delay/*int*/ = 0; // frame delay (hundredths)
/*private*/ var started/*Boolean*/ = false; // ready to output frames
/*private*/ var out/*ByteArray*/;
/*private*/ var image/*Bitmap*/; // current frame
/*private*/ var pixels/*ByteArray*/; // BGR byte array from frame
/*private*/ var indexedPixels/*ByteArray*/ // converted frame indexed to palette
/*private*/ var colorDepth/*int*/; // number of bit planes
/*private*/ var colorTab/*ByteArray*/; // RGB palette
/*private*/ var usedEntry/*Array*/ = new Array; // active palette entries
/*private*/ var palSize/*int*/ = 7; // color table size (bits-1)
/*private*/ var dispose/*int*/ = -1; // disposal code (-1 = use default)
/*private*/ var closeStream/*Boolean*/ = false; // close stream when finished
/*private*/ var firstFrame/*Boolean*/ = true;
/*private*/ var sizeSet/*Boolean*/ = false; // if false, get size from first frame
/*private*/ var sample/*int*/ = 10; // default sample interval for quantizer
/**
* Sets the delay time between each frame, or changes it for subsequent frames
* (applies to last frame added)
* int delay time in milliseconds
* @param ms
*/
var setDelay = exports.setDelay = function setDelay(ms/*int*/)/*void*/
{
delay = Math.round(ms / 10);
}
/**
* Sets the GIF frame disposal code for the last added frame and any
*
* subsequent frames. Default is 0 if no transparent color has been set,
* otherwise 2.
* @param code
* int disposal code.
*/
var setDispose = exports.setDispose = function setDispose(code/*int*/)/*void*/
{
if (code >= 0) dispose = code;
}
/**
* Sets the number of times the set of GIF frames should be played. Default is
* 1; 0 means play indefinitely. Must be invoked before the first image is
* added.
*
* @param iter
* int number of iterations.
* @return
*/
var setRepeat = exports.setRepeat = function setRepeat(iter/*int*/)/*void*/
{
if (iter >= 0) repeat = iter;
}
/**
* Sets the transparent color for the last added frame and any subsequent
* frames. Since all colors are subject to modification in the quantization
* process, the color in the final palette for each frame closest to the given
* color becomes the transparent color for that frame. May be set to null to
* indicate no transparent color.
* @param
* Color to be treated as transparent on display.
*/
var setTransparent = exports.setTransparent = function setTransparent(c/*Number*/)/*void*/
{
transparent = c;
}
/**
* The addFrame method takes an incoming BitmapData object to create each frames
* @param
* BitmapData object to be treated as a GIF's frame
*/
var addFrame = exports.addFrame = function addFrame(im/*BitmapData*/, is_imageData)/*Boolean*/
{
if ((im == null) || !started || out == null)
{
throw new Error ("Please call start method before calling addFrame");
return false;
}
var ok/*Boolean*/ = true;
try {
if(!is_imageData){
image = im.getImageData(0,0, im.canvas.width, im.canvas.height).data;
if (!sizeSet) setSize(im.canvas.width, im.canvas.height);
}else{
image = im;
}
getImagePixels(); // convert to correct format if necessary
analyzePixels(); // build color table & map pixels
if (firstFrame)
{
writeLSD(); // logical screen descriptior
writePalette(); // global color table
if (repeat >= 0)
{
// use NS app extension to indicate reps
writeNetscapeExt();
}
}
writeGraphicCtrlExt(); // write graphic control extension
writeImageDesc(); // image descriptor
if (!firstFrame) writePalette(); // local color table
writePixels(); // encode and write pixel data
firstFrame = false;
} catch (e/*Error*/) {
ok = false;
}
return ok;
}
/**
* Adds final trailer to the GIF stream, if you don't call the finish method
* the GIF stream will not be valid.
*/
var finish = exports.finish = function finish()/*Boolean*/
{
if (!started) return false;
var ok/*Boolean*/ = true;
started = false;
try {
out.writeByte(0x3b); // gif trailer
} catch (e/*Error*/) {
ok = false;
}
return ok;
}
/**
* Resets some members so that a new stream can be started.
* This method is actually called by the start method
*/
var reset = function reset ( )/*void*/
{
// reset for subsequent use
transIndex = 0;
image = null;
pixels = null;
indexedPixels = null;
colorTab = null;
closeStream = false;
firstFrame = true;
}
/**
* * Sets frame rate in frames per second. Equivalent to
* <code>setDelay(1000/fps)</code>.
* @param fps
* float frame rate (frames per second)
*/
var setFrameRate = exports.setFrameRate = function setFrameRate(fps/*Number*/)/*void*/
{
if (fps != 0xf) delay = Math.round(100/fps);
}
/**
* Sets quality of color quantization (conversion of images to the maximum 256
* colors allowed by the GIF specification). Lower values (minimum = 1)
* produce better colors, but slow processing significantly. 10 is the
* default, and produces good color mapping at reasonable speeds. Values
* greater than 20 do not yield significant improvements in speed.
* @param quality
* int greater than 0.
* @return
*/
var setQuality = exports.setQuality = function setQuality(quality/*int*/)/*void*/
{
if (quality < 1) quality = 1;
sample = quality;
}
/**
* Sets the GIF frame size. The default size is the size of the first frame
* added if this method is not invoked.
* @param w
* int frame width.
* @param h
* int frame width.
*/
var setSize = exports.setSize = function setSize(w/*int*/, h/*int*/)/*void*/
{
if (started && !firstFrame) return;
width = w;
height = h;
if (width < 1)width = 320;
if (height < 1)height = 240;
sizeSet = true
}
/**
* Initiates GIF file creation on the given stream.
* @param os
* OutputStream on which GIF images are written.
* @return false if initial write failed.
*
*/
var start = exports.start = function start()/*Boolean*/
{
reset();
var ok/*Boolean*/ = true;
closeStream = false;
out = new ByteArray;
try {
out.writeUTFBytes("GIF89a"); // header
} catch (e/*Error*/) {
ok = false;
}
return started = ok;
}
var cont = exports.cont = function cont()/*Boolean*/
{
reset();
var ok/*Boolean*/ = true;
closeStream = false;
out = new ByteArray;
return started = ok;
}
/**
* Analyzes image colors and creates color map.
*/
var analyzePixels = function analyzePixels()/*void*/
{
var len/*int*/ = pixels.length;
var nPix/*int*/ = len / 3;
indexedPixels = [];
var nq/*NeuQuant*/ = new NeuQuant(pixels, len, sample);
// initialize quantizer
colorTab = nq.process(); // create reduced palette
// map image pixels to new palette
var k/*int*/ = 0;
for (var j/*int*/ = 0; j < nPix; j++) {
var index/*int*/ = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
usedEntry[index] = true;
indexedPixels[j] = index;
}
pixels = null;
colorDepth = 8;
palSize = 7;
// get closest match to transparent color if specified
if (transparent != null) {
transIndex = findClosest(transparent);
var r = colorTab[transIndex*3];
var g = colorTab[transIndex*3+1];
var b = colorTab[transIndex*3+2];
var trans_indices = [];
for (var i=0; i<colorTab.length; i+=3)
{
var index = i / 3;
if (!usedEntry[index]) continue;
if (colorTab[i] == r && colorTab[i+1] == g && colorTab[i+2] == b)
trans_indices.push(index);
}
for (var i=0; i<indexedPixels.length; i++) {
if (trans_indices.indexOf(indexedPixels[i]) >= 0) {
indexedPixels[i] = transIndex;
}
}
}
}
/**
* Returns index of palette color closest to c
*
*/
var findClosest = function findClosest(c/*Number*/)/*int*/
{
if (colorTab == null) return -1;
var r/*int*/ = (c & 0xFF0000) >> 16;
var g/*int*/ = (c & 0x00FF00) >> 8;
var b/*int*/ = (c & 0x0000FF);
var minpos/*int*/ = 0;
var dmin/*int*/ = 256 * 256 * 256;
var len/*int*/ = colorTab.length;
for (var i/*int*/ = 0; i < len;) {
var dr/*int*/ = r - (colorTab[i++] & 0xff);
var dg/*int*/ = g - (colorTab[i++] & 0xff);
var db/*int*/ = b - (colorTab[i] & 0xff);
var d/*int*/ = dr * dr + dg * dg + db * db;
var index/*int*/ = i / 3;
if (usedEntry[index] && (d < dmin)) {
dmin = d;
minpos = index;
}
i++;
}
return minpos;
}
/**
* Extracts image pixels into byte array "pixels
*/
var getImagePixels = function getImagePixels()/*void*/
{
var w/*int*/ = width;
var h/*int*/ = height;
pixels = [];
var data = image;
var count/*int*/ = 0;
for ( var i/*int*/ = 0; i < h; i++ )
{
for (var j/*int*/ = 0; j < w; j++ )
{
var b = (i*w*4)+j*4;
pixels[count++] = data[b];
pixels[count++] = data[b+1];
pixels[count++] = data[b+2];
}
}
}
/**
* Writes Graphic Control Extension
*/
var writeGraphicCtrlExt = function writeGraphicCtrlExt()/*void*/
{
out.writeByte(0x21); // extension introducer
out.writeByte(0xf9); // GCE label
out.writeByte(4); // data block size
var transp/*int*/
var disp/*int*/;
if (transparent == null) {
transp = 0;
disp = 0; // dispose = no action
} else {
transp = 1;
disp = 2; // force clear if using transparent color
}
if (dispose >= 0) {
disp = dispose & 7; // user override
}
disp <<= 2;
// packed fields
out.writeByte(0 | // 1:3 reserved
disp | // 4:6 disposal
0 | // 7 user input - 0 = none
transp); // 8 transparency flag
WriteShort(delay); // delay x 1/100 sec
out.writeByte(transIndex); // transparent color index
out.writeByte(0); // block terminator
}
/**
* Writes Image Descriptor
*/
var writeImageDesc = function writeImageDesc()/*void*/
{
out.writeByte(0x2c); // image separator
WriteShort(0); // image position x,y = 0,0
WriteShort(0);
WriteShort(width); // image size
WriteShort(height);
// packed fields
if (firstFrame) {
// no LCT - GCT is used for first (or only) frame
out.writeByte(0);
} else {
// specify normal LCT
out.writeByte(0x80 | // 1 local color table 1=yes
0 | // 2 interlace - 0=no
0 | // 3 sorted - 0=no
0 | // 4-5 reserved
palSize); // 6-8 size of color table
}
}
/**
* Writes Logical Screen Descriptor
*/
var writeLSD = function writeLSD()/*void*/
{
// logical screen size
WriteShort(width);
WriteShort(height);
// packed fields
out.writeByte((0x80 | // 1 : global color table flag = 1 (gct used)
0x70 | // 2-4 : color resolution = 7
0x00 | // 5 : gct sort flag = 0
palSize)); // 6-8 : gct size
out.writeByte(0); // background color index
out.writeByte(0); // pixel aspect ratio - assume 1:1
}
/**
* Writes Netscape application extension to define repeat count.
*/
var writeNetscapeExt = function writeNetscapeExt()/*void*/
{
out.writeByte(0x21); // extension introducer
out.writeByte(0xff); // app extension label
out.writeByte(11); // block size
out.writeUTFBytes("NETSCAPE" + "2.0"); // app id + auth code
out.writeByte(3); // sub-block size
out.writeByte(1); // loop sub-block id
WriteShort(repeat); // loop count (extra iterations, 0=repeat forever)
out.writeByte(0); // block terminator
}
/**
* Writes color table
*/
var writePalette = function writePalette()/*void*/
{
out.writeBytes(colorTab);
var n/*int*/ = (3 * 256) - colorTab.length;
for (var i/*int*/ = 0; i < n; i++) out.writeByte(0);
}
var WriteShort = function WriteShort (pValue/*int*/)/*void*/
{
out.writeByte( pValue & 0xFF );
out.writeByte( (pValue >> 8) & 0xFF);
}
/**
* Encodes and writes pixel data
*/
var writePixels = function writePixels()/*void*/
{
var myencoder/*LZWEncoder*/ = new LZWEncoder(width, height, indexedPixels, colorDepth);
myencoder.encode(out);
}
/**
* retrieves the GIF stream
*/
var stream = exports.stream = function stream ( )/*ByteArray*/
{
return out;
}
var setProperties = exports.setProperties = function setProperties(has_start, is_first){
started = has_start;
firstFrame = is_first;
//out = new ByteArray; //??
}
return exports
}

View File

@ -1,328 +0,0 @@
/**
* This class handles LZW encoding
* Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
* @author Thibault Imbert (AS3 version - bytearray.org)
* @version 0.1 AS3 implementation
*/
//import flash.utils.ByteArray;
LZWEncoder = function()
{
var exports = {};
/*private_static*/ var EOF/*int*/ = -1;
/*private*/ var imgW/*int*/;
/*private*/ var imgH/*int*/
/*private*/ var pixAry/*ByteArray*/;
/*private*/ var initCodeSize/*int*/;
/*private*/ var remaining/*int*/;
/*private*/ var curPixel/*int*/;
// GIFCOMPR.C - GIF Image compression routines
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley (mgardi@watdcsu.waterloo.edu)
// General DEFINEs
/*private_static*/ var BITS/*int*/ = 12;
/*private_static*/ var HSIZE/*int*/ = 5003; // 80% occupancy
// GIF Image compression - modified 'compress'
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe)
/*private*/ var n_bits/*int*/ // number of bits/code
/*private*/ var maxbits/*int*/ = BITS; // user settable max # bits/code
/*private*/ var maxcode/*int*/ // maximum code, given n_bits
/*private*/ var maxmaxcode/*int*/ = 1 << BITS; // should NEVER generate this code
/*private*/ var htab/*Array*/ = new Array;
/*private*/ var codetab/*Array*/ = new Array;
/*private*/ var hsize/*int*/ = HSIZE; // for dynamic table sizing
/*private*/ var free_ent/*int*/ = 0; // first unused entry
// block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
/*private*/ var clear_flg/*Boolean*/ = false;
// Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw.
/*private*/ var g_init_bits/*int*/;
/*private*/ var ClearCode/*int*/;
/*private*/ var EOFCode/*int*/;
// output
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over.
/*private*/ var cur_accum/*int*/ = 0;
/*private*/ var cur_bits/*int*/ = 0;
/*private*/ var masks/*Array*/ = [ 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF ];
// Number of characters so far in this 'packet'
/*private*/ var a_count/*int*/;
// Define the storage for the packet accumulator
/*private*/ var accum/*ByteArray*/ = [];
var LZWEncoder = exports.LZWEncoder = function LZWEncoder (width/*int*/, height/*int*/, pixels/*ByteArray*/, color_depth/*int*/)
{
imgW = width;
imgH = height;
pixAry = pixels;
initCodeSize = Math.max(2, color_depth);
}
// Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
var char_out = function char_out(c/*Number*/, outs/*ByteArray*/)/*void*/
{
accum[a_count++] = c;
if (a_count >= 254) flush_char(outs);
}
// Clear out the hash table
// table clear for block compress
var cl_block = function cl_block(outs/*ByteArray*/)/*void*/
{
cl_hash(hsize);
free_ent = ClearCode + 2;
clear_flg = true;
output(ClearCode, outs);
}
// reset code table
var cl_hash = function cl_hash(hsize/*int*/)/*void*/
{
for (var i/*int*/ = 0; i < hsize; ++i) htab[i] = -1;
}
var compress = exports.compress = function compress(init_bits/*int*/, outs/*ByteArray*/)/*void*/
{
var fcode/*int*/;
var i/*int*/ /* = 0 */;
var c/*int*/;
var ent/*int*/;
var disp/*int*/;
var hsize_reg/*int*/;
var hshift/*int*/;
// Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits;
// Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MAXCODE(n_bits);
ClearCode = 1 << (init_bits - 1);
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2;
a_count = 0; // clear packet
ent = nextPixel();
hshift = 0;
for (fcode = hsize; fcode < 65536; fcode *= 2)
++hshift;
hshift = 8 - hshift; // set hash code range bound
hsize_reg = hsize;
cl_hash(hsize_reg); // clear hash table
output(ClearCode, outs);
outer_loop: while ((c = nextPixel()) != EOF)
{
fcode = (c << maxbits) + ent;
i = (c << hshift) ^ ent; // xor hashing
if (htab[i] == fcode)
{
ent = codetab[i];
continue;
} else if (htab[i] >= 0) // non-empty slot
{
disp = hsize_reg - i; // secondary hash (after G. Knott)
if (i == 0)
disp = 1;
do
{
if ((i -= disp) < 0) i += hsize_reg;
if (htab[i] == fcode)
{
ent = codetab[i];
continue outer_loop;
}
} while (htab[i] >= 0);
}
output(ent, outs);
ent = c;
if (free_ent < maxmaxcode)
{
codetab[i] = free_ent++; // code -> hashtable
htab[i] = fcode;
} else cl_block(outs);
}
// Put out the final code.
output(ent, outs);
output(EOFCode, outs);
}
// ----------------------------------------------------------------------------
var encode = exports.encode = function encode(os/*ByteArray*/)/*void*/
{
os.writeByte(initCodeSize); // write "initial code size" byte
remaining = imgW * imgH; // reset navigation variables
curPixel = 0;
compress(initCodeSize + 1, os); // compress and write the pixel data
os.writeByte(0); // write block terminator
}
// Flush the packet to disk, and reset the accumulator
var flush_char = function flush_char(outs/*ByteArray*/)/*void*/
{
if (a_count > 0)
{
outs.writeByte(a_count);
outs.writeBytes(accum, 0, a_count);
a_count = 0;
}
}
var MAXCODE = function MAXCODE(n_bits/*int*/)/*int*/
{
return (1 << n_bits) - 1;
}
// ----------------------------------------------------------------------------
// Return the next pixel from the image
// ----------------------------------------------------------------------------
var nextPixel = function nextPixel()/*int*/
{
if (remaining == 0) return EOF;
--remaining;
var pix/*Number*/ = pixAry[curPixel++];
return pix & 0xff;
}
var output = function output(code/*int*/, outs/*ByteArray*/)/*void*/
{
cur_accum &= masks[cur_bits];
if (cur_bits > 0) cur_accum |= (code << cur_bits);
else cur_accum = code;
cur_bits += n_bits;
while (cur_bits >= 8)
{
char_out((cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
// If the next entry is going to be too big for the code size,
// then increase it, if possible.
if (free_ent > maxcode || clear_flg)
{
if (clear_flg)
{
maxcode = MAXCODE(n_bits = g_init_bits);
clear_flg = false;
} else
{
++n_bits;
if (n_bits == maxbits) maxcode = maxmaxcode;
else maxcode = MAXCODE(n_bits);
}
}
if (code == EOFCode)
{
// At EOF, write the rest of the buffer.
while (cur_bits > 0)
{
char_out((cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
flush_char(outs);
}
}
LZWEncoder.apply(this, arguments);
return exports;
}

View File

@ -1,668 +0,0 @@
/*
* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
*
* Copyright (c) 1994 Anthony Dekker
*
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
* "Kohonen neural networks for optimal colour quantization" in "Network:
* Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
* the algorithm.
*
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal in
* this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit persons who
* receive copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*/
/*
* This class handles Neural-Net quantization algorithm
* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
* @author Thibault Imbert (AS3 version - bytearray.org)
* @version 0.1 AS3 implementation
*/
//import flash.utils.ByteArray;
NeuQuant = function()
{
var exports = {};
/*private_static*/ var netsize/*int*/ = 256; /* number of colours used */
/* four primes near 500 - assume no image has a length so large */
/* that it is divisible by all four primes */
/*private_static*/ var prime1/*int*/ = 499;
/*private_static*/ var prime2/*int*/ = 491;
/*private_static*/ var prime3/*int*/ = 487;
/*private_static*/ var prime4/*int*/ = 503;
/*private_static*/ var minpicturebytes/*int*/ = (3 * prime4);
/* minimum size for input image */
/*
* Program Skeleton ---------------- [select samplefac in range 1..30] [read
* image from input file] pic = (unsigned char*) malloc(3*width*height);
* initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
* image header, using writecolourmap(f)] inxbuild(); write output image using
* inxsearch(b,g,r)
*/
/*
* Network Definitions -------------------
*/
/*private_static*/ var maxnetpos/*int*/ = (netsize - 1);
/*private_static*/ var netbiasshift/*int*/ = 4; /* bias for colour values */
/*private_static*/ var ncycles/*int*/ = 100; /* no. of learning cycles */
/* defs for freq and bias */
/*private_static*/ var intbiasshift/*int*/ = 16; /* bias for fractions */
/*private_static*/ var intbias/*int*/ = (1 << intbiasshift);
/*private_static*/ var gammashift/*int*/ = 10; /* gamma = 1024 */
/*private_static*/ var gamma/*int*/ = (1 << gammashift);
/*private_static*/ var betashift/*int*/ = 10;
/*private_static*/ var beta/*int*/ = (intbias >> betashift); /* beta = 1/1024 */
/*private_static*/ var betagamma/*int*/ = (intbias << (gammashift - betashift));
/* defs for decreasing radius factor */
/*private_static*/ var initrad/*int*/ = (netsize >> 3); /*
* for 256 cols, radius
* starts
*/
/*private_static*/ var radiusbiasshift/*int*/ = 6; /* at 32.0 biased by 6 bits */
/*private_static*/ var radiusbias/*int*/ = (1 << radiusbiasshift);
/*private_static*/ var initradius/*int*/ = (initrad * radiusbias); /*
* and
* decreases
* by a
*/
/*private_static*/ var radiusdec/*int*/ = 30; /* factor of 1/30 each cycle */
/* defs for decreasing alpha factor */
/*private_static*/ var alphabiasshift/*int*/ = 10; /* alpha starts at 1.0 */
/*private_static*/ var initalpha/*int*/ = (1 << alphabiasshift);
/*private*/ var alphadec/*int*/ /* biased by 10 bits */
/* radbias and alpharadbias used for radpower calculation */
/*private_static*/ var radbiasshift/*int*/ = 8;
/*private_static*/ var radbias/*int*/ = (1 << radbiasshift);
/*private_static*/ var alpharadbshift/*int*/ = (alphabiasshift + radbiasshift);
/*private_static*/ var alpharadbias/*int*/ = (1 << alpharadbshift);
/*
* Types and Global Variables --------------------------
*/
/*private*/ var thepicture/*ByteArray*//* the input image itself */
/*private*/ var lengthcount/*int*/; /* lengthcount = H*W*3 */
/*private*/ var samplefac/*int*/; /* sampling factor 1..30 */
// typedef int pixel[4]; /* BGRc */
/*private*/ var network/*Array*/; /* the network itself - [netsize][4] */
/*protected*/ var netindex/*Array*/ = new Array();
/* for network lookup - really 256 */
/*private*/ var bias/*Array*/ = new Array();
/* bias and freq arrays for learning */
/*private*/ var freq/*Array*/ = new Array();
/*private*/ var radpower/*Array*/ = new Array();
var NeuQuant = exports.NeuQuant = function NeuQuant(thepic/*ByteArray*/, len/*int*/, sample/*int*/)
{
var i/*int*/;
var p/*Array*/;
thepicture = thepic;
lengthcount = len;
samplefac = sample;
network = new Array(netsize);
for (i = 0; i < netsize; i++)
{
network[i] = new Array(4);
p = network[i];
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; /* 1/netsize */
bias[i] = 0;
}
}
var colorMap = function colorMap()/*ByteArray*/
{
var map/*ByteArray*/ = [];
var index/*Array*/ = new Array(netsize);
for (var i/*int*/ = 0; i < netsize; i++)
index[network[i][3]] = i;
var k/*int*/ = 0;
for (var l/*int*/ = 0; l < netsize; l++) {
var j/*int*/ = index[l];
map[k++] = (network[j][0]);
map[k++] = (network[j][1]);
map[k++] = (network[j][2]);
}
return map;
}
/*
* Insertion sort of network and building of netindex[0..255] (to do after
* unbias)
* -------------------------------------------------------------------------------
*/
var inxbuild = function inxbuild()/*void*/
{
var i/*int*/;
var j/*int*/;
var smallpos/*int*/;
var smallval/*int*/;
var p/*Array*/;
var q/*Array*/;
var previouscol/*int*/
var startpos/*int*/
previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++)
{
p = network[i];
smallpos = i;
smallval = p[1]; /* index on g */
/* find smallest in i..netsize-1 */
for (j = i + 1; j < netsize; j++)
{
q = network[j];
if (q[1] < smallval)
{ /* index on g */
smallpos = j;
smallval = q[1]; /* index on g */
}
}
q = network[smallpos];
/* swap p (i) and q (smallpos) entries */
if (i != smallpos)
{
j = q[0];
q[0] = p[0];
p[0] = j;
j = q[1];
q[1] = p[1];
p[1] = j;
j = q[2];
q[2] = p[2];
p[2] = j;
j = q[3];
q[3] = p[3];
p[3] = j;
}
/* smallval entry is now in position i */
if (smallval != previouscol)
{
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++) netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */
}
/*
* Main Learning Loop ------------------
*/
var learn = function learn()/*void*/
{
var i/*int*/;
var j/*int*/;
var b/*int*/;
var g/*int*/
var r/*int*/;
var radius/*int*/;
var rad/*int*/;
var alpha/*int*/;
var step/*int*/;
var delta/*int*/;
var samplepixels/*int*/;
var p/*ByteArray*/;
var pix/*int*/;
var lim/*int*/;
if (lengthcount < minpicturebytes) samplefac = 1;
alphadec = 30 + ((samplefac - 1) / 3);
p = thepicture;
pix = 0;
lim = lengthcount;
samplepixels = lengthcount / (3 * samplefac);
delta = samplepixels / ncycles;
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
if (lengthcount < minpicturebytes) step = 3;
else if ((lengthcount % prime1) != 0) step = 3 * prime1;
else
{
if ((lengthcount % prime2) != 0) step = 3 * prime2;
else
{
if ((lengthcount % prime3) != 0) step = 3 * prime3;
else step = 3 * prime4;
}
}
i = 0;
while (i < samplepixels)
{
b = (p[pix + 0] & 0xff) << netbiasshift;
g = (p[pix + 1] & 0xff) << netbiasshift;
r = (p[pix + 2] & 0xff) << netbiasshift;
j = contest(b, g, r);
altersingle(alpha, j, b, g, r);
if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */
pix += step;
if (pix >= lim) pix -= lengthcount;
i++;
if (delta == 0) delta = 1;
if (i % delta == 0)
{
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
}
}
}
/*
** Search for BGR values 0..255 (after net is unbiased) and return colour
* index
* ----------------------------------------------------------------------------
*/
var map = exports.map = function map(b/*int*/, g/*int*/, r/*int*/)/*int*/
{
var i/*int*/;
var j/*int*/;
var dist/*int*/
var a/*int*/;
var bestd/*int*/;
var p/*Array*/;
var best/*int*/;
bestd = 1000; /* biggest possible dist is 256*3 */
best = -1;
i = netindex[g]; /* index on g */
j = i - 1; /* start at netindex[g] and work outwards */
while ((i < netsize) || (j >= 0))
{
if (i < netsize)
{
p = network[i];
dist = p[1] - g; /* inx key */
if (dist >= bestd) i = netsize; /* stop iter */
else
{
i++;
if (dist < 0) dist = -dist;
a = p[0] - b;
if (a < 0) a = -a;
dist += a;
if (dist < bestd)
{
a = p[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd)
{
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0)
{
p = network[j];
dist = g - p[1]; /* inx key - reverse dif */
if (dist >= bestd) j = -1; /* stop iter */
else
{
j--;
if (dist < 0) dist = -dist;
a = p[0] - b;
if (a < 0) a = -a;
dist += a;
if (dist < bestd)
{
a = p[2] - r;
if (a < 0)a = -a;
dist += a;
if (dist < bestd)
{
bestd = dist;
best = p[3];
}
}
}
}
}
return (best);
}
var process = exports.process = function process()/*ByteArray*/
{
learn();
unbiasnet();
inxbuild();
return colorMap();
}
/*
* Unbias network to give byte values 0..255 and record position i to prepare
* for sort
* -----------------------------------------------------------------------------------
*/
var unbiasnet = function unbiasnet()/*void*/
{
var i/*int*/;
var j/*int*/;
for (i = 0; i < netsize; i++)
{
network[i][0] >>= netbiasshift;
network[i][1] >>= netbiasshift;
network[i][2] >>= netbiasshift;
network[i][3] = i; /* record colour no */
}
}
/*
* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
* radpower[|i-j|]
* ---------------------------------------------------------------------------------
*/
var alterneigh = function alterneigh(rad/*int*/, i/*int*/, b/*int*/, g/*int*/, r/*int*/)/*void*/
{
var j/*int*/;
var k/*int*/;
var lo/*int*/;
var hi/*int*/;
var a/*int*/;
var m/*int*/;
var p/*Array*/;
lo = i - rad;
if (lo < -1) lo = -1;
hi = i + rad;
if (hi > netsize) hi = netsize;
j = i + 1;
k = i - 1;
m = 1;
while ((j < hi) || (k > lo))
{
a = radpower[m++];
if (j < hi)
{
p = network[j++];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (e/*Error*/) {} // prevents 1.3 miscompilation
}
if (k > lo)
{
p = network[k--];
try
{
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (e/*Error*/) {}
}
}
}
/*
* Move neuron i towards biased (b,g,r) by factor alpha
* ----------------------------------------------------
*/
var altersingle = function altersingle(alpha/*int*/, i/*int*/, b/*int*/, g/*int*/, r/*int*/)/*void*/
{
/* alter hit neuron */
var n/*Array*/ = network[i];
n[0] -= (alpha * (n[0] - b)) / initalpha;
n[1] -= (alpha * (n[1] - g)) / initalpha;
n[2] -= (alpha * (n[2] - r)) / initalpha;
}
/*
* Search for biased BGR values ----------------------------
*/
var contest = function contest(b/*int*/, g/*int*/, r/*int*/)/*int*/
{
/* finds closest neuron (min dist) and updates freq */
/* finds best neuron (min dist-bias) and returns position */
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
/* bias[i] = gamma*((1/netsize)-freq[i]) */
var i/*int*/;
var dist/*int*/;
var a/*int*/;
var biasdist/*int*/;
var betafreq/*int*/;
var bestpos/*int*/;
var bestbiaspos/*int*/;
var bestd/*int*/;
var bestbiasd/*int*/;
var n/*Array*/;
bestd = ~(1 << 31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
for (i = 0; i < netsize; i++)
{
n = network[i];
dist = n[0] - b;
if (dist < 0) dist = -dist;
a = n[1] - g;
if (a < 0) a = -a;
dist += a;
a = n[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd)
{
bestd = dist;
bestpos = i;
}
biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd)
{
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (freq[i] >> betashift);
freq[i] -= betafreq;
bias[i] += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return (bestbiaspos);
}
NeuQuant.apply(this, arguments);
return exports;
}

View File

@ -1,18 +0,0 @@
window.encode64 = function(input) {
var output = "", i = 0, l = input.length,
key = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=",
chr1, chr2, chr3, enc1, enc2, enc3, enc4;
while (i < l) {
chr1 = input.charCodeAt(i++);
chr2 = input.charCodeAt(i++);
chr3 = input.charCodeAt(i++);
enc1 = chr1 >> 2;
enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
enc4 = chr3 & 63;
if (isNaN(chr2)) enc3 = enc4 = 64;
else if (isNaN(chr3)) enc4 = 64;
output = output + key.charAt(enc1) + key.charAt(enc2) + key.charAt(enc3) + key.charAt(enc4);
}
return output;
};

3
js/lib/gif/gif.js Normal file

File diff suppressed because one or more lines are too long

3
js/lib/gif/gif.worker.js Normal file

File diff suppressed because one or more lines are too long

View File

@ -226,8 +226,10 @@
uploadAsAnimatedGIF : function () {
var fps = pskl.app.animationController.fps;
var imageData = (new pskl.rendering.SpritesheetRenderer(frameSheet)).renderAsImageDataAnimatedGIF(fps);
this.uploadToScreenletstore(imageData);
var renderer = new pskl.rendering.SpritesheetRenderer(frameSheet);
var cb = this.uploadToScreenletstore.bind(this);
renderer.renderAsImageDataAnimatedGIF(fps, cb);
},
uploadAsSpritesheetPNG : function () {

View File

@ -15,22 +15,37 @@
return canvas.toDataURL("image/png");
};
ns.SpritesheetRenderer.prototype.renderAsImageDataAnimatedGIF = function (fps) {
var encoder = new window.GIFEncoder(), dpi = 10;
encoder.setRepeat(0);
encoder.setDelay(1000/fps);
ns.SpritesheetRenderer.prototype.blobToBase64_ = function(blob, cb) {
var reader = new FileReader();
reader.onload = function() {
var dataUrl = reader.result;
cb(dataUrl);
};
reader.readAsDataURL(blob);
};
encoder.start();
encoder.setSize(this.framesheet.getWidth() * dpi, this.framesheet.getHeight() * dpi);
for (var i = 0 ; i < this.framesheet.frames.length ; i++) {
ns.SpritesheetRenderer.prototype.renderAsImageDataAnimatedGIF = function(fps, cb) {
var dpi = 10;
var gif = new window.GIF({
workers: 2,
quality: 10,
width: 320,
height: 320
});
for (var i = 0; i < this.framesheet.frames.length; i++) {
var frame = this.framesheet.frames[i];
var renderer = new pskl.rendering.CanvasRenderer(frame, dpi);
encoder.addFrame(renderer.render());
gif.addFrame(renderer.render(), {
delay: 1000 / fps
});
}
encoder.finish();
var imageData = 'data:image/gif;base64,' + window.encode64(encoder.stream().getData());
return imageData;
gif.on('finished', function(blob) {
this.blobToBase64_(blob, cb);
}.bind(this));
gif.render();
};

View File

@ -4,7 +4,7 @@ exports.scripts = [
// Core libraries
"js/lib/jquery-1.8.0.js","js/lib/jquery-ui-1.10.3.custom.js","js/lib/pubsub.js","js/lib/bootstrap/bootstrap.js",
// GIF Encoding libraries
"js/lib/gif/GIFEncoder.js","js/lib/gif/b64.js","js/lib/gif/NeuQuant.js","js/lib/gif/LZWEncoder.js",
"js/lib/gif/gif.js",
// Application wide configuration
"js/Constants.js",