upgrade wakatime-cli to v13.0.4

This commit is contained in:
Alan Hamlett 2020-02-09 23:35:43 -08:00
parent 885c11f01a
commit 9330236816
95 changed files with 26110 additions and 2 deletions

View File

@ -1,7 +1,7 @@
__title__ = 'wakatime'
__description__ = 'Common interface to the WakaTime api.'
__url__ = 'https://github.com/wakatime/wakatime'
__version_info__ = ('13', '0', '3')
__version_info__ = ('13', '0', '4')
__version__ = '.'.join(__version_info__)
__author__ = 'Alan Hamlett'
__author_email__ = 'alan@wakatime.com'

View File

@ -19,7 +19,6 @@ from .compat import u, is_py3, json
from .constants import API_ERROR, AUTH_ERROR, SUCCESS, UNKNOWN_ERROR
from .offlinequeue import Queue
from .packages.requests.exceptions import RequestException
from .session_cache import SessionCache
from .utils import get_hostname, get_user_agent
from .packages import tzlocal
@ -38,6 +37,9 @@ except ImportError: # pragma: nocover
sys.exit(UNKNOWN_ERROR)
from .packages.requests.exceptions import RequestException
def send_heartbeats(heartbeats, args, configs, use_ntlm_proxy=False):
"""Send heartbeats to WakaTime API.

View File

@ -18,6 +18,7 @@ import sys
is_py2 = (sys.version_info[0] == 2)
is_py26 = (sys.version_info[0] == 2 and sys.version_info[1] == 6)
is_py3 = (sys.version_info[0] == 3)
is_win = platform.system() == 'Windows'

View File

@ -21,6 +21,11 @@ pwd = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, os.path.dirname(pwd))
sys.path.insert(0, os.path.join(pwd, 'packages'))
from .compat import is_py26
if not is_py26:
sys.path.insert(0, os.path.join(pwd, 'packages', 'py27'))
from .__about__ import __version__
from .api import send_heartbeats, get_time_today
from .arguments import parse_arguments
@ -28,8 +33,10 @@ from .compat import u, json
from .constants import SUCCESS, UNKNOWN_ERROR, HEARTBEATS_PER_REQUEST
from .logger import setup_logging
log = logging.getLogger('WakaTime')
from .heartbeat import Heartbeat
from .offlinequeue import Queue

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,20 @@
# Copyright (C) AB Strakt
# See LICENSE for details.
"""
pyOpenSSL - A simple wrapper around the OpenSSL library
"""
from OpenSSL import crypto, SSL
from OpenSSL.version import (
__author__, __copyright__, __email__, __license__, __summary__, __title__,
__uri__, __version__,
)
__all__ = [
"SSL", "crypto",
"__author__", "__copyright__", "__email__", "__license__", "__summary__",
"__title__", "__uri__", "__version__",
]

View File

@ -0,0 +1,161 @@
import sys
import warnings
from six import PY2, binary_type, text_type
from cryptography.hazmat.bindings.openssl.binding import Binding
binding = Binding()
binding.init_static_locks()
ffi = binding.ffi
lib = binding.lib
# This is a special CFFI allocator that does not bother to zero its memory
# after allocation. This has vastly better performance on large allocations and
# so should be used whenever we don't need the memory zeroed out.
no_zero_allocator = ffi.new_allocator(should_clear_after_alloc=False)
def text(charp):
"""
Get a native string type representing of the given CFFI ``char*`` object.
:param charp: A C-style string represented using CFFI.
:return: :class:`str`
"""
if not charp:
return ""
return native(ffi.string(charp))
def exception_from_error_queue(exception_type):
"""
Convert an OpenSSL library failure into a Python exception.
When a call to the native OpenSSL library fails, this is usually signalled
by the return value, and an error code is stored in an error queue
associated with the current thread. The err library provides functions to
obtain these error codes and textual error messages.
"""
errors = []
while True:
error = lib.ERR_get_error()
if error == 0:
break
errors.append((
text(lib.ERR_lib_error_string(error)),
text(lib.ERR_func_error_string(error)),
text(lib.ERR_reason_error_string(error))))
raise exception_type(errors)
def make_assert(error):
"""
Create an assert function that uses :func:`exception_from_error_queue` to
raise an exception wrapped by *error*.
"""
def openssl_assert(ok):
"""
If *ok* is not True, retrieve the error from OpenSSL and raise it.
"""
if ok is not True:
exception_from_error_queue(error)
return openssl_assert
def native(s):
"""
Convert :py:class:`bytes` or :py:class:`unicode` to the native
:py:class:`str` type, using UTF-8 encoding if conversion is necessary.
:raise UnicodeError: The input string is not UTF-8 decodeable.
:raise TypeError: The input is neither :py:class:`bytes` nor
:py:class:`unicode`.
"""
if not isinstance(s, (binary_type, text_type)):
raise TypeError("%r is neither bytes nor unicode" % s)
if PY2:
if isinstance(s, text_type):
return s.encode("utf-8")
else:
if isinstance(s, binary_type):
return s.decode("utf-8")
return s
def path_string(s):
"""
Convert a Python string to a :py:class:`bytes` string identifying the same
path and which can be passed into an OpenSSL API accepting a filename.
:param s: An instance of :py:class:`bytes` or :py:class:`unicode`.
:return: An instance of :py:class:`bytes`.
"""
if isinstance(s, binary_type):
return s
elif isinstance(s, text_type):
return s.encode(sys.getfilesystemencoding())
else:
raise TypeError("Path must be represented as bytes or unicode string")
if PY2:
def byte_string(s):
return s
else:
def byte_string(s):
return s.encode("charmap")
# A marker object to observe whether some optional arguments are passed any
# value or not.
UNSPECIFIED = object()
_TEXT_WARNING = (
text_type.__name__ + " for {0} is no longer accepted, use bytes"
)
def text_to_bytes_and_warn(label, obj):
"""
If ``obj`` is text, emit a warning that it should be bytes instead and try
to convert it to bytes automatically.
:param str label: The name of the parameter from which ``obj`` was taken
(so a developer can easily find the source of the problem and correct
it).
:return: If ``obj`` is the text string type, a ``bytes`` object giving the
UTF-8 encoding of that text is returned. Otherwise, ``obj`` itself is
returned.
"""
if isinstance(obj, text_type):
warnings.warn(
_TEXT_WARNING.format(label),
category=DeprecationWarning,
stacklevel=3
)
return obj.encode('utf-8')
return obj
try:
# newer versions of cffi free the buffer deterministically
with ffi.from_buffer(b""):
pass
from_buffer = ffi.from_buffer
except AttributeError:
# cffi < 0.12 frees the buffer with refcounting gc
from contextlib import contextmanager
@contextmanager
def from_buffer(*args):
yield ffi.from_buffer(*args)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,42 @@
from __future__ import print_function
import ssl
import sys
import OpenSSL.SSL
import cffi
import cryptography
from . import version
_env_info = u"""\
pyOpenSSL: {pyopenssl}
cryptography: {cryptography}
cffi: {cffi}
cryptography's compiled against OpenSSL: {crypto_openssl_compile}
cryptography's linked OpenSSL: {crypto_openssl_link}
Pythons's OpenSSL: {python_openssl}
Python executable: {python}
Python version: {python_version}
Platform: {platform}
sys.path: {sys_path}""".format(
pyopenssl=version.__version__,
crypto_openssl_compile=OpenSSL._util.ffi.string(
OpenSSL._util.lib.OPENSSL_VERSION_TEXT,
).decode("ascii"),
crypto_openssl_link=OpenSSL.SSL.SSLeay_version(
OpenSSL.SSL.SSLEAY_VERSION
).decode("ascii"),
python_openssl=getattr(ssl, "OPENSSL_VERSION", "n/a"),
cryptography=cryptography.__version__,
cffi=cffi.__version__,
python=sys.executable,
python_version=sys.version,
platform=sys.platform,
sys_path=sys.path,
)
if __name__ == "__main__":
print(_env_info)

View File

@ -0,0 +1,40 @@
"""
PRNG management routines, thin wrappers.
"""
from OpenSSL._util import lib as _lib
def add(buffer, entropy):
"""
Mix bytes from *string* into the PRNG state.
The *entropy* argument is (the lower bound of) an estimate of how much
randomness is contained in *string*, measured in bytes.
For more information, see e.g. :rfc:`1750`.
This function is only relevant if you are forking Python processes and
need to reseed the CSPRNG after fork.
:param buffer: Buffer with random data.
:param entropy: The entropy (in bytes) measurement of the buffer.
:return: :obj:`None`
"""
if not isinstance(buffer, bytes):
raise TypeError("buffer must be a byte string")
if not isinstance(entropy, int):
raise TypeError("entropy must be an integer")
_lib.RAND_add(buffer, len(buffer), entropy)
def status():
"""
Check whether the PRNG has been seeded with enough data.
:return: 1 if the PRNG is seeded enough, 0 otherwise.
"""
return _lib.RAND_status()

View File

@ -0,0 +1,31 @@
import warnings
from threading import RLock as _RLock
from OpenSSL import SSL as _ssl
warnings.warn(
"OpenSSL.tsafe is deprecated and will be removed",
DeprecationWarning, stacklevel=3
)
class Connection:
def __init__(self, *args):
self._ssl_conn = _ssl.Connection(*args)
self._lock = _RLock()
for f in ('get_context', 'pending', 'send', 'write', 'recv', 'read',
'renegotiate', 'bind', 'listen', 'connect', 'accept',
'setblocking', 'fileno', 'shutdown', 'close', 'get_cipher_list',
'getpeername', 'getsockname', 'getsockopt', 'setsockopt',
'makefile', 'get_app_data', 'set_app_data', 'state_string',
'sock_shutdown', 'get_peer_certificate', 'get_peer_cert_chain',
'want_read', 'want_write', 'set_connect_state',
'set_accept_state', 'connect_ex', 'sendall'):
exec("""def %s(self, *args):
self._lock.acquire()
try:
return self._ssl_conn.%s(*args)
finally:
self._lock.release()\n""" % (f, f))

View File

@ -0,0 +1,22 @@
# Copyright (C) AB Strakt
# Copyright (C) Jean-Paul Calderone
# See LICENSE for details.
"""
pyOpenSSL - A simple wrapper around the OpenSSL library
"""
__all__ = [
"__author__", "__copyright__", "__email__", "__license__", "__summary__",
"__title__", "__uri__", "__version__",
]
__version__ = "19.1.0"
__title__ = "pyOpenSSL"
__uri__ = "https://pyopenssl.org/"
__summary__ = "Python wrapper module around the OpenSSL library"
__author__ = "The pyOpenSSL developers"
__email__ = "cryptography-dev@python.org"
__license__ = "Apache License, Version 2.0"
__copyright__ = "Copyright 2001-2017 {0}".format(__author__)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,23 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
__all__ = [
"__title__", "__summary__", "__uri__", "__version__", "__author__",
"__email__", "__license__", "__copyright__",
]
__title__ = "cryptography"
__summary__ = ("cryptography is a package which provides cryptographic recipes"
" and primitives to Python developers.")
__uri__ = "https://github.com/pyca/cryptography"
__version__ = "2.8"
__author__ = "The cryptography developers"
__email__ = "cryptography-dev@python.org"
__license__ = "BSD or Apache License, Version 2.0"
__copyright__ = "Copyright 2013-2019 {}".format(__author__)

View File

@ -0,0 +1,16 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.__about__ import (
__author__, __copyright__, __email__, __license__, __summary__, __title__,
__uri__, __version__
)
__all__ = [
"__title__", "__summary__", "__uri__", "__version__", "__author__",
"__email__", "__license__", "__copyright__",
]

View File

@ -0,0 +1,58 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from enum import Enum
class _Reasons(Enum):
BACKEND_MISSING_INTERFACE = 0
UNSUPPORTED_HASH = 1
UNSUPPORTED_CIPHER = 2
UNSUPPORTED_PADDING = 3
UNSUPPORTED_MGF = 4
UNSUPPORTED_PUBLIC_KEY_ALGORITHM = 5
UNSUPPORTED_ELLIPTIC_CURVE = 6
UNSUPPORTED_SERIALIZATION = 7
UNSUPPORTED_X509 = 8
UNSUPPORTED_EXCHANGE_ALGORITHM = 9
UNSUPPORTED_DIFFIE_HELLMAN = 10
UNSUPPORTED_MAC = 11
class UnsupportedAlgorithm(Exception):
def __init__(self, message, reason=None):
super(UnsupportedAlgorithm, self).__init__(message)
self._reason = reason
class AlreadyFinalized(Exception):
pass
class AlreadyUpdated(Exception):
pass
class NotYetFinalized(Exception):
pass
class InvalidTag(Exception):
pass
class InvalidSignature(Exception):
pass
class InternalError(Exception):
def __init__(self, msg, err_code):
super(InternalError, self).__init__(msg)
self.err_code = err_code
class InvalidKey(Exception):
pass

View File

@ -0,0 +1,171 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import base64
import binascii
import os
import struct
import time
import six
from cryptography import utils
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, padding
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives.hmac import HMAC
class InvalidToken(Exception):
pass
_MAX_CLOCK_SKEW = 60
class Fernet(object):
def __init__(self, key, backend=None):
if backend is None:
backend = default_backend()
key = base64.urlsafe_b64decode(key)
if len(key) != 32:
raise ValueError(
"Fernet key must be 32 url-safe base64-encoded bytes."
)
self._signing_key = key[:16]
self._encryption_key = key[16:]
self._backend = backend
@classmethod
def generate_key(cls):
return base64.urlsafe_b64encode(os.urandom(32))
def encrypt(self, data):
current_time = int(time.time())
iv = os.urandom(16)
return self._encrypt_from_parts(data, current_time, iv)
def _encrypt_from_parts(self, data, current_time, iv):
utils._check_bytes("data", data)
padder = padding.PKCS7(algorithms.AES.block_size).padder()
padded_data = padder.update(data) + padder.finalize()
encryptor = Cipher(
algorithms.AES(self._encryption_key), modes.CBC(iv), self._backend
).encryptor()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
basic_parts = (
b"\x80" + struct.pack(">Q", current_time) + iv + ciphertext
)
h = HMAC(self._signing_key, hashes.SHA256(), backend=self._backend)
h.update(basic_parts)
hmac = h.finalize()
return base64.urlsafe_b64encode(basic_parts + hmac)
def decrypt(self, token, ttl=None):
timestamp, data = Fernet._get_unverified_token_data(token)
return self._decrypt_data(data, timestamp, ttl)
def extract_timestamp(self, token):
timestamp, data = Fernet._get_unverified_token_data(token)
# Verify the token was not tampered with.
self._verify_signature(data)
return timestamp
@staticmethod
def _get_unverified_token_data(token):
utils._check_bytes("token", token)
try:
data = base64.urlsafe_b64decode(token)
except (TypeError, binascii.Error):
raise InvalidToken
if not data or six.indexbytes(data, 0) != 0x80:
raise InvalidToken
try:
timestamp, = struct.unpack(">Q", data[1:9])
except struct.error:
raise InvalidToken
return timestamp, data
def _verify_signature(self, data):
h = HMAC(self._signing_key, hashes.SHA256(), backend=self._backend)
h.update(data[:-32])
try:
h.verify(data[-32:])
except InvalidSignature:
raise InvalidToken
def _decrypt_data(self, data, timestamp, ttl):
current_time = int(time.time())
if ttl is not None:
if timestamp + ttl < current_time:
raise InvalidToken
if current_time + _MAX_CLOCK_SKEW < timestamp:
raise InvalidToken
self._verify_signature(data)
iv = data[9:25]
ciphertext = data[25:-32]
decryptor = Cipher(
algorithms.AES(self._encryption_key), modes.CBC(iv), self._backend
).decryptor()
plaintext_padded = decryptor.update(ciphertext)
try:
plaintext_padded += decryptor.finalize()
except ValueError:
raise InvalidToken
unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
unpadded = unpadder.update(plaintext_padded)
try:
unpadded += unpadder.finalize()
except ValueError:
raise InvalidToken
return unpadded
class MultiFernet(object):
def __init__(self, fernets):
fernets = list(fernets)
if not fernets:
raise ValueError(
"MultiFernet requires at least one Fernet instance"
)
self._fernets = fernets
def encrypt(self, msg):
return self._fernets[0].encrypt(msg)
def rotate(self, msg):
timestamp, data = Fernet._get_unverified_token_data(msg)
for f in self._fernets:
try:
p = f._decrypt_data(data, timestamp, None)
break
except InvalidToken:
pass
else:
raise InvalidToken
iv = os.urandom(16)
return self._fernets[0]._encrypt_from_parts(p, timestamp, iv)
def decrypt(self, msg, ttl=None):
for f in self._fernets:
try:
return f.decrypt(msg, ttl)
except InvalidToken:
pass
raise InvalidToken

View File

@ -0,0 +1,11 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
"""
Hazardous Materials
This is a "Hazardous Materials" module. You should ONLY use it if you're
100% absolutely sure that you know what you're doing because this module
is full of land mines, dragons, and dinosaurs with laser guns.
"""
from __future__ import absolute_import, division, print_function

View File

@ -0,0 +1,156 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import six
from cryptography.utils import int_from_bytes, int_to_bytes
# This module contains a lightweight DER encoder and decoder. See X.690 for the
# specification. This module intentionally does not implement the more complex
# BER encoding, only DER.
#
# Note this implementation treats an element's constructed bit as part of the
# tag. This is fine for DER, where the bit is always computable from the type.
CONSTRUCTED = 0x20
CONTEXT_SPECIFIC = 0x80
INTEGER = 0x02
BIT_STRING = 0x03
OCTET_STRING = 0x04
NULL = 0x05
OBJECT_IDENTIFIER = 0x06
SEQUENCE = 0x10 | CONSTRUCTED
SET = 0x11 | CONSTRUCTED
PRINTABLE_STRING = 0x13
UTC_TIME = 0x17
GENERALIZED_TIME = 0x18
class DERReader(object):
def __init__(self, data):
self.data = memoryview(data)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, tb):
if exc_value is None:
self.check_empty()
def is_empty(self):
return len(self.data) == 0
def check_empty(self):
if not self.is_empty():
raise ValueError("Invalid DER input: trailing data")
def read_byte(self):
if len(self.data) < 1:
raise ValueError("Invalid DER input: insufficient data")
ret = six.indexbytes(self.data, 0)
self.data = self.data[1:]
return ret
def read_bytes(self, n):
if len(self.data) < n:
raise ValueError("Invalid DER input: insufficient data")
ret = self.data[:n]
self.data = self.data[n:]
return ret
def read_any_element(self):
tag = self.read_byte()
# Tag numbers 31 or higher are stored in multiple bytes. No supported
# ASN.1 types use such tags, so reject these.
if tag & 0x1f == 0x1f:
raise ValueError("Invalid DER input: unexpected high tag number")
length_byte = self.read_byte()
if length_byte & 0x80 == 0:
# If the high bit is clear, the first length byte is the length.
length = length_byte
else:
# If the high bit is set, the first length byte encodes the length
# of the length.
length_byte &= 0x7f
if length_byte == 0:
raise ValueError(
"Invalid DER input: indefinite length form is not allowed "
"in DER"
)
length = 0
for i in range(length_byte):
length <<= 8
length |= self.read_byte()
if length == 0:
raise ValueError(
"Invalid DER input: length was not minimally-encoded"
)
if length < 0x80:
# If the length could have been encoded in short form, it must
# not use long form.
raise ValueError(
"Invalid DER input: length was not minimally-encoded"
)
body = self.read_bytes(length)
return tag, DERReader(body)
def read_element(self, expected_tag):
tag, body = self.read_any_element()
if tag != expected_tag:
raise ValueError("Invalid DER input: unexpected tag")
return body
def read_single_element(self, expected_tag):
with self:
return self.read_element(expected_tag)
def read_optional_element(self, expected_tag):
if len(self.data) > 0 and six.indexbytes(self.data, 0) == expected_tag:
return self.read_element(expected_tag)
return None
def as_integer(self):
if len(self.data) == 0:
raise ValueError("Invalid DER input: empty integer contents")
first = six.indexbytes(self.data, 0)
if first & 0x80 == 0x80:
raise ValueError("Negative DER integers are not supported")
# The first 9 bits must not all be zero or all be ones. Otherwise, the
# encoding should have been one byte shorter.
if len(self.data) > 1:
second = six.indexbytes(self.data, 1)
if first == 0 and second & 0x80 == 0:
raise ValueError(
"Invalid DER input: integer not minimally-encoded"
)
return int_from_bytes(self.data, "big")
def encode_der_integer(x):
if not isinstance(x, six.integer_types):
raise ValueError("Value must be an integer")
if x < 0:
raise ValueError("Negative integers are not supported")
n = x.bit_length() // 8 + 1
return int_to_bytes(x, n)
def encode_der(tag, *children):
length = 0
for child in children:
length += len(child)
chunks = [six.int2byte(tag)]
if length < 0x80:
chunks.append(six.int2byte(length))
else:
length_bytes = int_to_bytes(length)
chunks.append(six.int2byte(0x80 | len(length_bytes)))
chunks.append(length_bytes)
chunks.extend(children)
return b"".join(chunks)

View File

@ -0,0 +1,67 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
class ObjectIdentifier(object):
def __init__(self, dotted_string):
self._dotted_string = dotted_string
nodes = self._dotted_string.split(".")
intnodes = []
# There must be at least 2 nodes, the first node must be 0..2, and
# if less than 2, the second node cannot have a value outside the
# range 0..39. All nodes must be integers.
for node in nodes:
try:
intnodes.append(int(node, 0))
except ValueError:
raise ValueError(
"Malformed OID: %s (non-integer nodes)" % (
self._dotted_string))
if len(nodes) < 2:
raise ValueError(
"Malformed OID: %s (insufficient number of nodes)" % (
self._dotted_string))
if intnodes[0] > 2:
raise ValueError(
"Malformed OID: %s (first node outside valid range)" % (
self._dotted_string))
if intnodes[0] < 2 and intnodes[1] >= 40:
raise ValueError(
"Malformed OID: %s (second node outside valid range)" % (
self._dotted_string))
def __eq__(self, other):
if not isinstance(other, ObjectIdentifier):
return NotImplemented
return self.dotted_string == other.dotted_string
def __ne__(self, other):
return not self == other
def __repr__(self):
return "<ObjectIdentifier(oid={}, name={})>".format(
self.dotted_string,
self._name
)
def __hash__(self):
return hash(self.dotted_string)
@property
def _name(self):
# Lazy import to avoid an import cycle
from cryptography.x509.oid import _OID_NAMES
return _OID_NAMES.get(self, "Unknown OID")
dotted_string = utils.read_only_property("_dotted_string")

View File

@ -0,0 +1,18 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
_default_backend = None
def default_backend():
global _default_backend
if _default_backend is None:
from cryptography.hazmat.backends.openssl.backend import backend
_default_backend = backend
return _default_backend

View File

@ -0,0 +1,395 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class CipherBackend(object):
@abc.abstractmethod
def cipher_supported(self, cipher, mode):
"""
Return True if the given cipher and mode are supported.
"""
@abc.abstractmethod
def create_symmetric_encryption_ctx(self, cipher, mode):
"""
Get a CipherContext that can be used for encryption.
"""
@abc.abstractmethod
def create_symmetric_decryption_ctx(self, cipher, mode):
"""
Get a CipherContext that can be used for decryption.
"""
@six.add_metaclass(abc.ABCMeta)
class HashBackend(object):
@abc.abstractmethod
def hash_supported(self, algorithm):
"""
Return True if the hash algorithm is supported by this backend.
"""
@abc.abstractmethod
def create_hash_ctx(self, algorithm):
"""
Create a HashContext for calculating a message digest.
"""
@six.add_metaclass(abc.ABCMeta)
class HMACBackend(object):
@abc.abstractmethod
def hmac_supported(self, algorithm):
"""
Return True if the hash algorithm is supported for HMAC by this
backend.
"""
@abc.abstractmethod
def create_hmac_ctx(self, key, algorithm):
"""
Create a context for calculating a message authentication code.
"""
@six.add_metaclass(abc.ABCMeta)
class CMACBackend(object):
@abc.abstractmethod
def cmac_algorithm_supported(self, algorithm):
"""
Returns True if the block cipher is supported for CMAC by this backend
"""
@abc.abstractmethod
def create_cmac_ctx(self, algorithm):
"""
Create a context for calculating a message authentication code.
"""
@six.add_metaclass(abc.ABCMeta)
class PBKDF2HMACBackend(object):
@abc.abstractmethod
def pbkdf2_hmac_supported(self, algorithm):
"""
Return True if the hash algorithm is supported for PBKDF2 by this
backend.
"""
@abc.abstractmethod
def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations,
key_material):
"""
Return length bytes derived from provided PBKDF2 parameters.
"""
@six.add_metaclass(abc.ABCMeta)
class RSABackend(object):
@abc.abstractmethod
def generate_rsa_private_key(self, public_exponent, key_size):
"""
Generate an RSAPrivateKey instance with public_exponent and a modulus
of key_size bits.
"""
@abc.abstractmethod
def rsa_padding_supported(self, padding):
"""
Returns True if the backend supports the given padding options.
"""
@abc.abstractmethod
def generate_rsa_parameters_supported(self, public_exponent, key_size):
"""
Returns True if the backend supports the given parameters for key
generation.
"""
@abc.abstractmethod
def load_rsa_private_numbers(self, numbers):
"""
Returns an RSAPrivateKey provider.
"""
@abc.abstractmethod
def load_rsa_public_numbers(self, numbers):
"""
Returns an RSAPublicKey provider.
"""
@six.add_metaclass(abc.ABCMeta)
class DSABackend(object):
@abc.abstractmethod
def generate_dsa_parameters(self, key_size):
"""
Generate a DSAParameters instance with a modulus of key_size bits.
"""
@abc.abstractmethod
def generate_dsa_private_key(self, parameters):
"""
Generate a DSAPrivateKey instance with parameters as a DSAParameters
object.
"""
@abc.abstractmethod
def generate_dsa_private_key_and_parameters(self, key_size):
"""
Generate a DSAPrivateKey instance using key size only.
"""
@abc.abstractmethod
def dsa_hash_supported(self, algorithm):
"""
Return True if the hash algorithm is supported by the backend for DSA.
"""
@abc.abstractmethod
def dsa_parameters_supported(self, p, q, g):
"""
Return True if the parameters are supported by the backend for DSA.
"""
@abc.abstractmethod
def load_dsa_private_numbers(self, numbers):
"""
Returns a DSAPrivateKey provider.
"""
@abc.abstractmethod
def load_dsa_public_numbers(self, numbers):
"""
Returns a DSAPublicKey provider.
"""
@abc.abstractmethod
def load_dsa_parameter_numbers(self, numbers):
"""
Returns a DSAParameters provider.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurveBackend(object):
@abc.abstractmethod
def elliptic_curve_signature_algorithm_supported(
self, signature_algorithm, curve
):
"""
Returns True if the backend supports the named elliptic curve with the
specified signature algorithm.
"""
@abc.abstractmethod
def elliptic_curve_supported(self, curve):
"""
Returns True if the backend supports the named elliptic curve.
"""
@abc.abstractmethod
def generate_elliptic_curve_private_key(self, curve):
"""
Return an object conforming to the EllipticCurvePrivateKey interface.
"""
@abc.abstractmethod
def load_elliptic_curve_public_numbers(self, numbers):
"""
Return an EllipticCurvePublicKey provider using the given numbers.
"""
@abc.abstractmethod
def load_elliptic_curve_private_numbers(self, numbers):
"""
Return an EllipticCurvePrivateKey provider using the given numbers.
"""
@abc.abstractmethod
def elliptic_curve_exchange_algorithm_supported(self, algorithm, curve):
"""
Returns whether the exchange algorithm is supported by this backend.
"""
@abc.abstractmethod
def derive_elliptic_curve_private_key(self, private_value, curve):
"""
Compute the private key given the private value and curve.
"""
@six.add_metaclass(abc.ABCMeta)
class PEMSerializationBackend(object):
@abc.abstractmethod
def load_pem_private_key(self, data, password):
"""
Loads a private key from PEM encoded data, using the provided password
if the data is encrypted.
"""
@abc.abstractmethod
def load_pem_public_key(self, data):
"""
Loads a public key from PEM encoded data.
"""
@abc.abstractmethod
def load_pem_parameters(self, data):
"""
Load encryption parameters from PEM encoded data.
"""
@six.add_metaclass(abc.ABCMeta)
class DERSerializationBackend(object):
@abc.abstractmethod
def load_der_private_key(self, data, password):
"""
Loads a private key from DER encoded data. Uses the provided password
if the data is encrypted.
"""
@abc.abstractmethod
def load_der_public_key(self, data):
"""
Loads a public key from DER encoded data.
"""
@abc.abstractmethod
def load_der_parameters(self, data):
"""
Load encryption parameters from DER encoded data.
"""
@six.add_metaclass(abc.ABCMeta)
class X509Backend(object):
@abc.abstractmethod
def load_pem_x509_certificate(self, data):
"""
Load an X.509 certificate from PEM encoded data.
"""
@abc.abstractmethod
def load_der_x509_certificate(self, data):
"""
Load an X.509 certificate from DER encoded data.
"""
@abc.abstractmethod
def load_der_x509_csr(self, data):
"""
Load an X.509 CSR from DER encoded data.
"""
@abc.abstractmethod
def load_pem_x509_csr(self, data):
"""
Load an X.509 CSR from PEM encoded data.
"""
@abc.abstractmethod
def create_x509_csr(self, builder, private_key, algorithm):
"""
Create and sign an X.509 CSR from a CSR builder object.
"""
@abc.abstractmethod
def create_x509_certificate(self, builder, private_key, algorithm):
"""
Create and sign an X.509 certificate from a CertificateBuilder object.
"""
@abc.abstractmethod
def create_x509_crl(self, builder, private_key, algorithm):
"""
Create and sign an X.509 CertificateRevocationList from a
CertificateRevocationListBuilder object.
"""
@abc.abstractmethod
def create_x509_revoked_certificate(self, builder):
"""
Create a RevokedCertificate object from a RevokedCertificateBuilder
object.
"""
@abc.abstractmethod
def x509_name_bytes(self, name):
"""
Compute the DER encoded bytes of an X509 Name object.
"""
@six.add_metaclass(abc.ABCMeta)
class DHBackend(object):
@abc.abstractmethod
def generate_dh_parameters(self, generator, key_size):
"""
Generate a DHParameters instance with a modulus of key_size bits.
Using the given generator. Often 2 or 5.
"""
@abc.abstractmethod
def generate_dh_private_key(self, parameters):
"""
Generate a DHPrivateKey instance with parameters as a DHParameters
object.
"""
@abc.abstractmethod
def generate_dh_private_key_and_parameters(self, generator, key_size):
"""
Generate a DHPrivateKey instance using key size only.
Using the given generator. Often 2 or 5.
"""
@abc.abstractmethod
def load_dh_private_numbers(self, numbers):
"""
Load a DHPrivateKey from DHPrivateNumbers
"""
@abc.abstractmethod
def load_dh_public_numbers(self, numbers):
"""
Load a DHPublicKey from DHPublicNumbers.
"""
@abc.abstractmethod
def load_dh_parameter_numbers(self, numbers):
"""
Load DHParameters from DHParameterNumbers.
"""
@abc.abstractmethod
def dh_parameters_supported(self, p, g, q=None):
"""
Returns whether the backend supports DH with these parameter values.
"""
@abc.abstractmethod
def dh_x942_serialization_supported(self):
"""
Returns True if the backend supports the serialization of DH objects
with subgroup order (q).
"""
@six.add_metaclass(abc.ABCMeta)
class ScryptBackend(object):
@abc.abstractmethod
def derive_scrypt(self, key_material, salt, length, n, r, p):
"""
Return bytes derived from provided Scrypt parameters.
"""

View File

@ -0,0 +1,10 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.backends.openssl.backend import backend
__all__ = ["backend"]

View File

@ -0,0 +1,162 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.exceptions import InvalidTag
_ENCRYPT = 1
_DECRYPT = 0
def _aead_cipher_name(cipher):
from cryptography.hazmat.primitives.ciphers.aead import (
AESCCM, AESGCM, ChaCha20Poly1305
)
if isinstance(cipher, ChaCha20Poly1305):
return b"chacha20-poly1305"
elif isinstance(cipher, AESCCM):
return "aes-{}-ccm".format(len(cipher._key) * 8).encode("ascii")
else:
assert isinstance(cipher, AESGCM)
return "aes-{}-gcm".format(len(cipher._key) * 8).encode("ascii")
def _aead_setup(backend, cipher_name, key, nonce, tag, tag_len, operation):
evp_cipher = backend._lib.EVP_get_cipherbyname(cipher_name)
backend.openssl_assert(evp_cipher != backend._ffi.NULL)
ctx = backend._lib.EVP_CIPHER_CTX_new()
ctx = backend._ffi.gc(ctx, backend._lib.EVP_CIPHER_CTX_free)
res = backend._lib.EVP_CipherInit_ex(
ctx, evp_cipher,
backend._ffi.NULL,
backend._ffi.NULL,
backend._ffi.NULL,
int(operation == _ENCRYPT)
)
backend.openssl_assert(res != 0)
res = backend._lib.EVP_CIPHER_CTX_set_key_length(ctx, len(key))
backend.openssl_assert(res != 0)
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, backend._lib.EVP_CTRL_AEAD_SET_IVLEN, len(nonce),
backend._ffi.NULL
)
backend.openssl_assert(res != 0)
if operation == _DECRYPT:
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, backend._lib.EVP_CTRL_AEAD_SET_TAG, len(tag), tag
)
backend.openssl_assert(res != 0)
elif cipher_name.endswith(b"-ccm"):
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, backend._lib.EVP_CTRL_AEAD_SET_TAG, tag_len, backend._ffi.NULL
)
backend.openssl_assert(res != 0)
nonce_ptr = backend._ffi.from_buffer(nonce)
key_ptr = backend._ffi.from_buffer(key)
res = backend._lib.EVP_CipherInit_ex(
ctx,
backend._ffi.NULL,
backend._ffi.NULL,
key_ptr,
nonce_ptr,
int(operation == _ENCRYPT)
)
backend.openssl_assert(res != 0)
return ctx
def _set_length(backend, ctx, data_len):
intptr = backend._ffi.new("int *")
res = backend._lib.EVP_CipherUpdate(
ctx,
backend._ffi.NULL,
intptr,
backend._ffi.NULL,
data_len
)
backend.openssl_assert(res != 0)
def _process_aad(backend, ctx, associated_data):
outlen = backend._ffi.new("int *")
res = backend._lib.EVP_CipherUpdate(
ctx, backend._ffi.NULL, outlen, associated_data, len(associated_data)
)
backend.openssl_assert(res != 0)
def _process_data(backend, ctx, data):
outlen = backend._ffi.new("int *")
buf = backend._ffi.new("unsigned char[]", len(data))
res = backend._lib.EVP_CipherUpdate(ctx, buf, outlen, data, len(data))
backend.openssl_assert(res != 0)
return backend._ffi.buffer(buf, outlen[0])[:]
def _encrypt(backend, cipher, nonce, data, associated_data, tag_length):
from cryptography.hazmat.primitives.ciphers.aead import AESCCM
cipher_name = _aead_cipher_name(cipher)
ctx = _aead_setup(
backend, cipher_name, cipher._key, nonce, None, tag_length, _ENCRYPT
)
# CCM requires us to pass the length of the data before processing anything
# However calling this with any other AEAD results in an error
if isinstance(cipher, AESCCM):
_set_length(backend, ctx, len(data))
_process_aad(backend, ctx, associated_data)
processed_data = _process_data(backend, ctx, data)
outlen = backend._ffi.new("int *")
res = backend._lib.EVP_CipherFinal_ex(ctx, backend._ffi.NULL, outlen)
backend.openssl_assert(res != 0)
backend.openssl_assert(outlen[0] == 0)
tag_buf = backend._ffi.new("unsigned char[]", tag_length)
res = backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, backend._lib.EVP_CTRL_AEAD_GET_TAG, tag_length, tag_buf
)
backend.openssl_assert(res != 0)
tag = backend._ffi.buffer(tag_buf)[:]
return processed_data + tag
def _decrypt(backend, cipher, nonce, data, associated_data, tag_length):
from cryptography.hazmat.primitives.ciphers.aead import AESCCM
if len(data) < tag_length:
raise InvalidTag
tag = data[-tag_length:]
data = data[:-tag_length]
cipher_name = _aead_cipher_name(cipher)
ctx = _aead_setup(
backend, cipher_name, cipher._key, nonce, tag, tag_length, _DECRYPT
)
# CCM requires us to pass the length of the data before processing anything
# However calling this with any other AEAD results in an error
if isinstance(cipher, AESCCM):
_set_length(backend, ctx, len(data))
_process_aad(backend, ctx, associated_data)
# CCM has a different error path if the tag doesn't match. Errors are
# raised in Update and Final is irrelevant.
if isinstance(cipher, AESCCM):
outlen = backend._ffi.new("int *")
buf = backend._ffi.new("unsigned char[]", len(data))
res = backend._lib.EVP_CipherUpdate(ctx, buf, outlen, data, len(data))
if res != 1:
backend._consume_errors()
raise InvalidTag
processed_data = backend._ffi.buffer(buf, outlen[0])[:]
else:
processed_data = _process_data(backend, ctx, data)
outlen = backend._ffi.new("int *")
res = backend._lib.EVP_CipherFinal_ex(ctx, backend._ffi.NULL, outlen)
if res == 0:
backend._consume_errors()
raise InvalidTag
return processed_data

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,229 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import InvalidTag, UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import ciphers
from cryptography.hazmat.primitives.ciphers import modes
@utils.register_interface(ciphers.CipherContext)
@utils.register_interface(ciphers.AEADCipherContext)
@utils.register_interface(ciphers.AEADEncryptionContext)
@utils.register_interface(ciphers.AEADDecryptionContext)
class _CipherContext(object):
_ENCRYPT = 1
_DECRYPT = 0
def __init__(self, backend, cipher, mode, operation):
self._backend = backend
self._cipher = cipher
self._mode = mode
self._operation = operation
self._tag = None
if isinstance(self._cipher, ciphers.BlockCipherAlgorithm):
self._block_size_bytes = self._cipher.block_size // 8
else:
self._block_size_bytes = 1
ctx = self._backend._lib.EVP_CIPHER_CTX_new()
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.EVP_CIPHER_CTX_free
)
registry = self._backend._cipher_registry
try:
adapter = registry[type(cipher), type(mode)]
except KeyError:
raise UnsupportedAlgorithm(
"cipher {} in {} mode is not supported "
"by this backend.".format(
cipher.name, mode.name if mode else mode),
_Reasons.UNSUPPORTED_CIPHER
)
evp_cipher = adapter(self._backend, cipher, mode)
if evp_cipher == self._backend._ffi.NULL:
msg = "cipher {0.name} ".format(cipher)
if mode is not None:
msg += "in {0.name} mode ".format(mode)
msg += (
"is not supported by this backend (Your version of OpenSSL "
"may be too old. Current version: {}.)"
).format(self._backend.openssl_version_text())
raise UnsupportedAlgorithm(msg, _Reasons.UNSUPPORTED_CIPHER)
if isinstance(mode, modes.ModeWithInitializationVector):
iv_nonce = self._backend._ffi.from_buffer(
mode.initialization_vector
)
elif isinstance(mode, modes.ModeWithTweak):
iv_nonce = self._backend._ffi.from_buffer(mode.tweak)
elif isinstance(mode, modes.ModeWithNonce):
iv_nonce = self._backend._ffi.from_buffer(mode.nonce)
elif isinstance(cipher, modes.ModeWithNonce):
iv_nonce = self._backend._ffi.from_buffer(cipher.nonce)
else:
iv_nonce = self._backend._ffi.NULL
# begin init with cipher and operation type
res = self._backend._lib.EVP_CipherInit_ex(ctx, evp_cipher,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
operation)
self._backend.openssl_assert(res != 0)
# set the key length to handle variable key ciphers
res = self._backend._lib.EVP_CIPHER_CTX_set_key_length(
ctx, len(cipher.key)
)
self._backend.openssl_assert(res != 0)
if isinstance(mode, modes.GCM):
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, self._backend._lib.EVP_CTRL_AEAD_SET_IVLEN,
len(iv_nonce), self._backend._ffi.NULL
)
self._backend.openssl_assert(res != 0)
if mode.tag is not None:
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
ctx, self._backend._lib.EVP_CTRL_AEAD_SET_TAG,
len(mode.tag), mode.tag
)
self._backend.openssl_assert(res != 0)
self._tag = mode.tag
elif (
self._operation == self._DECRYPT and
self._backend._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_102 and
not self._backend._lib.CRYPTOGRAPHY_IS_LIBRESSL
):
raise NotImplementedError(
"delayed passing of GCM tag requires OpenSSL >= 1.0.2."
" To use this feature please update OpenSSL"
)
# pass key/iv
res = self._backend._lib.EVP_CipherInit_ex(
ctx,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.from_buffer(cipher.key),
iv_nonce,
operation
)
self._backend.openssl_assert(res != 0)
# We purposely disable padding here as it's handled higher up in the
# API.
self._backend._lib.EVP_CIPHER_CTX_set_padding(ctx, 0)
self._ctx = ctx
def update(self, data):
buf = bytearray(len(data) + self._block_size_bytes - 1)
n = self.update_into(data, buf)
return bytes(buf[:n])
def update_into(self, data, buf):
if len(buf) < (len(data) + self._block_size_bytes - 1):
raise ValueError(
"buffer must be at least {} bytes for this "
"payload".format(len(data) + self._block_size_bytes - 1)
)
buf = self._backend._ffi.cast(
"unsigned char *", self._backend._ffi.from_buffer(buf)
)
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherUpdate(
self._ctx, buf, outlen,
self._backend._ffi.from_buffer(data), len(data)
)
self._backend.openssl_assert(res != 0)
return outlen[0]
def finalize(self):
# OpenSSL 1.0.1 on Ubuntu 12.04 (and possibly other distributions)
# appears to have a bug where you must make at least one call to update
# even if you are only using authenticate_additional_data or the
# GCM tag will be wrong. An (empty) call to update resolves this
# and is harmless for all other versions of OpenSSL.
if isinstance(self._mode, modes.GCM):
self.update(b"")
if (
self._operation == self._DECRYPT and
isinstance(self._mode, modes.ModeWithAuthenticationTag) and
self.tag is None
):
raise ValueError(
"Authentication tag must be provided when decrypting."
)
buf = self._backend._ffi.new("unsigned char[]", self._block_size_bytes)
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherFinal_ex(self._ctx, buf, outlen)
if res == 0:
errors = self._backend._consume_errors()
if not errors and isinstance(self._mode, modes.GCM):
raise InvalidTag
self._backend.openssl_assert(
errors[0]._lib_reason_match(
self._backend._lib.ERR_LIB_EVP,
self._backend._lib.EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH
)
)
raise ValueError(
"The length of the provided data is not a multiple of "
"the block length."
)
if (isinstance(self._mode, modes.GCM) and
self._operation == self._ENCRYPT):
tag_buf = self._backend._ffi.new(
"unsigned char[]", self._block_size_bytes
)
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
self._ctx, self._backend._lib.EVP_CTRL_AEAD_GET_TAG,
self._block_size_bytes, tag_buf
)
self._backend.openssl_assert(res != 0)
self._tag = self._backend._ffi.buffer(tag_buf)[:]
res = self._backend._lib.EVP_CIPHER_CTX_cleanup(self._ctx)
self._backend.openssl_assert(res == 1)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def finalize_with_tag(self, tag):
if (
self._backend._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_102 and
not self._backend._lib.CRYPTOGRAPHY_IS_LIBRESSL
):
raise NotImplementedError(
"finalize_with_tag requires OpenSSL >= 1.0.2. To use this "
"method please update OpenSSL"
)
if len(tag) < self._mode._min_tag_length:
raise ValueError(
"Authentication tag must be {} bytes or longer.".format(
self._mode._min_tag_length)
)
res = self._backend._lib.EVP_CIPHER_CTX_ctrl(
self._ctx, self._backend._lib.EVP_CTRL_AEAD_SET_TAG,
len(tag), tag
)
self._backend.openssl_assert(res != 0)
self._tag = tag
return self.finalize()
def authenticate_additional_data(self, data):
outlen = self._backend._ffi.new("int *")
res = self._backend._lib.EVP_CipherUpdate(
self._ctx, self._backend._ffi.NULL, outlen,
self._backend._ffi.from_buffer(data), len(data)
)
self._backend.openssl_assert(res != 0)
tag = utils.read_only_property("_tag")

View File

@ -0,0 +1,81 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.ciphers.modes import CBC
class _CMACContext(object):
def __init__(self, backend, algorithm, ctx=None):
if not backend.cmac_algorithm_supported(algorithm):
raise UnsupportedAlgorithm("This backend does not support CMAC.",
_Reasons.UNSUPPORTED_CIPHER)
self._backend = backend
self._key = algorithm.key
self._algorithm = algorithm
self._output_length = algorithm.block_size // 8
if ctx is None:
registry = self._backend._cipher_registry
adapter = registry[type(algorithm), CBC]
evp_cipher = adapter(self._backend, algorithm, CBC)
ctx = self._backend._lib.CMAC_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.CMAC_CTX_free)
key_ptr = self._backend._ffi.from_buffer(self._key)
res = self._backend._lib.CMAC_Init(
ctx, key_ptr, len(self._key),
evp_cipher, self._backend._ffi.NULL
)
self._backend.openssl_assert(res == 1)
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def update(self, data):
res = self._backend._lib.CMAC_Update(self._ctx, data, len(data))
self._backend.openssl_assert(res == 1)
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]", self._output_length)
length = self._backend._ffi.new("size_t *", self._output_length)
res = self._backend._lib.CMAC_Final(
self._ctx, buf, length
)
self._backend.openssl_assert(res == 1)
self._ctx = None
return self._backend._ffi.buffer(buf)[:]
def copy(self):
copied_ctx = self._backend._lib.CMAC_CTX_new()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.CMAC_CTX_free
)
res = self._backend._lib.CMAC_CTX_copy(
copied_ctx, self._ctx
)
self._backend.openssl_assert(res == 1)
return _CMACContext(
self._backend, self._algorithm, ctx=copied_ctx
)
def verify(self, signature):
digest = self.finalize()
if not constant_time.bytes_eq(digest, signature):
raise InvalidSignature("Signature did not match digest.")

View File

@ -0,0 +1,900 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import datetime
import ipaddress
import six
from cryptography import x509
from cryptography.hazmat._der import DERReader, INTEGER, NULL, SEQUENCE
from cryptography.x509.extensions import _TLS_FEATURE_TYPE_TO_ENUM
from cryptography.x509.name import _ASN1_TYPE_TO_ENUM
from cryptography.x509.oid import (
CRLEntryExtensionOID, CertificatePoliciesOID, ExtensionOID,
OCSPExtensionOID,
)
def _obj2txt(backend, obj):
# Set to 80 on the recommendation of
# https://www.openssl.org/docs/crypto/OBJ_nid2ln.html#return_values
#
# But OIDs longer than this occur in real life (e.g. Active
# Directory makes some very long OIDs). So we need to detect
# and properly handle the case where the default buffer is not
# big enough.
#
buf_len = 80
buf = backend._ffi.new("char[]", buf_len)
# 'res' is the number of bytes that *would* be written if the
# buffer is large enough. If 'res' > buf_len - 1, we need to
# alloc a big-enough buffer and go again.
res = backend._lib.OBJ_obj2txt(buf, buf_len, obj, 1)
if res > buf_len - 1: # account for terminating null byte
buf_len = res + 1
buf = backend._ffi.new("char[]", buf_len)
res = backend._lib.OBJ_obj2txt(buf, buf_len, obj, 1)
backend.openssl_assert(res > 0)
return backend._ffi.buffer(buf, res)[:].decode()
def _decode_x509_name_entry(backend, x509_name_entry):
obj = backend._lib.X509_NAME_ENTRY_get_object(x509_name_entry)
backend.openssl_assert(obj != backend._ffi.NULL)
data = backend._lib.X509_NAME_ENTRY_get_data(x509_name_entry)
backend.openssl_assert(data != backend._ffi.NULL)
value = _asn1_string_to_utf8(backend, data)
oid = _obj2txt(backend, obj)
type = _ASN1_TYPE_TO_ENUM[data.type]
return x509.NameAttribute(x509.ObjectIdentifier(oid), value, type)
def _decode_x509_name(backend, x509_name):
count = backend._lib.X509_NAME_entry_count(x509_name)
attributes = []
prev_set_id = -1
for x in range(count):
entry = backend._lib.X509_NAME_get_entry(x509_name, x)
attribute = _decode_x509_name_entry(backend, entry)
set_id = backend._lib.Cryptography_X509_NAME_ENTRY_set(entry)
if set_id != prev_set_id:
attributes.append(set([attribute]))
else:
# is in the same RDN a previous entry
attributes[-1].add(attribute)
prev_set_id = set_id
return x509.Name(x509.RelativeDistinguishedName(rdn) for rdn in attributes)
def _decode_general_names(backend, gns):
num = backend._lib.sk_GENERAL_NAME_num(gns)
names = []
for i in range(num):
gn = backend._lib.sk_GENERAL_NAME_value(gns, i)
backend.openssl_assert(gn != backend._ffi.NULL)
names.append(_decode_general_name(backend, gn))
return names
def _decode_general_name(backend, gn):
if gn.type == backend._lib.GEN_DNS:
# Convert to bytes and then decode to utf8. We don't use
# asn1_string_to_utf8 here because it doesn't properly convert
# utf8 from ia5strings.
data = _asn1_string_to_bytes(backend, gn.d.dNSName).decode("utf8")
# We don't use the constructor for DNSName so we can bypass validation
# This allows us to create DNSName objects that have unicode chars
# when a certificate (against the RFC) contains them.
return x509.DNSName._init_without_validation(data)
elif gn.type == backend._lib.GEN_URI:
# Convert to bytes and then decode to utf8. We don't use
# asn1_string_to_utf8 here because it doesn't properly convert
# utf8 from ia5strings.
data = _asn1_string_to_bytes(
backend, gn.d.uniformResourceIdentifier
).decode("utf8")
# We don't use the constructor for URI so we can bypass validation
# This allows us to create URI objects that have unicode chars
# when a certificate (against the RFC) contains them.
return x509.UniformResourceIdentifier._init_without_validation(data)
elif gn.type == backend._lib.GEN_RID:
oid = _obj2txt(backend, gn.d.registeredID)
return x509.RegisteredID(x509.ObjectIdentifier(oid))
elif gn.type == backend._lib.GEN_IPADD:
data = _asn1_string_to_bytes(backend, gn.d.iPAddress)
data_len = len(data)
if data_len == 8 or data_len == 32:
# This is an IPv4 or IPv6 Network and not a single IP. This
# type of data appears in Name Constraints. Unfortunately,
# ipaddress doesn't support packed bytes + netmask. Additionally,
# IPv6Network can only handle CIDR rather than the full 16 byte
# netmask. To handle this we convert the netmask to integer, then
# find the first 0 bit, which will be the prefix. If another 1
# bit is present after that the netmask is invalid.
base = ipaddress.ip_address(data[:data_len // 2])
netmask = ipaddress.ip_address(data[data_len // 2:])
bits = bin(int(netmask))[2:]
prefix = bits.find('0')
# If no 0 bits are found it is a /32 or /128
if prefix == -1:
prefix = len(bits)
if "1" in bits[prefix:]:
raise ValueError("Invalid netmask")
ip = ipaddress.ip_network(base.exploded + u"/{}".format(prefix))
else:
ip = ipaddress.ip_address(data)
return x509.IPAddress(ip)
elif gn.type == backend._lib.GEN_DIRNAME:
return x509.DirectoryName(
_decode_x509_name(backend, gn.d.directoryName)
)
elif gn.type == backend._lib.GEN_EMAIL:
# Convert to bytes and then decode to utf8. We don't use
# asn1_string_to_utf8 here because it doesn't properly convert
# utf8 from ia5strings.
data = _asn1_string_to_bytes(backend, gn.d.rfc822Name).decode("utf8")
# We don't use the constructor for RFC822Name so we can bypass
# validation. This allows us to create RFC822Name objects that have
# unicode chars when a certificate (against the RFC) contains them.
return x509.RFC822Name._init_without_validation(data)
elif gn.type == backend._lib.GEN_OTHERNAME:
type_id = _obj2txt(backend, gn.d.otherName.type_id)
value = _asn1_to_der(backend, gn.d.otherName.value)
return x509.OtherName(x509.ObjectIdentifier(type_id), value)
else:
# x400Address or ediPartyName
raise x509.UnsupportedGeneralNameType(
"{} is not a supported type".format(
x509._GENERAL_NAMES.get(gn.type, gn.type)
),
gn.type
)
def _decode_ocsp_no_check(backend, ext):
return x509.OCSPNoCheck()
def _decode_crl_number(backend, ext):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", ext)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
return x509.CRLNumber(_asn1_integer_to_int(backend, asn1_int))
def _decode_delta_crl_indicator(backend, ext):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", ext)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
return x509.DeltaCRLIndicator(_asn1_integer_to_int(backend, asn1_int))
class _X509ExtensionParser(object):
def __init__(self, ext_count, get_ext, handlers):
self.ext_count = ext_count
self.get_ext = get_ext
self.handlers = handlers
def parse(self, backend, x509_obj):
extensions = []
seen_oids = set()
for i in range(self.ext_count(backend, x509_obj)):
ext = self.get_ext(backend, x509_obj, i)
backend.openssl_assert(ext != backend._ffi.NULL)
crit = backend._lib.X509_EXTENSION_get_critical(ext)
critical = crit == 1
oid = x509.ObjectIdentifier(
_obj2txt(backend, backend._lib.X509_EXTENSION_get_object(ext))
)
if oid in seen_oids:
raise x509.DuplicateExtension(
"Duplicate {} extension found".format(oid), oid
)
# These OIDs are only supported in OpenSSL 1.1.0+ but we want
# to support them in all versions of OpenSSL so we decode them
# ourselves.
if oid == ExtensionOID.TLS_FEATURE:
# The extension contents are a SEQUENCE OF INTEGERs.
data = backend._lib.X509_EXTENSION_get_data(ext)
data_bytes = _asn1_string_to_bytes(backend, data)
features = DERReader(data_bytes).read_single_element(SEQUENCE)
parsed = []
while not features.is_empty():
parsed.append(features.read_element(INTEGER).as_integer())
# Map the features to their enum value.
value = x509.TLSFeature(
[_TLS_FEATURE_TYPE_TO_ENUM[x] for x in parsed]
)
extensions.append(x509.Extension(oid, critical, value))
seen_oids.add(oid)
continue
elif oid == ExtensionOID.PRECERT_POISON:
data = backend._lib.X509_EXTENSION_get_data(ext)
# The contents of the extension must be an ASN.1 NULL.
reader = DERReader(_asn1_string_to_bytes(backend, data))
reader.read_single_element(NULL).check_empty()
extensions.append(x509.Extension(
oid, critical, x509.PrecertPoison()
))
seen_oids.add(oid)
continue
try:
handler = self.handlers[oid]
except KeyError:
# Dump the DER payload into an UnrecognizedExtension object
data = backend._lib.X509_EXTENSION_get_data(ext)
backend.openssl_assert(data != backend._ffi.NULL)
der = backend._ffi.buffer(data.data, data.length)[:]
unrecognized = x509.UnrecognizedExtension(oid, der)
extensions.append(
x509.Extension(oid, critical, unrecognized)
)
else:
ext_data = backend._lib.X509V3_EXT_d2i(ext)
if ext_data == backend._ffi.NULL:
backend._consume_errors()
raise ValueError(
"The {} extension is invalid and can't be "
"parsed".format(oid)
)
value = handler(backend, ext_data)
extensions.append(x509.Extension(oid, critical, value))
seen_oids.add(oid)
return x509.Extensions(extensions)
def _decode_certificate_policies(backend, cp):
cp = backend._ffi.cast("Cryptography_STACK_OF_POLICYINFO *", cp)
cp = backend._ffi.gc(cp, backend._lib.CERTIFICATEPOLICIES_free)
num = backend._lib.sk_POLICYINFO_num(cp)
certificate_policies = []
for i in range(num):
qualifiers = None
pi = backend._lib.sk_POLICYINFO_value(cp, i)
oid = x509.ObjectIdentifier(_obj2txt(backend, pi.policyid))
if pi.qualifiers != backend._ffi.NULL:
qnum = backend._lib.sk_POLICYQUALINFO_num(pi.qualifiers)
qualifiers = []
for j in range(qnum):
pqi = backend._lib.sk_POLICYQUALINFO_value(
pi.qualifiers, j
)
pqualid = x509.ObjectIdentifier(
_obj2txt(backend, pqi.pqualid)
)
if pqualid == CertificatePoliciesOID.CPS_QUALIFIER:
cpsuri = backend._ffi.buffer(
pqi.d.cpsuri.data, pqi.d.cpsuri.length
)[:].decode('ascii')
qualifiers.append(cpsuri)
else:
assert pqualid == CertificatePoliciesOID.CPS_USER_NOTICE
user_notice = _decode_user_notice(
backend, pqi.d.usernotice
)
qualifiers.append(user_notice)
certificate_policies.append(
x509.PolicyInformation(oid, qualifiers)
)
return x509.CertificatePolicies(certificate_policies)
def _decode_user_notice(backend, un):
explicit_text = None
notice_reference = None
if un.exptext != backend._ffi.NULL:
explicit_text = _asn1_string_to_utf8(backend, un.exptext)
if un.noticeref != backend._ffi.NULL:
organization = _asn1_string_to_utf8(
backend, un.noticeref.organization
)
num = backend._lib.sk_ASN1_INTEGER_num(
un.noticeref.noticenos
)
notice_numbers = []
for i in range(num):
asn1_int = backend._lib.sk_ASN1_INTEGER_value(
un.noticeref.noticenos, i
)
notice_num = _asn1_integer_to_int(backend, asn1_int)
notice_numbers.append(notice_num)
notice_reference = x509.NoticeReference(
organization, notice_numbers
)
return x509.UserNotice(notice_reference, explicit_text)
def _decode_basic_constraints(backend, bc_st):
basic_constraints = backend._ffi.cast("BASIC_CONSTRAINTS *", bc_st)
basic_constraints = backend._ffi.gc(
basic_constraints, backend._lib.BASIC_CONSTRAINTS_free
)
# The byte representation of an ASN.1 boolean true is \xff. OpenSSL
# chooses to just map this to its ordinal value, so true is 255 and
# false is 0.
ca = basic_constraints.ca == 255
path_length = _asn1_integer_to_int_or_none(
backend, basic_constraints.pathlen
)
return x509.BasicConstraints(ca, path_length)
def _decode_subject_key_identifier(backend, asn1_string):
asn1_string = backend._ffi.cast("ASN1_OCTET_STRING *", asn1_string)
asn1_string = backend._ffi.gc(
asn1_string, backend._lib.ASN1_OCTET_STRING_free
)
return x509.SubjectKeyIdentifier(
backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
)
def _decode_authority_key_identifier(backend, akid):
akid = backend._ffi.cast("AUTHORITY_KEYID *", akid)
akid = backend._ffi.gc(akid, backend._lib.AUTHORITY_KEYID_free)
key_identifier = None
authority_cert_issuer = None
if akid.keyid != backend._ffi.NULL:
key_identifier = backend._ffi.buffer(
akid.keyid.data, akid.keyid.length
)[:]
if akid.issuer != backend._ffi.NULL:
authority_cert_issuer = _decode_general_names(
backend, akid.issuer
)
authority_cert_serial_number = _asn1_integer_to_int_or_none(
backend, akid.serial
)
return x509.AuthorityKeyIdentifier(
key_identifier, authority_cert_issuer, authority_cert_serial_number
)
def _decode_authority_information_access(backend, aia):
aia = backend._ffi.cast("Cryptography_STACK_OF_ACCESS_DESCRIPTION *", aia)
aia = backend._ffi.gc(
aia,
lambda x: backend._lib.sk_ACCESS_DESCRIPTION_pop_free(
x, backend._ffi.addressof(
backend._lib._original_lib, "ACCESS_DESCRIPTION_free"
)
)
)
num = backend._lib.sk_ACCESS_DESCRIPTION_num(aia)
access_descriptions = []
for i in range(num):
ad = backend._lib.sk_ACCESS_DESCRIPTION_value(aia, i)
backend.openssl_assert(ad.method != backend._ffi.NULL)
oid = x509.ObjectIdentifier(_obj2txt(backend, ad.method))
backend.openssl_assert(ad.location != backend._ffi.NULL)
gn = _decode_general_name(backend, ad.location)
access_descriptions.append(x509.AccessDescription(oid, gn))
return x509.AuthorityInformationAccess(access_descriptions)
def _decode_key_usage(backend, bit_string):
bit_string = backend._ffi.cast("ASN1_BIT_STRING *", bit_string)
bit_string = backend._ffi.gc(bit_string, backend._lib.ASN1_BIT_STRING_free)
get_bit = backend._lib.ASN1_BIT_STRING_get_bit
digital_signature = get_bit(bit_string, 0) == 1
content_commitment = get_bit(bit_string, 1) == 1
key_encipherment = get_bit(bit_string, 2) == 1
data_encipherment = get_bit(bit_string, 3) == 1
key_agreement = get_bit(bit_string, 4) == 1
key_cert_sign = get_bit(bit_string, 5) == 1
crl_sign = get_bit(bit_string, 6) == 1
encipher_only = get_bit(bit_string, 7) == 1
decipher_only = get_bit(bit_string, 8) == 1
return x509.KeyUsage(
digital_signature,
content_commitment,
key_encipherment,
data_encipherment,
key_agreement,
key_cert_sign,
crl_sign,
encipher_only,
decipher_only
)
def _decode_general_names_extension(backend, gns):
gns = backend._ffi.cast("GENERAL_NAMES *", gns)
gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
general_names = _decode_general_names(backend, gns)
return general_names
def _decode_subject_alt_name(backend, ext):
return x509.SubjectAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_issuer_alt_name(backend, ext):
return x509.IssuerAlternativeName(
_decode_general_names_extension(backend, ext)
)
def _decode_name_constraints(backend, nc):
nc = backend._ffi.cast("NAME_CONSTRAINTS *", nc)
nc = backend._ffi.gc(nc, backend._lib.NAME_CONSTRAINTS_free)
permitted = _decode_general_subtrees(backend, nc.permittedSubtrees)
excluded = _decode_general_subtrees(backend, nc.excludedSubtrees)
return x509.NameConstraints(
permitted_subtrees=permitted, excluded_subtrees=excluded
)
def _decode_general_subtrees(backend, stack_subtrees):
if stack_subtrees == backend._ffi.NULL:
return None
num = backend._lib.sk_GENERAL_SUBTREE_num(stack_subtrees)
subtrees = []
for i in range(num):
obj = backend._lib.sk_GENERAL_SUBTREE_value(stack_subtrees, i)
backend.openssl_assert(obj != backend._ffi.NULL)
name = _decode_general_name(backend, obj.base)
subtrees.append(name)
return subtrees
def _decode_issuing_dist_point(backend, idp):
idp = backend._ffi.cast("ISSUING_DIST_POINT *", idp)
idp = backend._ffi.gc(idp, backend._lib.ISSUING_DIST_POINT_free)
if idp.distpoint != backend._ffi.NULL:
full_name, relative_name = _decode_distpoint(backend, idp.distpoint)
else:
full_name = None
relative_name = None
only_user = idp.onlyuser == 255
only_ca = idp.onlyCA == 255
indirect_crl = idp.indirectCRL == 255
only_attr = idp.onlyattr == 255
if idp.onlysomereasons != backend._ffi.NULL:
only_some_reasons = _decode_reasons(backend, idp.onlysomereasons)
else:
only_some_reasons = None
return x509.IssuingDistributionPoint(
full_name, relative_name, only_user, only_ca, only_some_reasons,
indirect_crl, only_attr
)
def _decode_policy_constraints(backend, pc):
pc = backend._ffi.cast("POLICY_CONSTRAINTS *", pc)
pc = backend._ffi.gc(pc, backend._lib.POLICY_CONSTRAINTS_free)
require_explicit_policy = _asn1_integer_to_int_or_none(
backend, pc.requireExplicitPolicy
)
inhibit_policy_mapping = _asn1_integer_to_int_or_none(
backend, pc.inhibitPolicyMapping
)
return x509.PolicyConstraints(
require_explicit_policy, inhibit_policy_mapping
)
def _decode_extended_key_usage(backend, sk):
sk = backend._ffi.cast("Cryptography_STACK_OF_ASN1_OBJECT *", sk)
sk = backend._ffi.gc(sk, backend._lib.sk_ASN1_OBJECT_free)
num = backend._lib.sk_ASN1_OBJECT_num(sk)
ekus = []
for i in range(num):
obj = backend._lib.sk_ASN1_OBJECT_value(sk, i)
backend.openssl_assert(obj != backend._ffi.NULL)
oid = x509.ObjectIdentifier(_obj2txt(backend, obj))
ekus.append(oid)
return x509.ExtendedKeyUsage(ekus)
_DISTPOINT_TYPE_FULLNAME = 0
_DISTPOINT_TYPE_RELATIVENAME = 1
def _decode_dist_points(backend, cdps):
cdps = backend._ffi.cast("Cryptography_STACK_OF_DIST_POINT *", cdps)
cdps = backend._ffi.gc(cdps, backend._lib.CRL_DIST_POINTS_free)
num = backend._lib.sk_DIST_POINT_num(cdps)
dist_points = []
for i in range(num):
full_name = None
relative_name = None
crl_issuer = None
reasons = None
cdp = backend._lib.sk_DIST_POINT_value(cdps, i)
if cdp.reasons != backend._ffi.NULL:
reasons = _decode_reasons(backend, cdp.reasons)
if cdp.CRLissuer != backend._ffi.NULL:
crl_issuer = _decode_general_names(backend, cdp.CRLissuer)
# Certificates may have a crl_issuer/reasons and no distribution
# point so make sure it's not null.
if cdp.distpoint != backend._ffi.NULL:
full_name, relative_name = _decode_distpoint(
backend, cdp.distpoint
)
dist_points.append(
x509.DistributionPoint(
full_name, relative_name, reasons, crl_issuer
)
)
return dist_points
# ReasonFlags ::= BIT STRING {
# unused (0),
# keyCompromise (1),
# cACompromise (2),
# affiliationChanged (3),
# superseded (4),
# cessationOfOperation (5),
# certificateHold (6),
# privilegeWithdrawn (7),
# aACompromise (8) }
_REASON_BIT_MAPPING = {
1: x509.ReasonFlags.key_compromise,
2: x509.ReasonFlags.ca_compromise,
3: x509.ReasonFlags.affiliation_changed,
4: x509.ReasonFlags.superseded,
5: x509.ReasonFlags.cessation_of_operation,
6: x509.ReasonFlags.certificate_hold,
7: x509.ReasonFlags.privilege_withdrawn,
8: x509.ReasonFlags.aa_compromise,
}
def _decode_reasons(backend, reasons):
# We will check each bit from RFC 5280
enum_reasons = []
for bit_position, reason in six.iteritems(_REASON_BIT_MAPPING):
if backend._lib.ASN1_BIT_STRING_get_bit(reasons, bit_position):
enum_reasons.append(reason)
return frozenset(enum_reasons)
def _decode_distpoint(backend, distpoint):
if distpoint.type == _DISTPOINT_TYPE_FULLNAME:
full_name = _decode_general_names(backend, distpoint.name.fullname)
return full_name, None
# OpenSSL code doesn't test for a specific type for
# relativename, everything that isn't fullname is considered
# relativename. Per RFC 5280:
#
# DistributionPointName ::= CHOICE {
# fullName [0] GeneralNames,
# nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
rns = distpoint.name.relativename
rnum = backend._lib.sk_X509_NAME_ENTRY_num(rns)
attributes = set()
for i in range(rnum):
rn = backend._lib.sk_X509_NAME_ENTRY_value(
rns, i
)
backend.openssl_assert(rn != backend._ffi.NULL)
attributes.add(
_decode_x509_name_entry(backend, rn)
)
relative_name = x509.RelativeDistinguishedName(attributes)
return None, relative_name
def _decode_crl_distribution_points(backend, cdps):
dist_points = _decode_dist_points(backend, cdps)
return x509.CRLDistributionPoints(dist_points)
def _decode_freshest_crl(backend, cdps):
dist_points = _decode_dist_points(backend, cdps)
return x509.FreshestCRL(dist_points)
def _decode_inhibit_any_policy(backend, asn1_int):
asn1_int = backend._ffi.cast("ASN1_INTEGER *", asn1_int)
asn1_int = backend._ffi.gc(asn1_int, backend._lib.ASN1_INTEGER_free)
skip_certs = _asn1_integer_to_int(backend, asn1_int)
return x509.InhibitAnyPolicy(skip_certs)
def _decode_precert_signed_certificate_timestamps(backend, asn1_scts):
from cryptography.hazmat.backends.openssl.x509 import (
_SignedCertificateTimestamp
)
asn1_scts = backend._ffi.cast("Cryptography_STACK_OF_SCT *", asn1_scts)
asn1_scts = backend._ffi.gc(asn1_scts, backend._lib.SCT_LIST_free)
scts = []
for i in range(backend._lib.sk_SCT_num(asn1_scts)):
sct = backend._lib.sk_SCT_value(asn1_scts, i)
scts.append(_SignedCertificateTimestamp(backend, asn1_scts, sct))
return x509.PrecertificateSignedCertificateTimestamps(scts)
# CRLReason ::= ENUMERATED {
# unspecified (0),
# keyCompromise (1),
# cACompromise (2),
# affiliationChanged (3),
# superseded (4),
# cessationOfOperation (5),
# certificateHold (6),
# -- value 7 is not used
# removeFromCRL (8),
# privilegeWithdrawn (9),
# aACompromise (10) }
_CRL_ENTRY_REASON_CODE_TO_ENUM = {
0: x509.ReasonFlags.unspecified,
1: x509.ReasonFlags.key_compromise,
2: x509.ReasonFlags.ca_compromise,
3: x509.ReasonFlags.affiliation_changed,
4: x509.ReasonFlags.superseded,
5: x509.ReasonFlags.cessation_of_operation,
6: x509.ReasonFlags.certificate_hold,
8: x509.ReasonFlags.remove_from_crl,
9: x509.ReasonFlags.privilege_withdrawn,
10: x509.ReasonFlags.aa_compromise,
}
_CRL_ENTRY_REASON_ENUM_TO_CODE = {
x509.ReasonFlags.unspecified: 0,
x509.ReasonFlags.key_compromise: 1,
x509.ReasonFlags.ca_compromise: 2,
x509.ReasonFlags.affiliation_changed: 3,
x509.ReasonFlags.superseded: 4,
x509.ReasonFlags.cessation_of_operation: 5,
x509.ReasonFlags.certificate_hold: 6,
x509.ReasonFlags.remove_from_crl: 8,
x509.ReasonFlags.privilege_withdrawn: 9,
x509.ReasonFlags.aa_compromise: 10
}
def _decode_crl_reason(backend, enum):
enum = backend._ffi.cast("ASN1_ENUMERATED *", enum)
enum = backend._ffi.gc(enum, backend._lib.ASN1_ENUMERATED_free)
code = backend._lib.ASN1_ENUMERATED_get(enum)
try:
return x509.CRLReason(_CRL_ENTRY_REASON_CODE_TO_ENUM[code])
except KeyError:
raise ValueError("Unsupported reason code: {}".format(code))
def _decode_invalidity_date(backend, inv_date):
generalized_time = backend._ffi.cast(
"ASN1_GENERALIZEDTIME *", inv_date
)
generalized_time = backend._ffi.gc(
generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
)
return x509.InvalidityDate(
_parse_asn1_generalized_time(backend, generalized_time)
)
def _decode_cert_issuer(backend, gns):
gns = backend._ffi.cast("GENERAL_NAMES *", gns)
gns = backend._ffi.gc(gns, backend._lib.GENERAL_NAMES_free)
general_names = _decode_general_names(backend, gns)
return x509.CertificateIssuer(general_names)
def _asn1_to_der(backend, asn1_type):
buf = backend._ffi.new("unsigned char **")
res = backend._lib.i2d_ASN1_TYPE(asn1_type, buf)
backend.openssl_assert(res >= 0)
backend.openssl_assert(buf[0] != backend._ffi.NULL)
buf = backend._ffi.gc(
buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
)
return backend._ffi.buffer(buf[0], res)[:]
def _asn1_integer_to_int(backend, asn1_int):
bn = backend._lib.ASN1_INTEGER_to_BN(asn1_int, backend._ffi.NULL)
backend.openssl_assert(bn != backend._ffi.NULL)
bn = backend._ffi.gc(bn, backend._lib.BN_free)
return backend._bn_to_int(bn)
def _asn1_integer_to_int_or_none(backend, asn1_int):
if asn1_int == backend._ffi.NULL:
return None
else:
return _asn1_integer_to_int(backend, asn1_int)
def _asn1_string_to_bytes(backend, asn1_string):
return backend._ffi.buffer(asn1_string.data, asn1_string.length)[:]
def _asn1_string_to_ascii(backend, asn1_string):
return _asn1_string_to_bytes(backend, asn1_string).decode("ascii")
def _asn1_string_to_utf8(backend, asn1_string):
buf = backend._ffi.new("unsigned char **")
res = backend._lib.ASN1_STRING_to_UTF8(buf, asn1_string)
if res == -1:
raise ValueError(
"Unsupported ASN1 string type. Type: {}".format(asn1_string.type)
)
backend.openssl_assert(buf[0] != backend._ffi.NULL)
buf = backend._ffi.gc(
buf, lambda buffer: backend._lib.OPENSSL_free(buffer[0])
)
return backend._ffi.buffer(buf[0], res)[:].decode('utf8')
def _parse_asn1_time(backend, asn1_time):
backend.openssl_assert(asn1_time != backend._ffi.NULL)
generalized_time = backend._lib.ASN1_TIME_to_generalizedtime(
asn1_time, backend._ffi.NULL
)
if generalized_time == backend._ffi.NULL:
raise ValueError(
"Couldn't parse ASN.1 time as generalizedtime {!r}".format(
_asn1_string_to_bytes(backend, asn1_time)
)
)
generalized_time = backend._ffi.gc(
generalized_time, backend._lib.ASN1_GENERALIZEDTIME_free
)
return _parse_asn1_generalized_time(backend, generalized_time)
def _parse_asn1_generalized_time(backend, generalized_time):
time = _asn1_string_to_ascii(
backend, backend._ffi.cast("ASN1_STRING *", generalized_time)
)
return datetime.datetime.strptime(time, "%Y%m%d%H%M%SZ")
def _decode_nonce(backend, nonce):
nonce = backend._ffi.cast("ASN1_OCTET_STRING *", nonce)
nonce = backend._ffi.gc(nonce, backend._lib.ASN1_OCTET_STRING_free)
return x509.OCSPNonce(_asn1_string_to_bytes(backend, nonce))
_EXTENSION_HANDLERS_NO_SCT = {
ExtensionOID.BASIC_CONSTRAINTS: _decode_basic_constraints,
ExtensionOID.SUBJECT_KEY_IDENTIFIER: _decode_subject_key_identifier,
ExtensionOID.KEY_USAGE: _decode_key_usage,
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: _decode_subject_alt_name,
ExtensionOID.EXTENDED_KEY_USAGE: _decode_extended_key_usage,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_decode_authority_information_access
),
ExtensionOID.CERTIFICATE_POLICIES: _decode_certificate_policies,
ExtensionOID.CRL_DISTRIBUTION_POINTS: _decode_crl_distribution_points,
ExtensionOID.FRESHEST_CRL: _decode_freshest_crl,
ExtensionOID.OCSP_NO_CHECK: _decode_ocsp_no_check,
ExtensionOID.INHIBIT_ANY_POLICY: _decode_inhibit_any_policy,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
ExtensionOID.NAME_CONSTRAINTS: _decode_name_constraints,
ExtensionOID.POLICY_CONSTRAINTS: _decode_policy_constraints,
}
_EXTENSION_HANDLERS = _EXTENSION_HANDLERS_NO_SCT.copy()
_EXTENSION_HANDLERS[
ExtensionOID.PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS
] = _decode_precert_signed_certificate_timestamps
_REVOKED_EXTENSION_HANDLERS = {
CRLEntryExtensionOID.CRL_REASON: _decode_crl_reason,
CRLEntryExtensionOID.INVALIDITY_DATE: _decode_invalidity_date,
CRLEntryExtensionOID.CERTIFICATE_ISSUER: _decode_cert_issuer,
}
_CRL_EXTENSION_HANDLERS = {
ExtensionOID.CRL_NUMBER: _decode_crl_number,
ExtensionOID.DELTA_CRL_INDICATOR: _decode_delta_crl_indicator,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _decode_authority_key_identifier,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _decode_issuer_alt_name,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_decode_authority_information_access
),
ExtensionOID.ISSUING_DISTRIBUTION_POINT: _decode_issuing_dist_point,
ExtensionOID.FRESHEST_CRL: _decode_freshest_crl,
}
_OCSP_REQ_EXTENSION_HANDLERS = {
OCSPExtensionOID.NONCE: _decode_nonce,
}
_OCSP_BASICRESP_EXTENSION_HANDLERS = {
OCSPExtensionOID.NONCE: _decode_nonce,
}
_CERTIFICATE_EXTENSION_PARSER_NO_SCT = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.X509_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.X509_get_ext(x, i),
handlers=_EXTENSION_HANDLERS_NO_SCT
)
_CERTIFICATE_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.X509_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.X509_get_ext(x, i),
handlers=_EXTENSION_HANDLERS
)
_CSR_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.sk_X509_EXTENSION_num(x),
get_ext=lambda backend, x, i: backend._lib.sk_X509_EXTENSION_value(x, i),
handlers=_EXTENSION_HANDLERS
)
_REVOKED_CERTIFICATE_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.X509_REVOKED_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.X509_REVOKED_get_ext(x, i),
handlers=_REVOKED_EXTENSION_HANDLERS,
)
_CRL_EXTENSION_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.X509_CRL_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.X509_CRL_get_ext(x, i),
handlers=_CRL_EXTENSION_HANDLERS,
)
_OCSP_REQ_EXT_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.OCSP_REQUEST_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.OCSP_REQUEST_get_ext(x, i),
handlers=_OCSP_REQ_EXTENSION_HANDLERS,
)
_OCSP_BASICRESP_EXT_PARSER = _X509ExtensionParser(
ext_count=lambda backend, x: backend._lib.OCSP_BASICRESP_get_ext_count(x),
get_ext=lambda backend, x, i: backend._lib.OCSP_BASICRESP_get_ext(x, i),
handlers=_OCSP_BASICRESP_EXTENSION_HANDLERS,
)

View File

@ -0,0 +1,280 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import dh
def _dh_params_dup(dh_cdata, backend):
lib = backend._lib
ffi = backend._ffi
param_cdata = lib.DHparams_dup(dh_cdata)
backend.openssl_assert(param_cdata != ffi.NULL)
param_cdata = ffi.gc(param_cdata, lib.DH_free)
if lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_102:
# In OpenSSL versions < 1.0.2 or libressl DHparams_dup don't copy q
q = ffi.new("BIGNUM **")
lib.DH_get0_pqg(dh_cdata, ffi.NULL, q, ffi.NULL)
q_dup = lib.BN_dup(q[0])
res = lib.DH_set0_pqg(param_cdata, ffi.NULL, q_dup, ffi.NULL)
backend.openssl_assert(res == 1)
return param_cdata
def _dh_cdata_to_parameters(dh_cdata, backend):
param_cdata = _dh_params_dup(dh_cdata, backend)
return _DHParameters(backend, param_cdata)
@utils.register_interface(dh.DHParametersWithSerialization)
class _DHParameters(object):
def __init__(self, backend, dh_cdata):
self._backend = backend
self._dh_cdata = dh_cdata
def parameter_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
if q[0] == self._backend._ffi.NULL:
q_val = None
else:
q_val = self._backend._bn_to_int(q[0])
return dh.DHParameterNumbers(
p=self._backend._bn_to_int(p[0]),
g=self._backend._bn_to_int(g[0]),
q=q_val
)
def generate_private_key(self):
return self._backend.generate_dh_private_key(self)
def parameter_bytes(self, encoding, format):
if format is not serialization.ParameterFormat.PKCS3:
raise ValueError(
"Only PKCS3 serialization is supported"
)
if not self._backend._lib.Cryptography_HAS_EVP_PKEY_DHX:
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata,
self._backend._ffi.NULL,
q,
self._backend._ffi.NULL)
if q[0] != self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"DH X9.42 serialization is not supported",
_Reasons.UNSUPPORTED_SERIALIZATION)
return self._backend._parameter_bytes(
encoding,
format,
self._dh_cdata
)
def _handle_dh_compute_key_error(errors, backend):
lib = backend._lib
backend.openssl_assert(
errors[0]._lib_reason_match(
lib.ERR_LIB_DH, lib.DH_R_INVALID_PUBKEY
)
)
raise ValueError("Public key value is invalid for this exchange.")
def _get_dh_num_bits(backend, dh_cdata):
p = backend._ffi.new("BIGNUM **")
backend._lib.DH_get0_pqg(dh_cdata, p,
backend._ffi.NULL,
backend._ffi.NULL)
backend.openssl_assert(p[0] != backend._ffi.NULL)
return backend._lib.BN_num_bits(p[0])
@utils.register_interface(dh.DHPrivateKeyWithSerialization)
class _DHPrivateKey(object):
def __init__(self, backend, dh_cdata, evp_pkey):
self._backend = backend
self._dh_cdata = dh_cdata
self._evp_pkey = evp_pkey
self._key_size_bytes = self._backend._lib.DH_size(dh_cdata)
@property
def key_size(self):
return _get_dh_num_bits(self._backend, self._dh_cdata)
def private_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
if q[0] == self._backend._ffi.NULL:
q_val = None
else:
q_val = self._backend._bn_to_int(q[0])
pub_key = self._backend._ffi.new("BIGNUM **")
priv_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_key(self._dh_cdata, pub_key, priv_key)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(priv_key[0] != self._backend._ffi.NULL)
return dh.DHPrivateNumbers(
public_numbers=dh.DHPublicNumbers(
parameter_numbers=dh.DHParameterNumbers(
p=self._backend._bn_to_int(p[0]),
g=self._backend._bn_to_int(g[0]),
q=q_val
),
y=self._backend._bn_to_int(pub_key[0])
),
x=self._backend._bn_to_int(priv_key[0])
)
def exchange(self, peer_public_key):
buf = self._backend._ffi.new("unsigned char[]", self._key_size_bytes)
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_key(peer_public_key._dh_cdata, pub_key,
self._backend._ffi.NULL)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
res = self._backend._lib.DH_compute_key(
buf,
pub_key[0],
self._dh_cdata
)
if res == -1:
errors = self._backend._consume_errors()
return _handle_dh_compute_key_error(errors, self._backend)
else:
self._backend.openssl_assert(res >= 1)
key = self._backend._ffi.buffer(buf)[:res]
pad = self._key_size_bytes - len(key)
if pad > 0:
key = (b"\x00" * pad) + key
return key
def public_key(self):
dh_cdata = _dh_params_dup(self._dh_cdata, self._backend)
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_key(self._dh_cdata,
pub_key, self._backend._ffi.NULL)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
pub_key_dup = self._backend._lib.BN_dup(pub_key[0])
self._backend.openssl_assert(pub_key_dup != self._backend._ffi.NULL)
res = self._backend._lib.DH_set0_key(dh_cdata,
pub_key_dup,
self._backend._ffi.NULL)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._dh_cdata_to_evp_pkey(dh_cdata)
return _DHPublicKey(self._backend, dh_cdata, evp_pkey)
def parameters(self):
return _dh_cdata_to_parameters(self._dh_cdata, self._backend)
def private_bytes(self, encoding, format, encryption_algorithm):
if format is not serialization.PrivateFormat.PKCS8:
raise ValueError(
"DH private keys support only PKCS8 serialization"
)
if not self._backend._lib.Cryptography_HAS_EVP_PKEY_DHX:
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata,
self._backend._ffi.NULL,
q,
self._backend._ffi.NULL)
if q[0] != self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"DH X9.42 serialization is not supported",
_Reasons.UNSUPPORTED_SERIALIZATION)
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._dh_cdata
)
@utils.register_interface(dh.DHPublicKeyWithSerialization)
class _DHPublicKey(object):
def __init__(self, backend, dh_cdata, evp_pkey):
self._backend = backend
self._dh_cdata = dh_cdata
self._evp_pkey = evp_pkey
self._key_size_bits = _get_dh_num_bits(self._backend, self._dh_cdata)
@property
def key_size(self):
return self._key_size_bits
def public_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
if q[0] == self._backend._ffi.NULL:
q_val = None
else:
q_val = self._backend._bn_to_int(q[0])
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_key(self._dh_cdata,
pub_key, self._backend._ffi.NULL)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
return dh.DHPublicNumbers(
parameter_numbers=dh.DHParameterNumbers(
p=self._backend._bn_to_int(p[0]),
g=self._backend._bn_to_int(g[0]),
q=q_val
),
y=self._backend._bn_to_int(pub_key[0])
)
def parameters(self):
return _dh_cdata_to_parameters(self._dh_cdata, self._backend)
def public_bytes(self, encoding, format):
if format is not serialization.PublicFormat.SubjectPublicKeyInfo:
raise ValueError(
"DH public keys support only "
"SubjectPublicKeyInfo serialization"
)
if not self._backend._lib.Cryptography_HAS_EVP_PKEY_DHX:
q = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DH_get0_pqg(self._dh_cdata,
self._backend._ffi.NULL,
q,
self._backend._ffi.NULL)
if q[0] != self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"DH X9.42 serialization is not supported",
_Reasons.UNSUPPORTED_SERIALIZATION)
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
None
)

View File

@ -0,0 +1,268 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm, _check_not_prehashed,
_warn_sign_verify_deprecated
)
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext, AsymmetricVerificationContext, dsa
)
def _dsa_sig_sign(backend, private_key, data):
sig_buf_len = backend._lib.DSA_size(private_key._dsa_cdata)
sig_buf = backend._ffi.new("unsigned char[]", sig_buf_len)
buflen = backend._ffi.new("unsigned int *")
# The first parameter passed to DSA_sign is unused by OpenSSL but
# must be an integer.
res = backend._lib.DSA_sign(
0, data, len(data), sig_buf, buflen, private_key._dsa_cdata
)
backend.openssl_assert(res == 1)
backend.openssl_assert(buflen[0])
return backend._ffi.buffer(sig_buf)[:buflen[0]]
def _dsa_sig_verify(backend, public_key, signature, data):
# The first parameter passed to DSA_verify is unused by OpenSSL but
# must be an integer.
res = backend._lib.DSA_verify(
0, data, len(data), signature, len(signature), public_key._dsa_cdata
)
if res != 1:
backend._consume_errors()
raise InvalidSignature
@utils.register_interface(AsymmetricVerificationContext)
class _DSAVerificationContext(object):
def __init__(self, backend, public_key, signature, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
data_to_verify = self._hash_ctx.finalize()
_dsa_sig_verify(
self._backend, self._public_key, self._signature, data_to_verify
)
@utils.register_interface(AsymmetricSignatureContext)
class _DSASignatureContext(object):
def __init__(self, backend, private_key, algorithm):
self._backend = backend
self._private_key = private_key
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
data_to_sign = self._hash_ctx.finalize()
return _dsa_sig_sign(self._backend, self._private_key, data_to_sign)
@utils.register_interface(dsa.DSAParametersWithNumbers)
class _DSAParameters(object):
def __init__(self, backend, dsa_cdata):
self._backend = backend
self._dsa_cdata = dsa_cdata
def parameter_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
return dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0])
)
def generate_private_key(self):
return self._backend.generate_dsa_private_key(self)
@utils.register_interface(dsa.DSAPrivateKeyWithSerialization)
class _DSAPrivateKey(object):
def __init__(self, backend, dsa_cdata, evp_pkey):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._evp_pkey = evp_pkey
p = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(
dsa_cdata, p, self._backend._ffi.NULL, self._backend._ffi.NULL
)
self._backend.openssl_assert(p[0] != backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(p[0])
key_size = utils.read_only_property("_key_size")
def signer(self, signature_algorithm):
_warn_sign_verify_deprecated()
_check_not_prehashed(signature_algorithm)
return _DSASignatureContext(self._backend, self, signature_algorithm)
def private_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
pub_key = self._backend._ffi.new("BIGNUM **")
priv_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
self._backend._lib.DSA_get0_key(self._dsa_cdata, pub_key, priv_key)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(priv_key[0] != self._backend._ffi.NULL)
return dsa.DSAPrivateNumbers(
public_numbers=dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0])
),
y=self._backend._bn_to_int(pub_key[0])
),
x=self._backend._bn_to_int(priv_key[0])
)
def public_key(self):
dsa_cdata = self._backend._lib.DSAparams_dup(self._dsa_cdata)
self._backend.openssl_assert(dsa_cdata != self._backend._ffi.NULL)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_key(
self._dsa_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
pub_key_dup = self._backend._lib.BN_dup(pub_key[0])
res = self._backend._lib.DSA_set0_key(
dsa_cdata, pub_key_dup, self._backend._ffi.NULL
)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._dsa_cdata_to_evp_pkey(dsa_cdata)
return _DSAPublicKey(self._backend, dsa_cdata, evp_pkey)
def parameters(self):
dsa_cdata = self._backend._lib.DSAparams_dup(self._dsa_cdata)
self._backend.openssl_assert(dsa_cdata != self._backend._ffi.NULL)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
return _DSAParameters(self._backend, dsa_cdata)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._dsa_cdata
)
def sign(self, data, algorithm):
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _dsa_sig_sign(self._backend, self, data)
@utils.register_interface(dsa.DSAPublicKeyWithSerialization)
class _DSAPublicKey(object):
def __init__(self, backend, dsa_cdata, evp_pkey):
self._backend = backend
self._dsa_cdata = dsa_cdata
self._evp_pkey = evp_pkey
p = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(
dsa_cdata, p, self._backend._ffi.NULL, self._backend._ffi.NULL
)
self._backend.openssl_assert(p[0] != backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(p[0])
key_size = utils.read_only_property("_key_size")
def verifier(self, signature, signature_algorithm):
_warn_sign_verify_deprecated()
utils._check_bytes("signature", signature)
_check_not_prehashed(signature_algorithm)
return _DSAVerificationContext(
self._backend, self, signature, signature_algorithm
)
def public_numbers(self):
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
g = self._backend._ffi.new("BIGNUM **")
pub_key = self._backend._ffi.new("BIGNUM **")
self._backend._lib.DSA_get0_pqg(self._dsa_cdata, p, q, g)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(g[0] != self._backend._ffi.NULL)
self._backend._lib.DSA_get0_key(
self._dsa_cdata, pub_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(pub_key[0] != self._backend._ffi.NULL)
return dsa.DSAPublicNumbers(
parameter_numbers=dsa.DSAParameterNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
g=self._backend._bn_to_int(g[0])
),
y=self._backend._bn_to_int(pub_key[0])
)
def parameters(self):
dsa_cdata = self._backend._lib.DSAparams_dup(self._dsa_cdata)
dsa_cdata = self._backend._ffi.gc(
dsa_cdata, self._backend._lib.DSA_free
)
return _DSAParameters(self._backend, dsa_cdata)
def public_bytes(self, encoding, format):
if format is serialization.PublicFormat.PKCS1:
raise ValueError(
"DSA public keys do not support PKCS1 serialization"
)
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
None
)
def verify(self, signature, data, algorithm):
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _dsa_sig_verify(self._backend, self, signature, data)

View File

@ -0,0 +1,352 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm, _check_not_prehashed,
_warn_sign_verify_deprecated
)
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext, AsymmetricVerificationContext, ec
)
def _check_signature_algorithm(signature_algorithm):
if not isinstance(signature_algorithm, ec.ECDSA):
raise UnsupportedAlgorithm(
"Unsupported elliptic curve signature algorithm.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)
def _ec_key_curve_sn(backend, ec_key):
group = backend._lib.EC_KEY_get0_group(ec_key)
backend.openssl_assert(group != backend._ffi.NULL)
nid = backend._lib.EC_GROUP_get_curve_name(group)
# The following check is to find EC keys with unnamed curves and raise
# an error for now.
if nid == backend._lib.NID_undef:
raise NotImplementedError(
"ECDSA keys with unnamed curves are unsupported "
"at this time"
)
# This is like the above check, but it also catches the case where you
# explicitly encoded a curve with the same parameters as a named curve.
# Don't do that.
if (
backend._lib.CRYPTOGRAPHY_OPENSSL_110_OR_GREATER and
backend._lib.EC_GROUP_get_asn1_flag(group) == 0
):
raise NotImplementedError(
"ECDSA keys with unnamed curves are unsupported "
"at this time"
)
curve_name = backend._lib.OBJ_nid2sn(nid)
backend.openssl_assert(curve_name != backend._ffi.NULL)
sn = backend._ffi.string(curve_name).decode('ascii')
return sn
def _mark_asn1_named_ec_curve(backend, ec_cdata):
"""
Set the named curve flag on the EC_KEY. This causes OpenSSL to
serialize EC keys along with their curve OID which makes
deserialization easier.
"""
backend._lib.EC_KEY_set_asn1_flag(
ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE
)
def _sn_to_elliptic_curve(backend, sn):
try:
return ec._CURVE_TYPES[sn]()
except KeyError:
raise UnsupportedAlgorithm(
"{} is not a supported elliptic curve".format(sn),
_Reasons.UNSUPPORTED_ELLIPTIC_CURVE
)
def _ecdsa_sig_sign(backend, private_key, data):
max_size = backend._lib.ECDSA_size(private_key._ec_key)
backend.openssl_assert(max_size > 0)
sigbuf = backend._ffi.new("unsigned char[]", max_size)
siglen_ptr = backend._ffi.new("unsigned int[]", 1)
res = backend._lib.ECDSA_sign(
0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key
)
backend.openssl_assert(res == 1)
return backend._ffi.buffer(sigbuf)[:siglen_ptr[0]]
def _ecdsa_sig_verify(backend, public_key, signature, data):
res = backend._lib.ECDSA_verify(
0, data, len(data), signature, len(signature), public_key._ec_key
)
if res != 1:
backend._consume_errors()
raise InvalidSignature
@utils.register_interface(AsymmetricSignatureContext)
class _ECDSASignatureContext(object):
def __init__(self, backend, private_key, algorithm):
self._backend = backend
self._private_key = private_key
self._digest = hashes.Hash(algorithm, backend)
def update(self, data):
self._digest.update(data)
def finalize(self):
digest = self._digest.finalize()
return _ecdsa_sig_sign(self._backend, self._private_key, digest)
@utils.register_interface(AsymmetricVerificationContext)
class _ECDSAVerificationContext(object):
def __init__(self, backend, public_key, signature, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._digest = hashes.Hash(algorithm, backend)
def update(self, data):
self._digest.update(data)
def verify(self):
digest = self._digest.finalize()
_ecdsa_sig_verify(
self._backend, self._public_key, self._signature, digest
)
@utils.register_interface(ec.EllipticCurvePrivateKeyWithSerialization)
class _EllipticCurvePrivateKey(object):
def __init__(self, backend, ec_key_cdata, evp_pkey):
self._backend = backend
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
curve = utils.read_only_property("_curve")
@property
def key_size(self):
return self.curve.key_size
def signer(self, signature_algorithm):
_warn_sign_verify_deprecated()
_check_signature_algorithm(signature_algorithm)
_check_not_prehashed(signature_algorithm.algorithm)
return _ECDSASignatureContext(
self._backend, self, signature_algorithm.algorithm
)
def exchange(self, algorithm, peer_public_key):
if not (
self._backend.elliptic_curve_exchange_algorithm_supported(
algorithm, self.curve
)
):
raise UnsupportedAlgorithm(
"This backend does not support the ECDH algorithm.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
if peer_public_key.curve.name != self.curve.name:
raise ValueError(
"peer_public_key and self are not on the same curve"
)
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
z_len = (self._backend._lib.EC_GROUP_get_degree(group) + 7) // 8
self._backend.openssl_assert(z_len > 0)
z_buf = self._backend._ffi.new("uint8_t[]", z_len)
peer_key = self._backend._lib.EC_KEY_get0_public_key(
peer_public_key._ec_key
)
r = self._backend._lib.ECDH_compute_key(
z_buf, z_len, peer_key, self._ec_key, self._backend._ffi.NULL
)
self._backend.openssl_assert(r > 0)
return self._backend._ffi.buffer(z_buf)[:z_len]
def public_key(self):
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)
public_ec_key = self._backend._lib.EC_KEY_new_by_curve_name(curve_nid)
self._backend.openssl_assert(public_ec_key != self._backend._ffi.NULL)
public_ec_key = self._backend._ffi.gc(
public_ec_key, self._backend._lib.EC_KEY_free
)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)
return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)
def private_numbers(self):
bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)
private_value = self._backend._bn_to_int(bn)
return ec.EllipticCurvePrivateNumbers(
private_value=private_value,
public_numbers=self.public_key().public_numbers()
)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._ec_key
)
def sign(self, data, signature_algorithm):
_check_signature_algorithm(signature_algorithm)
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, signature_algorithm._algorithm
)
return _ecdsa_sig_sign(self._backend, self, data)
@utils.register_interface(ec.EllipticCurvePublicKeyWithSerialization)
class _EllipticCurvePublicKey(object):
def __init__(self, backend, ec_key_cdata, evp_pkey):
self._backend = backend
self._ec_key = ec_key_cdata
self._evp_pkey = evp_pkey
sn = _ec_key_curve_sn(backend, ec_key_cdata)
self._curve = _sn_to_elliptic_curve(backend, sn)
_mark_asn1_named_ec_curve(backend, ec_key_cdata)
curve = utils.read_only_property("_curve")
@property
def key_size(self):
return self.curve.key_size
def verifier(self, signature, signature_algorithm):
_warn_sign_verify_deprecated()
utils._check_bytes("signature", signature)
_check_signature_algorithm(signature_algorithm)
_check_not_prehashed(signature_algorithm.algorithm)
return _ECDSAVerificationContext(
self._backend, self, signature, signature_algorithm.algorithm
)
def public_numbers(self):
get_func, group = (
self._backend._ec_key_determine_group_get_func(self._ec_key)
)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
with self._backend._tmp_bn_ctx() as bn_ctx:
bn_x = self._backend._lib.BN_CTX_get(bn_ctx)
bn_y = self._backend._lib.BN_CTX_get(bn_ctx)
res = get_func(group, point, bn_x, bn_y, bn_ctx)
self._backend.openssl_assert(res == 1)
x = self._backend._bn_to_int(bn_x)
y = self._backend._bn_to_int(bn_y)
return ec.EllipticCurvePublicNumbers(
x=x,
y=y,
curve=self._curve
)
def _encode_point(self, format):
if format is serialization.PublicFormat.CompressedPoint:
conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED
else:
assert format is serialization.PublicFormat.UncompressedPoint
conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED
group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
self._backend.openssl_assert(group != self._backend._ffi.NULL)
point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
self._backend.openssl_assert(point != self._backend._ffi.NULL)
with self._backend._tmp_bn_ctx() as bn_ctx:
buflen = self._backend._lib.EC_POINT_point2oct(
group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx
)
self._backend.openssl_assert(buflen > 0)
buf = self._backend._ffi.new("char[]", buflen)
res = self._backend._lib.EC_POINT_point2oct(
group, point, conversion, buf, buflen, bn_ctx
)
self._backend.openssl_assert(buflen == res)
return self._backend._ffi.buffer(buf)[:]
def public_bytes(self, encoding, format):
if format is serialization.PublicFormat.PKCS1:
raise ValueError(
"EC public keys do not support PKCS1 serialization"
)
if (
encoding is serialization.Encoding.X962 or
format is serialization.PublicFormat.CompressedPoint or
format is serialization.PublicFormat.UncompressedPoint
):
if (
encoding is not serialization.Encoding.X962 or
format not in (
serialization.PublicFormat.CompressedPoint,
serialization.PublicFormat.UncompressedPoint
)
):
raise ValueError(
"X962 encoding must be used with CompressedPoint or "
"UncompressedPoint format"
)
return self._encode_point(format)
else:
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
None
)
def verify(self, signature, data, signature_algorithm):
_check_signature_algorithm(signature_algorithm)
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, signature_algorithm._algorithm
)
_ecdsa_sig_verify(self._backend, self, signature, data)

View File

@ -0,0 +1,151 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import exceptions, utils
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.ed25519 import (
Ed25519PrivateKey, Ed25519PublicKey, _ED25519_KEY_SIZE, _ED25519_SIG_SIZE
)
@utils.register_interface(Ed25519PublicKey)
class _Ed25519PublicKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(self, encoding, format):
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw or
format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PublicFormat.SubjectPublicKeyInfo
):
raise ValueError(
"format must be SubjectPublicKeyInfo when encoding is PEM or "
"DER"
)
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self):
buf = self._backend._ffi.new("unsigned char []", _ED25519_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED25519_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED25519_KEY_SIZE)[:]
def verify(self, signature, data):
evp_md_ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestVerifyInit(
evp_md_ctx, self._backend._ffi.NULL, self._backend._ffi.NULL,
self._backend._ffi.NULL, self._evp_pkey
)
self._backend.openssl_assert(res == 1)
res = self._backend._lib.EVP_DigestVerify(
evp_md_ctx, signature, len(signature), data, len(data)
)
if res != 1:
self._backend._consume_errors()
raise exceptions.InvalidSignature
@utils.register_interface(Ed25519PrivateKey)
class _Ed25519PrivateKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self):
buf = self._backend._ffi.new("unsigned char []", _ED25519_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED25519_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_KEY_SIZE)
public_bytes = self._backend._ffi.buffer(buf)[:]
return self._backend.ed25519_load_public_bytes(public_bytes)
def sign(self, data):
evp_md_ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestSignInit(
evp_md_ctx, self._backend._ffi.NULL, self._backend._ffi.NULL,
self._backend._ffi.NULL, self._evp_pkey
)
self._backend.openssl_assert(res == 1)
buf = self._backend._ffi.new("unsigned char[]", _ED25519_SIG_SIZE)
buflen = self._backend._ffi.new("size_t *", len(buf))
res = self._backend._lib.EVP_DigestSign(
evp_md_ctx, buf, buflen, data, len(data)
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_SIG_SIZE)
return self._backend._ffi.buffer(buf, buflen[0])[:]
def private_bytes(self, encoding, format, encryption_algorithm):
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw or
encoding is not serialization.Encoding.Raw or not
isinstance(encryption_algorithm, serialization.NoEncryption)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PrivateFormat.PKCS8
):
raise ValueError(
"format must be PKCS8 when encoding is PEM or DER"
)
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self._evp_pkey, None
)
def _raw_private_bytes(self):
buf = self._backend._ffi.new("unsigned char []", _ED25519_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED25519_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_private_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED25519_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED25519_KEY_SIZE)[:]

View File

@ -0,0 +1,154 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import exceptions, utils
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.ed448 import (
Ed448PrivateKey, Ed448PublicKey
)
_ED448_KEY_SIZE = 57
_ED448_SIG_SIZE = 114
@utils.register_interface(Ed448PublicKey)
class _Ed448PublicKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(self, encoding, format):
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw or
format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PublicFormat.SubjectPublicKeyInfo
):
raise ValueError(
"format must be SubjectPublicKeyInfo when encoding is PEM or "
"DER"
)
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self):
buf = self._backend._ffi.new("unsigned char []", _ED448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED448_KEY_SIZE)[:]
def verify(self, signature, data):
evp_md_ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestVerifyInit(
evp_md_ctx, self._backend._ffi.NULL, self._backend._ffi.NULL,
self._backend._ffi.NULL, self._evp_pkey
)
self._backend.openssl_assert(res == 1)
res = self._backend._lib.EVP_DigestVerify(
evp_md_ctx, signature, len(signature), data, len(data)
)
if res != 1:
self._backend._consume_errors()
raise exceptions.InvalidSignature
@utils.register_interface(Ed448PrivateKey)
class _Ed448PrivateKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self):
buf = self._backend._ffi.new("unsigned char []", _ED448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_KEY_SIZE)
public_bytes = self._backend._ffi.buffer(buf)[:]
return self._backend.ed448_load_public_bytes(public_bytes)
def sign(self, data):
evp_md_ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
self._backend.openssl_assert(evp_md_ctx != self._backend._ffi.NULL)
evp_md_ctx = self._backend._ffi.gc(
evp_md_ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestSignInit(
evp_md_ctx, self._backend._ffi.NULL, self._backend._ffi.NULL,
self._backend._ffi.NULL, self._evp_pkey
)
self._backend.openssl_assert(res == 1)
buf = self._backend._ffi.new("unsigned char[]", _ED448_SIG_SIZE)
buflen = self._backend._ffi.new("size_t *", len(buf))
res = self._backend._lib.EVP_DigestSign(
evp_md_ctx, buf, buflen, data, len(data)
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_SIG_SIZE)
return self._backend._ffi.buffer(buf, buflen[0])[:]
def private_bytes(self, encoding, format, encryption_algorithm):
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw or
encoding is not serialization.Encoding.Raw or not
isinstance(encryption_algorithm, serialization.NoEncryption)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PrivateFormat.PKCS8
):
raise ValueError(
"format must be PKCS8 when encoding is PEM or DER"
)
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self._evp_pkey, None
)
def _raw_private_bytes(self):
buf = self._backend._ffi.new("unsigned char []", _ED448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _ED448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_private_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _ED448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _ED448_KEY_SIZE)[:]

View File

@ -0,0 +1,660 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import calendar
import ipaddress
import six
from cryptography import utils, x509
from cryptography.hazmat.backends.openssl.decode_asn1 import (
_CRL_ENTRY_REASON_ENUM_TO_CODE, _DISTPOINT_TYPE_FULLNAME,
_DISTPOINT_TYPE_RELATIVENAME
)
from cryptography.x509.name import _ASN1Type
from cryptography.x509.oid import (
CRLEntryExtensionOID, ExtensionOID, OCSPExtensionOID,
)
def _encode_asn1_int(backend, x):
"""
Converts a python integer to an ASN1_INTEGER. The returned ASN1_INTEGER
will not be garbage collected (to support adding them to structs that take
ownership of the object). Be sure to register it for GC if it will be
discarded after use.
"""
# Convert Python integer to OpenSSL "bignum" in case value exceeds
# machine's native integer limits (note: `int_to_bn` doesn't automatically
# GC).
i = backend._int_to_bn(x)
i = backend._ffi.gc(i, backend._lib.BN_free)
# Wrap in an ASN.1 integer. Don't GC -- as documented.
i = backend._lib.BN_to_ASN1_INTEGER(i, backend._ffi.NULL)
backend.openssl_assert(i != backend._ffi.NULL)
return i
def _encode_asn1_int_gc(backend, x):
i = _encode_asn1_int(backend, x)
i = backend._ffi.gc(i, backend._lib.ASN1_INTEGER_free)
return i
def _encode_asn1_str(backend, data):
"""
Create an ASN1_OCTET_STRING from a Python byte string.
"""
s = backend._lib.ASN1_OCTET_STRING_new()
res = backend._lib.ASN1_OCTET_STRING_set(s, data, len(data))
backend.openssl_assert(res == 1)
return s
def _encode_asn1_utf8_str(backend, string):
"""
Create an ASN1_UTF8STRING from a Python unicode string.
This object will be an ASN1_STRING with UTF8 type in OpenSSL and
can be decoded with ASN1_STRING_to_UTF8.
"""
s = backend._lib.ASN1_UTF8STRING_new()
res = backend._lib.ASN1_STRING_set(
s, string.encode("utf8"), len(string.encode("utf8"))
)
backend.openssl_assert(res == 1)
return s
def _encode_asn1_str_gc(backend, data):
s = _encode_asn1_str(backend, data)
s = backend._ffi.gc(s, backend._lib.ASN1_OCTET_STRING_free)
return s
def _encode_inhibit_any_policy(backend, inhibit_any_policy):
return _encode_asn1_int_gc(backend, inhibit_any_policy.skip_certs)
def _encode_name(backend, name):
"""
The X509_NAME created will not be gc'd. Use _encode_name_gc if needed.
"""
subject = backend._lib.X509_NAME_new()
for rdn in name.rdns:
set_flag = 0 # indicate whether to add to last RDN or create new RDN
for attribute in rdn:
name_entry = _encode_name_entry(backend, attribute)
# X509_NAME_add_entry dups the object so we need to gc this copy
name_entry = backend._ffi.gc(
name_entry, backend._lib.X509_NAME_ENTRY_free
)
res = backend._lib.X509_NAME_add_entry(
subject, name_entry, -1, set_flag)
backend.openssl_assert(res == 1)
set_flag = -1
return subject
def _encode_name_gc(backend, attributes):
subject = _encode_name(backend, attributes)
subject = backend._ffi.gc(subject, backend._lib.X509_NAME_free)
return subject
def _encode_sk_name_entry(backend, attributes):
"""
The sk_X509_NAME_ENTRY created will not be gc'd.
"""
stack = backend._lib.sk_X509_NAME_ENTRY_new_null()
for attribute in attributes:
name_entry = _encode_name_entry(backend, attribute)
res = backend._lib.sk_X509_NAME_ENTRY_push(stack, name_entry)
backend.openssl_assert(res >= 1)
return stack
def _encode_name_entry(backend, attribute):
if attribute._type is _ASN1Type.BMPString:
value = attribute.value.encode('utf_16_be')
elif attribute._type is _ASN1Type.UniversalString:
value = attribute.value.encode('utf_32_be')
else:
value = attribute.value.encode('utf8')
obj = _txt2obj_gc(backend, attribute.oid.dotted_string)
name_entry = backend._lib.X509_NAME_ENTRY_create_by_OBJ(
backend._ffi.NULL, obj, attribute._type.value, value, len(value)
)
return name_entry
def _encode_crl_number_delta_crl_indicator(backend, ext):
return _encode_asn1_int_gc(backend, ext.crl_number)
def _encode_issuing_dist_point(backend, ext):
idp = backend._lib.ISSUING_DIST_POINT_new()
backend.openssl_assert(idp != backend._ffi.NULL)
idp = backend._ffi.gc(idp, backend._lib.ISSUING_DIST_POINT_free)
idp.onlyuser = 255 if ext.only_contains_user_certs else 0
idp.onlyCA = 255 if ext.only_contains_ca_certs else 0
idp.indirectCRL = 255 if ext.indirect_crl else 0
idp.onlyattr = 255 if ext.only_contains_attribute_certs else 0
if ext.only_some_reasons:
idp.onlysomereasons = _encode_reasonflags(
backend, ext.only_some_reasons
)
if ext.full_name:
idp.distpoint = _encode_full_name(backend, ext.full_name)
if ext.relative_name:
idp.distpoint = _encode_relative_name(backend, ext.relative_name)
return idp
def _encode_crl_reason(backend, crl_reason):
asn1enum = backend._lib.ASN1_ENUMERATED_new()
backend.openssl_assert(asn1enum != backend._ffi.NULL)
asn1enum = backend._ffi.gc(asn1enum, backend._lib.ASN1_ENUMERATED_free)
res = backend._lib.ASN1_ENUMERATED_set(
asn1enum, _CRL_ENTRY_REASON_ENUM_TO_CODE[crl_reason.reason]
)
backend.openssl_assert(res == 1)
return asn1enum
def _encode_invalidity_date(backend, invalidity_date):
time = backend._lib.ASN1_GENERALIZEDTIME_set(
backend._ffi.NULL, calendar.timegm(
invalidity_date.invalidity_date.timetuple()
)
)
backend.openssl_assert(time != backend._ffi.NULL)
time = backend._ffi.gc(time, backend._lib.ASN1_GENERALIZEDTIME_free)
return time
def _encode_certificate_policies(backend, certificate_policies):
cp = backend._lib.sk_POLICYINFO_new_null()
backend.openssl_assert(cp != backend._ffi.NULL)
cp = backend._ffi.gc(cp, backend._lib.sk_POLICYINFO_free)
for policy_info in certificate_policies:
pi = backend._lib.POLICYINFO_new()
backend.openssl_assert(pi != backend._ffi.NULL)
res = backend._lib.sk_POLICYINFO_push(cp, pi)
backend.openssl_assert(res >= 1)
oid = _txt2obj(backend, policy_info.policy_identifier.dotted_string)
pi.policyid = oid
if policy_info.policy_qualifiers:
pqis = backend._lib.sk_POLICYQUALINFO_new_null()
backend.openssl_assert(pqis != backend._ffi.NULL)
for qualifier in policy_info.policy_qualifiers:
pqi = backend._lib.POLICYQUALINFO_new()
backend.openssl_assert(pqi != backend._ffi.NULL)
res = backend._lib.sk_POLICYQUALINFO_push(pqis, pqi)
backend.openssl_assert(res >= 1)
if isinstance(qualifier, six.text_type):
pqi.pqualid = _txt2obj(
backend, x509.OID_CPS_QUALIFIER.dotted_string
)
pqi.d.cpsuri = _encode_asn1_str(
backend,
qualifier.encode("ascii"),
)
else:
assert isinstance(qualifier, x509.UserNotice)
pqi.pqualid = _txt2obj(
backend, x509.OID_CPS_USER_NOTICE.dotted_string
)
un = backend._lib.USERNOTICE_new()
backend.openssl_assert(un != backend._ffi.NULL)
pqi.d.usernotice = un
if qualifier.explicit_text:
un.exptext = _encode_asn1_utf8_str(
backend, qualifier.explicit_text
)
un.noticeref = _encode_notice_reference(
backend, qualifier.notice_reference
)
pi.qualifiers = pqis
return cp
def _encode_notice_reference(backend, notice):
if notice is None:
return backend._ffi.NULL
else:
nr = backend._lib.NOTICEREF_new()
backend.openssl_assert(nr != backend._ffi.NULL)
# organization is a required field
nr.organization = _encode_asn1_utf8_str(backend, notice.organization)
notice_stack = backend._lib.sk_ASN1_INTEGER_new_null()
nr.noticenos = notice_stack
for number in notice.notice_numbers:
num = _encode_asn1_int(backend, number)
res = backend._lib.sk_ASN1_INTEGER_push(notice_stack, num)
backend.openssl_assert(res >= 1)
return nr
def _txt2obj(backend, name):
"""
Converts a Python string with an ASN.1 object ID in dotted form to a
ASN1_OBJECT.
"""
name = name.encode('ascii')
obj = backend._lib.OBJ_txt2obj(name, 1)
backend.openssl_assert(obj != backend._ffi.NULL)
return obj
def _txt2obj_gc(backend, name):
obj = _txt2obj(backend, name)
obj = backend._ffi.gc(obj, backend._lib.ASN1_OBJECT_free)
return obj
def _encode_ocsp_nocheck(backend, ext):
# Doesn't need to be GC'd
return backend._lib.ASN1_NULL_new()
def _encode_key_usage(backend, key_usage):
set_bit = backend._lib.ASN1_BIT_STRING_set_bit
ku = backend._lib.ASN1_BIT_STRING_new()
ku = backend._ffi.gc(ku, backend._lib.ASN1_BIT_STRING_free)
res = set_bit(ku, 0, key_usage.digital_signature)
backend.openssl_assert(res == 1)
res = set_bit(ku, 1, key_usage.content_commitment)
backend.openssl_assert(res == 1)
res = set_bit(ku, 2, key_usage.key_encipherment)
backend.openssl_assert(res == 1)
res = set_bit(ku, 3, key_usage.data_encipherment)
backend.openssl_assert(res == 1)
res = set_bit(ku, 4, key_usage.key_agreement)
backend.openssl_assert(res == 1)
res = set_bit(ku, 5, key_usage.key_cert_sign)
backend.openssl_assert(res == 1)
res = set_bit(ku, 6, key_usage.crl_sign)
backend.openssl_assert(res == 1)
if key_usage.key_agreement:
res = set_bit(ku, 7, key_usage.encipher_only)
backend.openssl_assert(res == 1)
res = set_bit(ku, 8, key_usage.decipher_only)
backend.openssl_assert(res == 1)
else:
res = set_bit(ku, 7, 0)
backend.openssl_assert(res == 1)
res = set_bit(ku, 8, 0)
backend.openssl_assert(res == 1)
return ku
def _encode_authority_key_identifier(backend, authority_keyid):
akid = backend._lib.AUTHORITY_KEYID_new()
backend.openssl_assert(akid != backend._ffi.NULL)
akid = backend._ffi.gc(akid, backend._lib.AUTHORITY_KEYID_free)
if authority_keyid.key_identifier is not None:
akid.keyid = _encode_asn1_str(
backend,
authority_keyid.key_identifier,
)
if authority_keyid.authority_cert_issuer is not None:
akid.issuer = _encode_general_names(
backend, authority_keyid.authority_cert_issuer
)
if authority_keyid.authority_cert_serial_number is not None:
akid.serial = _encode_asn1_int(
backend, authority_keyid.authority_cert_serial_number
)
return akid
def _encode_basic_constraints(backend, basic_constraints):
constraints = backend._lib.BASIC_CONSTRAINTS_new()
constraints = backend._ffi.gc(
constraints, backend._lib.BASIC_CONSTRAINTS_free
)
constraints.ca = 255 if basic_constraints.ca else 0
if basic_constraints.ca and basic_constraints.path_length is not None:
constraints.pathlen = _encode_asn1_int(
backend, basic_constraints.path_length
)
return constraints
def _encode_authority_information_access(backend, authority_info_access):
aia = backend._lib.sk_ACCESS_DESCRIPTION_new_null()
backend.openssl_assert(aia != backend._ffi.NULL)
aia = backend._ffi.gc(
aia,
lambda x: backend._lib.sk_ACCESS_DESCRIPTION_pop_free(
x, backend._ffi.addressof(
backend._lib._original_lib, "ACCESS_DESCRIPTION_free"
)
)
)
for access_description in authority_info_access:
ad = backend._lib.ACCESS_DESCRIPTION_new()
method = _txt2obj(
backend, access_description.access_method.dotted_string
)
_encode_general_name_preallocated(
backend, access_description.access_location, ad.location
)
ad.method = method
res = backend._lib.sk_ACCESS_DESCRIPTION_push(aia, ad)
backend.openssl_assert(res >= 1)
return aia
def _encode_general_names(backend, names):
general_names = backend._lib.GENERAL_NAMES_new()
backend.openssl_assert(general_names != backend._ffi.NULL)
for name in names:
gn = _encode_general_name(backend, name)
res = backend._lib.sk_GENERAL_NAME_push(general_names, gn)
backend.openssl_assert(res != 0)
return general_names
def _encode_alt_name(backend, san):
general_names = _encode_general_names(backend, san)
general_names = backend._ffi.gc(
general_names, backend._lib.GENERAL_NAMES_free
)
return general_names
def _encode_subject_key_identifier(backend, ski):
return _encode_asn1_str_gc(backend, ski.digest)
def _encode_general_name(backend, name):
gn = backend._lib.GENERAL_NAME_new()
_encode_general_name_preallocated(backend, name, gn)
return gn
def _encode_general_name_preallocated(backend, name, gn):
if isinstance(name, x509.DNSName):
backend.openssl_assert(gn != backend._ffi.NULL)
gn.type = backend._lib.GEN_DNS
ia5 = backend._lib.ASN1_IA5STRING_new()
backend.openssl_assert(ia5 != backend._ffi.NULL)
# ia5strings are supposed to be ITU T.50 but to allow round-tripping
# of broken certs that encode utf8 we'll encode utf8 here too.
value = name.value.encode("utf8")
res = backend._lib.ASN1_STRING_set(ia5, value, len(value))
backend.openssl_assert(res == 1)
gn.d.dNSName = ia5
elif isinstance(name, x509.RegisteredID):
backend.openssl_assert(gn != backend._ffi.NULL)
gn.type = backend._lib.GEN_RID
obj = backend._lib.OBJ_txt2obj(
name.value.dotted_string.encode('ascii'), 1
)
backend.openssl_assert(obj != backend._ffi.NULL)
gn.d.registeredID = obj
elif isinstance(name, x509.DirectoryName):
backend.openssl_assert(gn != backend._ffi.NULL)
dir_name = _encode_name(backend, name.value)
gn.type = backend._lib.GEN_DIRNAME
gn.d.directoryName = dir_name
elif isinstance(name, x509.IPAddress):
backend.openssl_assert(gn != backend._ffi.NULL)
if isinstance(name.value, ipaddress.IPv4Network):
packed = (
name.value.network_address.packed +
utils.int_to_bytes(((1 << 32) - name.value.num_addresses), 4)
)
elif isinstance(name.value, ipaddress.IPv6Network):
packed = (
name.value.network_address.packed +
utils.int_to_bytes((1 << 128) - name.value.num_addresses, 16)
)
else:
packed = name.value.packed
ipaddr = _encode_asn1_str(backend, packed)
gn.type = backend._lib.GEN_IPADD
gn.d.iPAddress = ipaddr
elif isinstance(name, x509.OtherName):
backend.openssl_assert(gn != backend._ffi.NULL)
other_name = backend._lib.OTHERNAME_new()
backend.openssl_assert(other_name != backend._ffi.NULL)
type_id = backend._lib.OBJ_txt2obj(
name.type_id.dotted_string.encode('ascii'), 1
)
backend.openssl_assert(type_id != backend._ffi.NULL)
data = backend._ffi.new("unsigned char[]", name.value)
data_ptr_ptr = backend._ffi.new("unsigned char **")
data_ptr_ptr[0] = data
value = backend._lib.d2i_ASN1_TYPE(
backend._ffi.NULL, data_ptr_ptr, len(name.value)
)
if value == backend._ffi.NULL:
backend._consume_errors()
raise ValueError("Invalid ASN.1 data")
other_name.type_id = type_id
other_name.value = value
gn.type = backend._lib.GEN_OTHERNAME
gn.d.otherName = other_name
elif isinstance(name, x509.RFC822Name):
backend.openssl_assert(gn != backend._ffi.NULL)
# ia5strings are supposed to be ITU T.50 but to allow round-tripping
# of broken certs that encode utf8 we'll encode utf8 here too.
data = name.value.encode("utf8")
asn1_str = _encode_asn1_str(backend, data)
gn.type = backend._lib.GEN_EMAIL
gn.d.rfc822Name = asn1_str
elif isinstance(name, x509.UniformResourceIdentifier):
backend.openssl_assert(gn != backend._ffi.NULL)
# ia5strings are supposed to be ITU T.50 but to allow round-tripping
# of broken certs that encode utf8 we'll encode utf8 here too.
data = name.value.encode("utf8")
asn1_str = _encode_asn1_str(backend, data)
gn.type = backend._lib.GEN_URI
gn.d.uniformResourceIdentifier = asn1_str
else:
raise ValueError(
"{} is an unknown GeneralName type".format(name)
)
def _encode_extended_key_usage(backend, extended_key_usage):
eku = backend._lib.sk_ASN1_OBJECT_new_null()
eku = backend._ffi.gc(eku, backend._lib.sk_ASN1_OBJECT_free)
for oid in extended_key_usage:
obj = _txt2obj(backend, oid.dotted_string)
res = backend._lib.sk_ASN1_OBJECT_push(eku, obj)
backend.openssl_assert(res >= 1)
return eku
_CRLREASONFLAGS = {
x509.ReasonFlags.key_compromise: 1,
x509.ReasonFlags.ca_compromise: 2,
x509.ReasonFlags.affiliation_changed: 3,
x509.ReasonFlags.superseded: 4,
x509.ReasonFlags.cessation_of_operation: 5,
x509.ReasonFlags.certificate_hold: 6,
x509.ReasonFlags.privilege_withdrawn: 7,
x509.ReasonFlags.aa_compromise: 8,
}
def _encode_reasonflags(backend, reasons):
bitmask = backend._lib.ASN1_BIT_STRING_new()
backend.openssl_assert(bitmask != backend._ffi.NULL)
for reason in reasons:
res = backend._lib.ASN1_BIT_STRING_set_bit(
bitmask, _CRLREASONFLAGS[reason], 1
)
backend.openssl_assert(res == 1)
return bitmask
def _encode_full_name(backend, full_name):
dpn = backend._lib.DIST_POINT_NAME_new()
backend.openssl_assert(dpn != backend._ffi.NULL)
dpn.type = _DISTPOINT_TYPE_FULLNAME
dpn.name.fullname = _encode_general_names(backend, full_name)
return dpn
def _encode_relative_name(backend, relative_name):
dpn = backend._lib.DIST_POINT_NAME_new()
backend.openssl_assert(dpn != backend._ffi.NULL)
dpn.type = _DISTPOINT_TYPE_RELATIVENAME
dpn.name.relativename = _encode_sk_name_entry(backend, relative_name)
return dpn
def _encode_cdps_freshest_crl(backend, cdps):
cdp = backend._lib.sk_DIST_POINT_new_null()
cdp = backend._ffi.gc(cdp, backend._lib.sk_DIST_POINT_free)
for point in cdps:
dp = backend._lib.DIST_POINT_new()
backend.openssl_assert(dp != backend._ffi.NULL)
if point.reasons:
dp.reasons = _encode_reasonflags(backend, point.reasons)
if point.full_name:
dp.distpoint = _encode_full_name(backend, point.full_name)
if point.relative_name:
dp.distpoint = _encode_relative_name(backend, point.relative_name)
if point.crl_issuer:
dp.CRLissuer = _encode_general_names(backend, point.crl_issuer)
res = backend._lib.sk_DIST_POINT_push(cdp, dp)
backend.openssl_assert(res >= 1)
return cdp
def _encode_name_constraints(backend, name_constraints):
nc = backend._lib.NAME_CONSTRAINTS_new()
backend.openssl_assert(nc != backend._ffi.NULL)
nc = backend._ffi.gc(nc, backend._lib.NAME_CONSTRAINTS_free)
permitted = _encode_general_subtree(
backend, name_constraints.permitted_subtrees
)
nc.permittedSubtrees = permitted
excluded = _encode_general_subtree(
backend, name_constraints.excluded_subtrees
)
nc.excludedSubtrees = excluded
return nc
def _encode_policy_constraints(backend, policy_constraints):
pc = backend._lib.POLICY_CONSTRAINTS_new()
backend.openssl_assert(pc != backend._ffi.NULL)
pc = backend._ffi.gc(pc, backend._lib.POLICY_CONSTRAINTS_free)
if policy_constraints.require_explicit_policy is not None:
pc.requireExplicitPolicy = _encode_asn1_int(
backend, policy_constraints.require_explicit_policy
)
if policy_constraints.inhibit_policy_mapping is not None:
pc.inhibitPolicyMapping = _encode_asn1_int(
backend, policy_constraints.inhibit_policy_mapping
)
return pc
def _encode_general_subtree(backend, subtrees):
if subtrees is None:
return backend._ffi.NULL
else:
general_subtrees = backend._lib.sk_GENERAL_SUBTREE_new_null()
for name in subtrees:
gs = backend._lib.GENERAL_SUBTREE_new()
gs.base = _encode_general_name(backend, name)
res = backend._lib.sk_GENERAL_SUBTREE_push(general_subtrees, gs)
assert res >= 1
return general_subtrees
def _encode_nonce(backend, nonce):
return _encode_asn1_str_gc(backend, nonce.nonce)
_EXTENSION_ENCODE_HANDLERS = {
ExtensionOID.BASIC_CONSTRAINTS: _encode_basic_constraints,
ExtensionOID.SUBJECT_KEY_IDENTIFIER: _encode_subject_key_identifier,
ExtensionOID.KEY_USAGE: _encode_key_usage,
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: _encode_alt_name,
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _encode_alt_name,
ExtensionOID.EXTENDED_KEY_USAGE: _encode_extended_key_usage,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _encode_authority_key_identifier,
ExtensionOID.CERTIFICATE_POLICIES: _encode_certificate_policies,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_encode_authority_information_access
),
ExtensionOID.CRL_DISTRIBUTION_POINTS: _encode_cdps_freshest_crl,
ExtensionOID.FRESHEST_CRL: _encode_cdps_freshest_crl,
ExtensionOID.INHIBIT_ANY_POLICY: _encode_inhibit_any_policy,
ExtensionOID.OCSP_NO_CHECK: _encode_ocsp_nocheck,
ExtensionOID.NAME_CONSTRAINTS: _encode_name_constraints,
ExtensionOID.POLICY_CONSTRAINTS: _encode_policy_constraints,
}
_CRL_EXTENSION_ENCODE_HANDLERS = {
ExtensionOID.ISSUER_ALTERNATIVE_NAME: _encode_alt_name,
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: _encode_authority_key_identifier,
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: (
_encode_authority_information_access
),
ExtensionOID.CRL_NUMBER: _encode_crl_number_delta_crl_indicator,
ExtensionOID.DELTA_CRL_INDICATOR: _encode_crl_number_delta_crl_indicator,
ExtensionOID.ISSUING_DISTRIBUTION_POINT: _encode_issuing_dist_point,
ExtensionOID.FRESHEST_CRL: _encode_cdps_freshest_crl,
}
_CRL_ENTRY_EXTENSION_ENCODE_HANDLERS = {
CRLEntryExtensionOID.CERTIFICATE_ISSUER: _encode_alt_name,
CRLEntryExtensionOID.CRL_REASON: _encode_crl_reason,
CRLEntryExtensionOID.INVALIDITY_DATE: _encode_invalidity_date,
}
_OCSP_REQUEST_EXTENSION_ENCODE_HANDLERS = {
OCSPExtensionOID.NONCE: _encode_nonce,
}
_OCSP_BASICRESP_EXTENSION_ENCODE_HANDLERS = {
OCSPExtensionOID.NONCE: _encode_nonce,
}

View File

@ -0,0 +1,78 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import hashes
@utils.register_interface(hashes.HashContext)
class _HashContext(object):
def __init__(self, backend, algorithm, ctx=None):
self._algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
evp_md = self._backend._evp_md_from_algorithm(algorithm)
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{} is not a supported hash on this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
res = self._backend._lib.EVP_DigestInit_ex(ctx, evp_md,
self._backend._ffi.NULL)
self._backend.openssl_assert(res != 0)
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def copy(self):
copied_ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
res = self._backend._lib.EVP_MD_CTX_copy_ex(copied_ctx, self._ctx)
self._backend.openssl_assert(res != 0)
return _HashContext(self._backend, self.algorithm, ctx=copied_ctx)
def update(self, data):
data_ptr = self._backend._ffi.from_buffer(data)
res = self._backend._lib.EVP_DigestUpdate(
self._ctx, data_ptr, len(data)
)
self._backend.openssl_assert(res != 0)
def finalize(self):
if isinstance(self.algorithm, hashes.ExtendableOutputFunction):
# extendable output functions use a different finalize
return self._finalize_xof()
else:
buf = self._backend._ffi.new("unsigned char[]",
self._backend._lib.EVP_MAX_MD_SIZE)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.EVP_DigestFinal_ex(self._ctx, buf, outlen)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(
outlen[0] == self.algorithm.digest_size
)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def _finalize_xof(self):
buf = self._backend._ffi.new("unsigned char[]",
self.algorithm.digest_size)
res = self._backend._lib.EVP_DigestFinalXOF(
self._ctx, buf, self.algorithm.digest_size
)
self._backend.openssl_assert(res != 0)
return self._backend._ffi.buffer(buf)[:self.algorithm.digest_size]

View File

@ -0,0 +1,74 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import constant_time, hashes
@utils.register_interface(hashes.HashContext)
class _HMACContext(object):
def __init__(self, backend, key, algorithm, ctx=None):
self._algorithm = algorithm
self._backend = backend
if ctx is None:
ctx = self._backend._lib.Cryptography_HMAC_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(
ctx, self._backend._lib.Cryptography_HMAC_CTX_free
)
evp_md = self._backend._evp_md_from_algorithm(algorithm)
if evp_md == self._backend._ffi.NULL:
raise UnsupportedAlgorithm(
"{} is not a supported hash on this backend".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
key_ptr = self._backend._ffi.from_buffer(key)
res = self._backend._lib.HMAC_Init_ex(
ctx, key_ptr, len(key), evp_md, self._backend._ffi.NULL
)
self._backend.openssl_assert(res != 0)
self._ctx = ctx
self._key = key
algorithm = utils.read_only_property("_algorithm")
def copy(self):
copied_ctx = self._backend._lib.Cryptography_HMAC_CTX_new()
self._backend.openssl_assert(copied_ctx != self._backend._ffi.NULL)
copied_ctx = self._backend._ffi.gc(
copied_ctx, self._backend._lib.Cryptography_HMAC_CTX_free
)
res = self._backend._lib.HMAC_CTX_copy(copied_ctx, self._ctx)
self._backend.openssl_assert(res != 0)
return _HMACContext(
self._backend, self._key, self.algorithm, ctx=copied_ctx
)
def update(self, data):
data_ptr = self._backend._ffi.from_buffer(data)
res = self._backend._lib.HMAC_Update(self._ctx, data_ptr, len(data))
self._backend.openssl_assert(res != 0)
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]",
self._backend._lib.EVP_MAX_MD_SIZE)
outlen = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.HMAC_Final(self._ctx, buf, outlen)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(outlen[0] == self.algorithm.digest_size)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def verify(self, signature):
digest = self.finalize()
if not constant_time.bytes_eq(digest, signature):
raise InvalidSignature("Signature did not match digest.")

View File

@ -0,0 +1,381 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import functools
from cryptography import utils, x509
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.backends.openssl.decode_asn1 import (
_CRL_ENTRY_REASON_CODE_TO_ENUM, _OCSP_BASICRESP_EXT_PARSER,
_OCSP_REQ_EXT_PARSER, _asn1_integer_to_int,
_asn1_string_to_bytes, _decode_x509_name, _obj2txt,
_parse_asn1_generalized_time,
)
from cryptography.hazmat.backends.openssl.x509 import _Certificate
from cryptography.hazmat.primitives import serialization
from cryptography.x509.ocsp import (
OCSPCertStatus, OCSPRequest, OCSPResponse, OCSPResponseStatus,
_CERT_STATUS_TO_ENUM, _OIDS_TO_HASH, _RESPONSE_STATUS_TO_ENUM,
)
def _requires_successful_response(func):
@functools.wraps(func)
def wrapper(self, *args):
if self.response_status != OCSPResponseStatus.SUCCESSFUL:
raise ValueError(
"OCSP response status is not successful so the property "
"has no value"
)
else:
return func(self, *args)
return wrapper
def _issuer_key_hash(backend, cert_id):
key_hash = backend._ffi.new("ASN1_OCTET_STRING **")
res = backend._lib.OCSP_id_get0_info(
backend._ffi.NULL, backend._ffi.NULL,
key_hash, backend._ffi.NULL, cert_id
)
backend.openssl_assert(res == 1)
backend.openssl_assert(key_hash[0] != backend._ffi.NULL)
return _asn1_string_to_bytes(backend, key_hash[0])
def _issuer_name_hash(backend, cert_id):
name_hash = backend._ffi.new("ASN1_OCTET_STRING **")
res = backend._lib.OCSP_id_get0_info(
name_hash, backend._ffi.NULL,
backend._ffi.NULL, backend._ffi.NULL, cert_id
)
backend.openssl_assert(res == 1)
backend.openssl_assert(name_hash[0] != backend._ffi.NULL)
return _asn1_string_to_bytes(backend, name_hash[0])
def _serial_number(backend, cert_id):
num = backend._ffi.new("ASN1_INTEGER **")
res = backend._lib.OCSP_id_get0_info(
backend._ffi.NULL, backend._ffi.NULL,
backend._ffi.NULL, num, cert_id
)
backend.openssl_assert(res == 1)
backend.openssl_assert(num[0] != backend._ffi.NULL)
return _asn1_integer_to_int(backend, num[0])
def _hash_algorithm(backend, cert_id):
asn1obj = backend._ffi.new("ASN1_OBJECT **")
res = backend._lib.OCSP_id_get0_info(
backend._ffi.NULL, asn1obj,
backend._ffi.NULL, backend._ffi.NULL, cert_id
)
backend.openssl_assert(res == 1)
backend.openssl_assert(asn1obj[0] != backend._ffi.NULL)
oid = _obj2txt(backend, asn1obj[0])
try:
return _OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID: {} not recognized".format(oid)
)
@utils.register_interface(OCSPResponse)
class _OCSPResponse(object):
def __init__(self, backend, ocsp_response):
self._backend = backend
self._ocsp_response = ocsp_response
status = self._backend._lib.OCSP_response_status(self._ocsp_response)
self._backend.openssl_assert(status in _RESPONSE_STATUS_TO_ENUM)
self._status = _RESPONSE_STATUS_TO_ENUM[status]
if self._status is OCSPResponseStatus.SUCCESSFUL:
basic = self._backend._lib.OCSP_response_get1_basic(
self._ocsp_response
)
self._backend.openssl_assert(basic != self._backend._ffi.NULL)
self._basic = self._backend._ffi.gc(
basic, self._backend._lib.OCSP_BASICRESP_free
)
self._backend.openssl_assert(
self._backend._lib.OCSP_resp_count(self._basic) == 1
)
self._single = self._backend._lib.OCSP_resp_get0(self._basic, 0)
self._backend.openssl_assert(
self._single != self._backend._ffi.NULL
)
self._cert_id = self._backend._lib.OCSP_SINGLERESP_get0_id(
self._single
)
self._backend.openssl_assert(
self._cert_id != self._backend._ffi.NULL
)
response_status = utils.read_only_property("_status")
@property
@_requires_successful_response
def signature_algorithm_oid(self):
alg = self._backend._lib.OCSP_resp_get0_tbs_sigalg(self._basic)
self._backend.openssl_assert(alg != self._backend._ffi.NULL)
oid = _obj2txt(self._backend, alg.algorithm)
return x509.ObjectIdentifier(oid)
@property
@_requires_successful_response
def signature_hash_algorithm(self):
oid = self.signature_algorithm_oid
try:
return x509._SIG_OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID:{} not recognized".format(oid)
)
@property
@_requires_successful_response
def signature(self):
sig = self._backend._lib.OCSP_resp_get0_signature(self._basic)
self._backend.openssl_assert(sig != self._backend._ffi.NULL)
return _asn1_string_to_bytes(self._backend, sig)
@property
@_requires_successful_response
def tbs_response_bytes(self):
respdata = self._backend._lib.OCSP_resp_get0_respdata(self._basic)
self._backend.openssl_assert(respdata != self._backend._ffi.NULL)
pp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.i2d_OCSP_RESPDATA(respdata, pp)
self._backend.openssl_assert(pp[0] != self._backend._ffi.NULL)
pp = self._backend._ffi.gc(
pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0])
)
self._backend.openssl_assert(res > 0)
return self._backend._ffi.buffer(pp[0], res)[:]
@property
@_requires_successful_response
def certificates(self):
sk_x509 = self._backend._lib.OCSP_resp_get0_certs(self._basic)
num = self._backend._lib.sk_X509_num(sk_x509)
certs = []
for i in range(num):
x509 = self._backend._lib.sk_X509_value(sk_x509, i)
self._backend.openssl_assert(x509 != self._backend._ffi.NULL)
cert = _Certificate(self._backend, x509)
# We need to keep the OCSP response that the certificate came from
# alive until the Certificate object itself goes out of scope, so
# we give it a private reference.
cert._ocsp_resp = self
certs.append(cert)
return certs
@property
@_requires_successful_response
def responder_key_hash(self):
_, asn1_string = self._responder_key_name()
if asn1_string == self._backend._ffi.NULL:
return None
else:
return _asn1_string_to_bytes(self._backend, asn1_string)
@property
@_requires_successful_response
def responder_name(self):
x509_name, _ = self._responder_key_name()
if x509_name == self._backend._ffi.NULL:
return None
else:
return _decode_x509_name(self._backend, x509_name)
def _responder_key_name(self):
asn1_string = self._backend._ffi.new("ASN1_OCTET_STRING **")
x509_name = self._backend._ffi.new("X509_NAME **")
res = self._backend._lib.OCSP_resp_get0_id(
self._basic, asn1_string, x509_name
)
self._backend.openssl_assert(res == 1)
return x509_name[0], asn1_string[0]
@property
@_requires_successful_response
def produced_at(self):
produced_at = self._backend._lib.OCSP_resp_get0_produced_at(
self._basic
)
return _parse_asn1_generalized_time(self._backend, produced_at)
@property
@_requires_successful_response
def certificate_status(self):
status = self._backend._lib.OCSP_single_get0_status(
self._single,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(status in _CERT_STATUS_TO_ENUM)
return _CERT_STATUS_TO_ENUM[status]
@property
@_requires_successful_response
def revocation_time(self):
if self.certificate_status is not OCSPCertStatus.REVOKED:
return None
asn1_time = self._backend._ffi.new("ASN1_GENERALIZEDTIME **")
self._backend._lib.OCSP_single_get0_status(
self._single,
self._backend._ffi.NULL,
asn1_time,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(asn1_time[0] != self._backend._ffi.NULL)
return _parse_asn1_generalized_time(self._backend, asn1_time[0])
@property
@_requires_successful_response
def revocation_reason(self):
if self.certificate_status is not OCSPCertStatus.REVOKED:
return None
reason_ptr = self._backend._ffi.new("int *")
self._backend._lib.OCSP_single_get0_status(
self._single,
reason_ptr,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
# If no reason is encoded OpenSSL returns -1
if reason_ptr[0] == -1:
return None
else:
self._backend.openssl_assert(
reason_ptr[0] in _CRL_ENTRY_REASON_CODE_TO_ENUM
)
return _CRL_ENTRY_REASON_CODE_TO_ENUM[reason_ptr[0]]
@property
@_requires_successful_response
def this_update(self):
asn1_time = self._backend._ffi.new("ASN1_GENERALIZEDTIME **")
self._backend._lib.OCSP_single_get0_status(
self._single,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
asn1_time,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(asn1_time[0] != self._backend._ffi.NULL)
return _parse_asn1_generalized_time(self._backend, asn1_time[0])
@property
@_requires_successful_response
def next_update(self):
asn1_time = self._backend._ffi.new("ASN1_GENERALIZEDTIME **")
self._backend._lib.OCSP_single_get0_status(
self._single,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
asn1_time,
)
if asn1_time[0] != self._backend._ffi.NULL:
return _parse_asn1_generalized_time(self._backend, asn1_time[0])
else:
return None
@property
@_requires_successful_response
def issuer_key_hash(self):
return _issuer_key_hash(self._backend, self._cert_id)
@property
@_requires_successful_response
def issuer_name_hash(self):
return _issuer_name_hash(self._backend, self._cert_id)
@property
@_requires_successful_response
def hash_algorithm(self):
return _hash_algorithm(self._backend, self._cert_id)
@property
@_requires_successful_response
def serial_number(self):
return _serial_number(self._backend, self._cert_id)
@utils.cached_property
@_requires_successful_response
def extensions(self):
return _OCSP_BASICRESP_EXT_PARSER.parse(self._backend, self._basic)
def public_bytes(self, encoding):
if encoding is not serialization.Encoding.DER:
raise ValueError(
"The only allowed encoding value is Encoding.DER"
)
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_OCSP_RESPONSE_bio(
bio, self._ocsp_response
)
self._backend.openssl_assert(res > 0)
return self._backend._read_mem_bio(bio)
@utils.register_interface(OCSPRequest)
class _OCSPRequest(object):
def __init__(self, backend, ocsp_request):
if backend._lib.OCSP_request_onereq_count(ocsp_request) > 1:
raise NotImplementedError(
'OCSP request contains more than one request'
)
self._backend = backend
self._ocsp_request = ocsp_request
self._request = self._backend._lib.OCSP_request_onereq_get0(
self._ocsp_request, 0
)
self._backend.openssl_assert(self._request != self._backend._ffi.NULL)
self._cert_id = self._backend._lib.OCSP_onereq_get0_id(self._request)
self._backend.openssl_assert(self._cert_id != self._backend._ffi.NULL)
@property
def issuer_key_hash(self):
return _issuer_key_hash(self._backend, self._cert_id)
@property
def issuer_name_hash(self):
return _issuer_name_hash(self._backend, self._cert_id)
@property
def serial_number(self):
return _serial_number(self._backend, self._cert_id)
@property
def hash_algorithm(self):
return _hash_algorithm(self._backend, self._cert_id)
@utils.cached_property
def extensions(self):
return _OCSP_REQ_EXT_PARSER.parse(self._backend, self._ocsp_request)
def public_bytes(self, encoding):
if encoding is not serialization.Encoding.DER:
raise ValueError(
"The only allowed encoding value is Encoding.DER"
)
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_OCSP_REQUEST_bio(bio, self._ocsp_request)
self._backend.openssl_assert(res > 0)
return self._backend._read_mem_bio(bio)

View File

@ -0,0 +1,60 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.primitives import constant_time
_POLY1305_TAG_SIZE = 16
_POLY1305_KEY_SIZE = 32
class _Poly1305Context(object):
def __init__(self, backend, key):
self._backend = backend
key_ptr = self._backend._ffi.from_buffer(key)
# This function copies the key into OpenSSL-owned memory so we don't
# need to retain it ourselves
evp_pkey = self._backend._lib.EVP_PKEY_new_raw_private_key(
self._backend._lib.NID_poly1305,
self._backend._ffi.NULL, key_ptr, len(key)
)
self._backend.openssl_assert(evp_pkey != self._backend._ffi.NULL)
self._evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
ctx = self._backend._lib.Cryptography_EVP_MD_CTX_new()
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
self._ctx = self._backend._ffi.gc(
ctx, self._backend._lib.Cryptography_EVP_MD_CTX_free
)
res = self._backend._lib.EVP_DigestSignInit(
self._ctx, self._backend._ffi.NULL, self._backend._ffi.NULL,
self._backend._ffi.NULL, self._evp_pkey
)
self._backend.openssl_assert(res == 1)
def update(self, data):
data_ptr = self._backend._ffi.from_buffer(data)
res = self._backend._lib.EVP_DigestSignUpdate(
self._ctx, data_ptr, len(data)
)
self._backend.openssl_assert(res != 0)
def finalize(self):
buf = self._backend._ffi.new("unsigned char[]", _POLY1305_TAG_SIZE)
outlen = self._backend._ffi.new("size_t *")
res = self._backend._lib.EVP_DigestSignFinal(self._ctx, buf, outlen)
self._backend.openssl_assert(res != 0)
self._backend.openssl_assert(outlen[0] == _POLY1305_TAG_SIZE)
return self._backend._ffi.buffer(buf)[:outlen[0]]
def verify(self, tag):
mac = self.finalize()
if not constant_time.bytes_eq(mac, tag):
raise InvalidSignature("Value did not match computed tag.")

View File

@ -0,0 +1,478 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import math
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm, _check_not_prehashed,
_warn_sign_verify_deprecated
)
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext, AsymmetricVerificationContext, rsa
)
from cryptography.hazmat.primitives.asymmetric.padding import (
AsymmetricPadding, MGF1, OAEP, PKCS1v15, PSS, calculate_max_pss_salt_length
)
from cryptography.hazmat.primitives.asymmetric.rsa import (
RSAPrivateKeyWithSerialization, RSAPublicKeyWithSerialization
)
def _get_rsa_pss_salt_length(pss, key, hash_algorithm):
salt = pss._salt_length
if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
return calculate_max_pss_salt_length(key, hash_algorithm)
else:
return salt
def _enc_dec_rsa(backend, key, data, padding):
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Padding must be an instance of AsymmetricPadding.")
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, OAEP):
padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
if not backend.rsa_padding_supported(padding):
raise UnsupportedAlgorithm(
"This combination of padding and hash algorithm is not "
"supported by this backend.",
_Reasons.UNSUPPORTED_PADDING
)
else:
raise UnsupportedAlgorithm(
"{} is not supported by this backend.".format(
padding.name
),
_Reasons.UNSUPPORTED_PADDING
)
return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding)
def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding):
if isinstance(key, _RSAPublicKey):
init = backend._lib.EVP_PKEY_encrypt_init
crypt = backend._lib.EVP_PKEY_encrypt
else:
init = backend._lib.EVP_PKEY_decrypt_init
crypt = backend._lib.EVP_PKEY_decrypt
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
key._evp_pkey, backend._ffi.NULL
)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(buf_size > 0)
if (
isinstance(padding, OAEP) and
backend._lib.Cryptography_HAS_RSA_OAEP_MD
):
mgf1_md = backend._evp_md_non_null_from_algorithm(
padding._mgf._algorithm)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
oaep_md = backend._evp_md_non_null_from_algorithm(padding._algorithm)
res = backend._lib.EVP_PKEY_CTX_set_rsa_oaep_md(pkey_ctx, oaep_md)
backend.openssl_assert(res > 0)
if (
isinstance(padding, OAEP) and
padding._label is not None and
len(padding._label) > 0
):
# set0_rsa_oaep_label takes ownership of the char * so we need to
# copy it into some new memory
labelptr = backend._lib.OPENSSL_malloc(len(padding._label))
backend.openssl_assert(labelptr != backend._ffi.NULL)
backend._ffi.memmove(labelptr, padding._label, len(padding._label))
res = backend._lib.EVP_PKEY_CTX_set0_rsa_oaep_label(
pkey_ctx, labelptr, len(padding._label)
)
backend.openssl_assert(res == 1)
outlen = backend._ffi.new("size_t *", buf_size)
buf = backend._ffi.new("unsigned char[]", buf_size)
res = crypt(pkey_ctx, buf, outlen, data, len(data))
if res <= 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:outlen[0]]
def _handle_rsa_enc_dec_error(backend, key):
errors = backend._consume_errors()
backend.openssl_assert(errors)
backend.openssl_assert(errors[0].lib == backend._lib.ERR_LIB_RSA)
if isinstance(key, _RSAPublicKey):
backend.openssl_assert(
errors[0].reason == backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE
)
raise ValueError(
"Data too long for key size. Encrypt less data or use a "
"larger key size."
)
else:
decoding_errors = [
backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_01,
backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_02,
backend._lib.RSA_R_OAEP_DECODING_ERROR,
# Though this error looks similar to the
# RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE, this occurs on decrypts,
# rather than on encrypts
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_MODULUS,
]
if backend._lib.Cryptography_HAS_RSA_R_PKCS_DECODING_ERROR:
decoding_errors.append(backend._lib.RSA_R_PKCS_DECODING_ERROR)
backend.openssl_assert(errors[0].reason in decoding_errors)
raise ValueError("Decryption failed.")
def _rsa_sig_determine_padding(backend, key, padding, algorithm):
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Expected provider of AsymmetricPadding.")
pkey_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(pkey_size > 0)
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
if pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError("Digest too large for key size. Use a larger "
"key or different digest.")
padding_enum = backend._lib.RSA_PKCS1_PSS_PADDING
else:
raise UnsupportedAlgorithm(
"{} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
return padding_enum
def _rsa_sig_setup(backend, padding, algorithm, key, data, init_func):
padding_enum = _rsa_sig_determine_padding(backend, key, padding, algorithm)
evp_md = backend._evp_md_non_null_from_algorithm(algorithm)
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(key._evp_pkey, backend._ffi.NULL)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init_func(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_signature_md(pkey_ctx, evp_md)
if res == 0:
backend._consume_errors()
raise UnsupportedAlgorithm(
"{} is not supported by this backend for RSA signing.".format(
algorithm.name
),
_Reasons.UNSUPPORTED_HASH
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
if isinstance(padding, PSS):
res = backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx, _get_rsa_pss_salt_length(padding, key, algorithm)
)
backend.openssl_assert(res > 0)
mgf1_md = backend._evp_md_non_null_from_algorithm(
padding._mgf._algorithm)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
return pkey_ctx
def _rsa_sig_sign(backend, padding, algorithm, private_key, data):
pkey_ctx = _rsa_sig_setup(
backend, padding, algorithm, private_key, data,
backend._lib.EVP_PKEY_sign_init
)
buflen = backend._ffi.new("size_t *")
res = backend._lib.EVP_PKEY_sign(
pkey_ctx,
backend._ffi.NULL,
buflen,
data,
len(data)
)
backend.openssl_assert(res == 1)
buf = backend._ffi.new("unsigned char[]", buflen[0])
res = backend._lib.EVP_PKEY_sign(
pkey_ctx, buf, buflen, data, len(data))
if res != 1:
errors = backend._consume_errors()
backend.openssl_assert(errors[0].lib == backend._lib.ERR_LIB_RSA)
if (
errors[0].reason ==
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE
):
reason = ("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
else:
backend.openssl_assert(
errors[0].reason ==
backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY
)
reason = "Digest too large for key size. Use a larger key."
raise ValueError(reason)
return backend._ffi.buffer(buf)[:]
def _rsa_sig_verify(backend, padding, algorithm, public_key, signature, data):
pkey_ctx = _rsa_sig_setup(
backend, padding, algorithm, public_key, data,
backend._lib.EVP_PKEY_verify_init
)
res = backend._lib.EVP_PKEY_verify(
pkey_ctx, signature, len(signature), data, len(data)
)
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
backend.openssl_assert(res >= 0)
if res == 0:
backend._consume_errors()
raise InvalidSignature
@utils.register_interface(AsymmetricSignatureContext)
class _RSASignatureContext(object):
def __init__(self, backend, private_key, padding, algorithm):
self._backend = backend
self._private_key = private_key
# We now call _rsa_sig_determine_padding in _rsa_sig_setup. However
# we need to make a pointless call to it here so we maintain the
# API of erroring on init with this context if the values are invalid.
_rsa_sig_determine_padding(backend, private_key, padding, algorithm)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
return _rsa_sig_sign(
self._backend,
self._padding,
self._algorithm,
self._private_key,
self._hash_ctx.finalize()
)
@utils.register_interface(AsymmetricVerificationContext)
class _RSAVerificationContext(object):
def __init__(self, backend, public_key, signature, padding, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._padding = padding
# We now call _rsa_sig_determine_padding in _rsa_sig_setup. However
# we need to make a pointless call to it here so we maintain the
# API of erroring on init with this context if the values are invalid.
_rsa_sig_determine_padding(backend, public_key, padding, algorithm)
padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
return _rsa_sig_verify(
self._backend,
self._padding,
self._algorithm,
self._public_key,
self._signature,
self._hash_ctx.finalize()
)
@utils.register_interface(RSAPrivateKeyWithSerialization)
class _RSAPrivateKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, self._backend._ffi.NULL,
self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def signer(self, padding, algorithm):
_warn_sign_verify_deprecated()
_check_not_prehashed(algorithm)
return _RSASignatureContext(self._backend, self, padding, algorithm)
def decrypt(self, ciphertext, padding):
key_size_bytes = int(math.ceil(self.key_size / 8.0))
if key_size_bytes != len(ciphertext):
raise ValueError("Ciphertext length must be equal to key size.")
return _enc_dec_rsa(self._backend, self, ciphertext, padding)
def public_key(self):
ctx = self._backend._lib.RSAPublicKey_dup(self._rsa_cdata)
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
res = self._backend._lib.RSA_blinding_on(ctx, self._backend._ffi.NULL)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._rsa_cdata_to_evp_pkey(ctx)
return _RSAPublicKey(self._backend, ctx, evp_pkey)
def private_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
d = self._backend._ffi.new("BIGNUM **")
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
dmp1 = self._backend._ffi.new("BIGNUM **")
dmq1 = self._backend._ffi.new("BIGNUM **")
iqmp = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(self._rsa_cdata, n, e, d)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(d[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_factors(self._rsa_cdata, p, q)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_crt_params(
self._rsa_cdata, dmp1, dmq1, iqmp
)
self._backend.openssl_assert(dmp1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(dmq1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(iqmp[0] != self._backend._ffi.NULL)
return rsa.RSAPrivateNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
d=self._backend._bn_to_int(d[0]),
dmp1=self._backend._bn_to_int(dmp1[0]),
dmq1=self._backend._bn_to_int(dmq1[0]),
iqmp=self._backend._bn_to_int(iqmp[0]),
public_numbers=rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self._evp_pkey,
self._rsa_cdata
)
def sign(self, data, padding, algorithm):
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _rsa_sig_sign(self._backend, padding, algorithm, self, data)
@utils.register_interface(RSAPublicKeyWithSerialization)
class _RSAPublicKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, self._backend._ffi.NULL,
self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def verifier(self, signature, padding, algorithm):
_warn_sign_verify_deprecated()
utils._check_bytes("signature", signature)
_check_not_prehashed(algorithm)
return _RSAVerificationContext(
self._backend, self, signature, padding, algorithm
)
def encrypt(self, plaintext, padding):
return _enc_dec_rsa(self._backend, self, plaintext, padding)
def public_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, e, self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
return rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
def public_bytes(self, encoding, format):
return self._backend._public_key_bytes(
encoding,
format,
self,
self._evp_pkey,
self._rsa_cdata
)
def verify(self, signature, data, padding, algorithm):
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _rsa_sig_verify(
self._backend, padding, algorithm, self, signature, data
)

View File

@ -0,0 +1,69 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import warnings
from cryptography import utils
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric.utils import Prehashed
def _evp_pkey_derive(backend, evp_pkey, peer_public_key):
ctx = backend._lib.EVP_PKEY_CTX_new(evp_pkey, backend._ffi.NULL)
backend.openssl_assert(ctx != backend._ffi.NULL)
ctx = backend._ffi.gc(ctx, backend._lib.EVP_PKEY_CTX_free)
res = backend._lib.EVP_PKEY_derive_init(ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_derive_set_peer(
ctx, peer_public_key._evp_pkey
)
backend.openssl_assert(res == 1)
keylen = backend._ffi.new("size_t *")
res = backend._lib.EVP_PKEY_derive(ctx, backend._ffi.NULL, keylen)
backend.openssl_assert(res == 1)
backend.openssl_assert(keylen[0] > 0)
buf = backend._ffi.new("unsigned char[]", keylen[0])
res = backend._lib.EVP_PKEY_derive(ctx, buf, keylen)
if res != 1:
raise ValueError(
"Null shared key derived from public/private pair."
)
return backend._ffi.buffer(buf, keylen[0])[:]
def _calculate_digest_and_algorithm(backend, data, algorithm):
if not isinstance(algorithm, Prehashed):
hash_ctx = hashes.Hash(algorithm, backend)
hash_ctx.update(data)
data = hash_ctx.finalize()
else:
algorithm = algorithm._algorithm
if len(data) != algorithm.digest_size:
raise ValueError(
"The provided data must be the same length as the hash "
"algorithm's digest size."
)
return (data, algorithm)
def _check_not_prehashed(signature_algorithm):
if isinstance(signature_algorithm, Prehashed):
raise TypeError(
"Prehashed is only supported in the sign and verify methods. "
"It cannot be used with signer or verifier."
)
def _warn_sign_verify_deprecated():
warnings.warn(
"signer and verifier have been deprecated. Please use sign "
"and verify instead.",
utils.PersistentlyDeprecated2017,
stacklevel=3
)

View File

@ -0,0 +1,149 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import warnings
from cryptography import utils
from cryptography.hazmat.backends.openssl.utils import _evp_pkey_derive
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.x25519 import (
X25519PrivateKey, X25519PublicKey
)
_X25519_KEY_SIZE = 32
@utils.register_interface(X25519PublicKey)
class _X25519PublicKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(self, encoding=None, format=None):
if encoding is None or format is None:
if encoding is not None or format is not None:
raise ValueError("Both encoding and format are required")
else:
warnings.warn(
"public_bytes now requires encoding and format arguments. "
"Support for calling without arguments will be removed in "
"cryptography 2.7",
utils.DeprecatedIn25,
)
encoding = serialization.Encoding.Raw
format = serialization.PublicFormat.Raw
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw or
format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PublicFormat.SubjectPublicKeyInfo
):
raise ValueError(
"format must be SubjectPublicKeyInfo when encoding is PEM or "
"DER"
)
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self):
ucharpp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.EVP_PKEY_get1_tls_encodedpoint(
self._evp_pkey, ucharpp
)
self._backend.openssl_assert(res == 32)
self._backend.openssl_assert(ucharpp[0] != self._backend._ffi.NULL)
data = self._backend._ffi.gc(
ucharpp[0], self._backend._lib.OPENSSL_free
)
return self._backend._ffi.buffer(data, res)[:]
@utils.register_interface(X25519PrivateKey)
class _X25519PrivateKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self):
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_PUBKEY_bio(bio, self._evp_pkey)
self._backend.openssl_assert(res == 1)
evp_pkey = self._backend._lib.d2i_PUBKEY_bio(
bio, self._backend._ffi.NULL
)
self._backend.openssl_assert(evp_pkey != self._backend._ffi.NULL)
evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
return _X25519PublicKey(self._backend, evp_pkey)
def exchange(self, peer_public_key):
if not isinstance(peer_public_key, X25519PublicKey):
raise TypeError("peer_public_key must be X25519PublicKey.")
return _evp_pkey_derive(
self._backend, self._evp_pkey, peer_public_key
)
def private_bytes(self, encoding, format, encryption_algorithm):
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw or
encoding is not serialization.Encoding.Raw or not
isinstance(encryption_algorithm, serialization.NoEncryption)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PrivateFormat.PKCS8
):
raise ValueError(
"format must be PKCS8 when encoding is PEM or DER"
)
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self._evp_pkey, None
)
def _raw_private_bytes(self):
# When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can
# switch this to EVP_PKEY_new_raw_private_key
# The trick we use here is serializing to a PKCS8 key and just
# using the last 32 bytes, which is the key itself.
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_PKCS8PrivateKey_bio(
bio, self._evp_pkey,
self._backend._ffi.NULL, self._backend._ffi.NULL,
0, self._backend._ffi.NULL, self._backend._ffi.NULL
)
self._backend.openssl_assert(res == 1)
pkcs8 = self._backend._read_mem_bio(bio)
self._backend.openssl_assert(len(pkcs8) == 48)
return pkcs8[-_X25519_KEY_SIZE:]

View File

@ -0,0 +1,123 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.hazmat.backends.openssl.utils import _evp_pkey_derive
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric.x448 import (
X448PrivateKey, X448PublicKey
)
_X448_KEY_SIZE = 56
@utils.register_interface(X448PublicKey)
class _X448PublicKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_bytes(self, encoding, format):
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
encoding is not serialization.Encoding.Raw or
format is not serialization.PublicFormat.Raw
):
raise ValueError(
"When using Raw both encoding and format must be Raw"
)
return self._raw_public_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PublicFormat.SubjectPublicKeyInfo
):
raise ValueError(
"format must be SubjectPublicKeyInfo when encoding is PEM or "
"DER"
)
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, None
)
def _raw_public_bytes(self):
buf = self._backend._ffi.new("unsigned char []", _X448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _X448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _X448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _X448_KEY_SIZE)[:]
@utils.register_interface(X448PrivateKey)
class _X448PrivateKey(object):
def __init__(self, backend, evp_pkey):
self._backend = backend
self._evp_pkey = evp_pkey
def public_key(self):
buf = self._backend._ffi.new("unsigned char []", _X448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _X448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_public_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _X448_KEY_SIZE)
return self._backend.x448_load_public_bytes(buf)
def exchange(self, peer_public_key):
if not isinstance(peer_public_key, X448PublicKey):
raise TypeError("peer_public_key must be X448PublicKey.")
return _evp_pkey_derive(
self._backend, self._evp_pkey, peer_public_key
)
def private_bytes(self, encoding, format, encryption_algorithm):
if (
encoding is serialization.Encoding.Raw or
format is serialization.PublicFormat.Raw
):
if (
format is not serialization.PrivateFormat.Raw or
encoding is not serialization.Encoding.Raw or not
isinstance(encryption_algorithm, serialization.NoEncryption)
):
raise ValueError(
"When using Raw both encoding and format must be Raw "
"and encryption_algorithm must be NoEncryption()"
)
return self._raw_private_bytes()
if (
encoding in serialization._PEM_DER and
format is not serialization.PrivateFormat.PKCS8
):
raise ValueError(
"format must be PKCS8 when encoding is PEM or DER"
)
return self._backend._private_key_bytes(
encoding, format, encryption_algorithm, self._evp_pkey, None
)
def _raw_private_bytes(self):
buf = self._backend._ffi.new("unsigned char []", _X448_KEY_SIZE)
buflen = self._backend._ffi.new("size_t *", _X448_KEY_SIZE)
res = self._backend._lib.EVP_PKEY_get_raw_private_key(
self._evp_pkey, buf, buflen
)
self._backend.openssl_assert(res == 1)
self._backend.openssl_assert(buflen[0] == _X448_KEY_SIZE)
return self._backend._ffi.buffer(buf, _X448_KEY_SIZE)[:]

View File

@ -0,0 +1,546 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import datetime
import operator
from cryptography import utils, x509
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.backends.openssl.decode_asn1 import (
_CERTIFICATE_EXTENSION_PARSER, _CERTIFICATE_EXTENSION_PARSER_NO_SCT,
_CRL_EXTENSION_PARSER, _CSR_EXTENSION_PARSER,
_REVOKED_CERTIFICATE_EXTENSION_PARSER, _asn1_integer_to_int,
_asn1_string_to_bytes, _decode_x509_name, _obj2txt, _parse_asn1_time
)
from cryptography.hazmat.backends.openssl.encode_asn1 import (
_encode_asn1_int_gc
)
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa
@utils.register_interface(x509.Certificate)
class _Certificate(object):
def __init__(self, backend, x509):
self._backend = backend
self._x509 = x509
def __repr__(self):
return "<Certificate(subject={}, ...)>".format(self.subject)
def __eq__(self, other):
if not isinstance(other, x509.Certificate):
return NotImplemented
res = self._backend._lib.X509_cmp(self._x509, other._x509)
return res == 0
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.public_bytes(serialization.Encoding.DER))
def fingerprint(self, algorithm):
h = hashes.Hash(algorithm, self._backend)
h.update(self.public_bytes(serialization.Encoding.DER))
return h.finalize()
@property
def version(self):
version = self._backend._lib.X509_get_version(self._x509)
if version == 0:
return x509.Version.v1
elif version == 2:
return x509.Version.v3
else:
raise x509.InvalidVersion(
"{} is not a valid X509 version".format(version), version
)
@property
def serial_number(self):
asn1_int = self._backend._lib.X509_get_serialNumber(self._x509)
self._backend.openssl_assert(asn1_int != self._backend._ffi.NULL)
return _asn1_integer_to_int(self._backend, asn1_int)
def public_key(self):
pkey = self._backend._lib.X509_get_pubkey(self._x509)
if pkey == self._backend._ffi.NULL:
# Remove errors from the stack.
self._backend._consume_errors()
raise ValueError("Certificate public key is of an unknown type")
pkey = self._backend._ffi.gc(pkey, self._backend._lib.EVP_PKEY_free)
return self._backend._evp_pkey_to_public_key(pkey)
@property
def not_valid_before(self):
asn1_time = self._backend._lib.X509_getm_notBefore(self._x509)
return _parse_asn1_time(self._backend, asn1_time)
@property
def not_valid_after(self):
asn1_time = self._backend._lib.X509_getm_notAfter(self._x509)
return _parse_asn1_time(self._backend, asn1_time)
@property
def issuer(self):
issuer = self._backend._lib.X509_get_issuer_name(self._x509)
self._backend.openssl_assert(issuer != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, issuer)
@property
def subject(self):
subject = self._backend._lib.X509_get_subject_name(self._x509)
self._backend.openssl_assert(subject != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, subject)
@property
def signature_hash_algorithm(self):
oid = self.signature_algorithm_oid
try:
return x509._SIG_OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID:{} not recognized".format(oid)
)
@property
def signature_algorithm_oid(self):
alg = self._backend._ffi.new("X509_ALGOR **")
self._backend._lib.X509_get0_signature(
self._backend._ffi.NULL, alg, self._x509
)
self._backend.openssl_assert(alg[0] != self._backend._ffi.NULL)
oid = _obj2txt(self._backend, alg[0].algorithm)
return x509.ObjectIdentifier(oid)
@utils.cached_property
def extensions(self):
if self._backend._lib.CRYPTOGRAPHY_OPENSSL_110_OR_GREATER:
return _CERTIFICATE_EXTENSION_PARSER.parse(
self._backend, self._x509
)
else:
return _CERTIFICATE_EXTENSION_PARSER_NO_SCT.parse(
self._backend, self._x509
)
@property
def signature(self):
sig = self._backend._ffi.new("ASN1_BIT_STRING **")
self._backend._lib.X509_get0_signature(
sig, self._backend._ffi.NULL, self._x509
)
self._backend.openssl_assert(sig[0] != self._backend._ffi.NULL)
return _asn1_string_to_bytes(self._backend, sig[0])
@property
def tbs_certificate_bytes(self):
pp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.i2d_re_X509_tbs(self._x509, pp)
self._backend.openssl_assert(res > 0)
pp = self._backend._ffi.gc(
pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0])
)
return self._backend._ffi.buffer(pp[0], res)[:]
def public_bytes(self, encoding):
bio = self._backend._create_mem_bio_gc()
if encoding is serialization.Encoding.PEM:
res = self._backend._lib.PEM_write_bio_X509(bio, self._x509)
elif encoding is serialization.Encoding.DER:
res = self._backend._lib.i2d_X509_bio(bio, self._x509)
else:
raise TypeError("encoding must be an item from the Encoding enum")
self._backend.openssl_assert(res == 1)
return self._backend._read_mem_bio(bio)
@utils.register_interface(x509.RevokedCertificate)
class _RevokedCertificate(object):
def __init__(self, backend, crl, x509_revoked):
self._backend = backend
# The X509_REVOKED_value is a X509_REVOKED * that has
# no reference counting. This means when X509_CRL_free is
# called then the CRL and all X509_REVOKED * are freed. Since
# you can retain a reference to a single revoked certificate
# and let the CRL fall out of scope we need to retain a
# private reference to the CRL inside the RevokedCertificate
# object to prevent the gc from being called inappropriately.
self._crl = crl
self._x509_revoked = x509_revoked
@property
def serial_number(self):
asn1_int = self._backend._lib.X509_REVOKED_get0_serialNumber(
self._x509_revoked
)
self._backend.openssl_assert(asn1_int != self._backend._ffi.NULL)
return _asn1_integer_to_int(self._backend, asn1_int)
@property
def revocation_date(self):
return _parse_asn1_time(
self._backend,
self._backend._lib.X509_REVOKED_get0_revocationDate(
self._x509_revoked
)
)
@utils.cached_property
def extensions(self):
return _REVOKED_CERTIFICATE_EXTENSION_PARSER.parse(
self._backend, self._x509_revoked
)
@utils.register_interface(x509.CertificateRevocationList)
class _CertificateRevocationList(object):
def __init__(self, backend, x509_crl):
self._backend = backend
self._x509_crl = x509_crl
def __eq__(self, other):
if not isinstance(other, x509.CertificateRevocationList):
return NotImplemented
res = self._backend._lib.X509_CRL_cmp(self._x509_crl, other._x509_crl)
return res == 0
def __ne__(self, other):
return not self == other
def fingerprint(self, algorithm):
h = hashes.Hash(algorithm, self._backend)
bio = self._backend._create_mem_bio_gc()
res = self._backend._lib.i2d_X509_CRL_bio(
bio, self._x509_crl
)
self._backend.openssl_assert(res == 1)
der = self._backend._read_mem_bio(bio)
h.update(der)
return h.finalize()
@utils.cached_property
def _sorted_crl(self):
# X509_CRL_get0_by_serial sorts in place, which breaks a variety of
# things we don't want to break (like iteration and the signature).
# Let's dupe it and sort that instead.
dup = self._backend._lib.X509_CRL_dup(self._x509_crl)
self._backend.openssl_assert(dup != self._backend._ffi.NULL)
dup = self._backend._ffi.gc(dup, self._backend._lib.X509_CRL_free)
return dup
def get_revoked_certificate_by_serial_number(self, serial_number):
revoked = self._backend._ffi.new("X509_REVOKED **")
asn1_int = _encode_asn1_int_gc(self._backend, serial_number)
res = self._backend._lib.X509_CRL_get0_by_serial(
self._sorted_crl, revoked, asn1_int
)
if res == 0:
return None
else:
self._backend.openssl_assert(
revoked[0] != self._backend._ffi.NULL
)
return _RevokedCertificate(
self._backend, self._sorted_crl, revoked[0]
)
@property
def signature_hash_algorithm(self):
oid = self.signature_algorithm_oid
try:
return x509._SIG_OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID:{} not recognized".format(oid)
)
@property
def signature_algorithm_oid(self):
alg = self._backend._ffi.new("X509_ALGOR **")
self._backend._lib.X509_CRL_get0_signature(
self._x509_crl, self._backend._ffi.NULL, alg
)
self._backend.openssl_assert(alg[0] != self._backend._ffi.NULL)
oid = _obj2txt(self._backend, alg[0].algorithm)
return x509.ObjectIdentifier(oid)
@property
def issuer(self):
issuer = self._backend._lib.X509_CRL_get_issuer(self._x509_crl)
self._backend.openssl_assert(issuer != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, issuer)
@property
def next_update(self):
nu = self._backend._lib.X509_CRL_get_nextUpdate(self._x509_crl)
self._backend.openssl_assert(nu != self._backend._ffi.NULL)
return _parse_asn1_time(self._backend, nu)
@property
def last_update(self):
lu = self._backend._lib.X509_CRL_get_lastUpdate(self._x509_crl)
self._backend.openssl_assert(lu != self._backend._ffi.NULL)
return _parse_asn1_time(self._backend, lu)
@property
def signature(self):
sig = self._backend._ffi.new("ASN1_BIT_STRING **")
self._backend._lib.X509_CRL_get0_signature(
self._x509_crl, sig, self._backend._ffi.NULL
)
self._backend.openssl_assert(sig[0] != self._backend._ffi.NULL)
return _asn1_string_to_bytes(self._backend, sig[0])
@property
def tbs_certlist_bytes(self):
pp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.i2d_re_X509_CRL_tbs(self._x509_crl, pp)
self._backend.openssl_assert(res > 0)
pp = self._backend._ffi.gc(
pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0])
)
return self._backend._ffi.buffer(pp[0], res)[:]
def public_bytes(self, encoding):
bio = self._backend._create_mem_bio_gc()
if encoding is serialization.Encoding.PEM:
res = self._backend._lib.PEM_write_bio_X509_CRL(
bio, self._x509_crl
)
elif encoding is serialization.Encoding.DER:
res = self._backend._lib.i2d_X509_CRL_bio(bio, self._x509_crl)
else:
raise TypeError("encoding must be an item from the Encoding enum")
self._backend.openssl_assert(res == 1)
return self._backend._read_mem_bio(bio)
def _revoked_cert(self, idx):
revoked = self._backend._lib.X509_CRL_get_REVOKED(self._x509_crl)
r = self._backend._lib.sk_X509_REVOKED_value(revoked, idx)
self._backend.openssl_assert(r != self._backend._ffi.NULL)
return _RevokedCertificate(self._backend, self, r)
def __iter__(self):
for i in range(len(self)):
yield self._revoked_cert(i)
def __getitem__(self, idx):
if isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
return [self._revoked_cert(i) for i in range(start, stop, step)]
else:
idx = operator.index(idx)
if idx < 0:
idx += len(self)
if not 0 <= idx < len(self):
raise IndexError
return self._revoked_cert(idx)
def __len__(self):
revoked = self._backend._lib.X509_CRL_get_REVOKED(self._x509_crl)
if revoked == self._backend._ffi.NULL:
return 0
else:
return self._backend._lib.sk_X509_REVOKED_num(revoked)
@utils.cached_property
def extensions(self):
return _CRL_EXTENSION_PARSER.parse(self._backend, self._x509_crl)
def is_signature_valid(self, public_key):
if not isinstance(public_key, (dsa.DSAPublicKey, rsa.RSAPublicKey,
ec.EllipticCurvePublicKey)):
raise TypeError('Expecting one of DSAPublicKey, RSAPublicKey,'
' or EllipticCurvePublicKey.')
res = self._backend._lib.X509_CRL_verify(
self._x509_crl, public_key._evp_pkey
)
if res != 1:
self._backend._consume_errors()
return False
return True
@utils.register_interface(x509.CertificateSigningRequest)
class _CertificateSigningRequest(object):
def __init__(self, backend, x509_req):
self._backend = backend
self._x509_req = x509_req
def __eq__(self, other):
if not isinstance(other, _CertificateSigningRequest):
return NotImplemented
self_bytes = self.public_bytes(serialization.Encoding.DER)
other_bytes = other.public_bytes(serialization.Encoding.DER)
return self_bytes == other_bytes
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.public_bytes(serialization.Encoding.DER))
def public_key(self):
pkey = self._backend._lib.X509_REQ_get_pubkey(self._x509_req)
self._backend.openssl_assert(pkey != self._backend._ffi.NULL)
pkey = self._backend._ffi.gc(pkey, self._backend._lib.EVP_PKEY_free)
return self._backend._evp_pkey_to_public_key(pkey)
@property
def subject(self):
subject = self._backend._lib.X509_REQ_get_subject_name(self._x509_req)
self._backend.openssl_assert(subject != self._backend._ffi.NULL)
return _decode_x509_name(self._backend, subject)
@property
def signature_hash_algorithm(self):
oid = self.signature_algorithm_oid
try:
return x509._SIG_OIDS_TO_HASH[oid]
except KeyError:
raise UnsupportedAlgorithm(
"Signature algorithm OID:{} not recognized".format(oid)
)
@property
def signature_algorithm_oid(self):
alg = self._backend._ffi.new("X509_ALGOR **")
self._backend._lib.X509_REQ_get0_signature(
self._x509_req, self._backend._ffi.NULL, alg
)
self._backend.openssl_assert(alg[0] != self._backend._ffi.NULL)
oid = _obj2txt(self._backend, alg[0].algorithm)
return x509.ObjectIdentifier(oid)
@utils.cached_property
def extensions(self):
x509_exts = self._backend._lib.X509_REQ_get_extensions(self._x509_req)
x509_exts = self._backend._ffi.gc(
x509_exts,
lambda x: self._backend._lib.sk_X509_EXTENSION_pop_free(
x, self._backend._ffi.addressof(
self._backend._lib._original_lib, "X509_EXTENSION_free"
)
)
)
return _CSR_EXTENSION_PARSER.parse(self._backend, x509_exts)
def public_bytes(self, encoding):
bio = self._backend._create_mem_bio_gc()
if encoding is serialization.Encoding.PEM:
res = self._backend._lib.PEM_write_bio_X509_REQ(
bio, self._x509_req
)
elif encoding is serialization.Encoding.DER:
res = self._backend._lib.i2d_X509_REQ_bio(bio, self._x509_req)
else:
raise TypeError("encoding must be an item from the Encoding enum")
self._backend.openssl_assert(res == 1)
return self._backend._read_mem_bio(bio)
@property
def tbs_certrequest_bytes(self):
pp = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.i2d_re_X509_REQ_tbs(self._x509_req, pp)
self._backend.openssl_assert(res > 0)
pp = self._backend._ffi.gc(
pp, lambda pointer: self._backend._lib.OPENSSL_free(pointer[0])
)
return self._backend._ffi.buffer(pp[0], res)[:]
@property
def signature(self):
sig = self._backend._ffi.new("ASN1_BIT_STRING **")
self._backend._lib.X509_REQ_get0_signature(
self._x509_req, sig, self._backend._ffi.NULL
)
self._backend.openssl_assert(sig[0] != self._backend._ffi.NULL)
return _asn1_string_to_bytes(self._backend, sig[0])
@property
def is_signature_valid(self):
pkey = self._backend._lib.X509_REQ_get_pubkey(self._x509_req)
self._backend.openssl_assert(pkey != self._backend._ffi.NULL)
pkey = self._backend._ffi.gc(pkey, self._backend._lib.EVP_PKEY_free)
res = self._backend._lib.X509_REQ_verify(self._x509_req, pkey)
if res != 1:
self._backend._consume_errors()
return False
return True
@utils.register_interface(
x509.certificate_transparency.SignedCertificateTimestamp
)
class _SignedCertificateTimestamp(object):
def __init__(self, backend, sct_list, sct):
self._backend = backend
# Keep the SCT_LIST that this SCT came from alive.
self._sct_list = sct_list
self._sct = sct
@property
def version(self):
version = self._backend._lib.SCT_get_version(self._sct)
assert version == self._backend._lib.SCT_VERSION_V1
return x509.certificate_transparency.Version.v1
@property
def log_id(self):
out = self._backend._ffi.new("unsigned char **")
log_id_length = self._backend._lib.SCT_get0_log_id(self._sct, out)
assert log_id_length >= 0
return self._backend._ffi.buffer(out[0], log_id_length)[:]
@property
def timestamp(self):
timestamp = self._backend._lib.SCT_get_timestamp(self._sct)
milliseconds = timestamp % 1000
return datetime.datetime.utcfromtimestamp(
timestamp // 1000
).replace(microsecond=milliseconds * 1000)
@property
def entry_type(self):
entry_type = self._backend._lib.SCT_get_log_entry_type(self._sct)
# We currently only support loading SCTs from the X.509 extension, so
# we only have precerts.
assert entry_type == self._backend._lib.CT_LOG_ENTRY_TYPE_PRECERT
return x509.certificate_transparency.LogEntryType.PRE_CERTIFICATE
@property
def _signature(self):
ptrptr = self._backend._ffi.new("unsigned char **")
res = self._backend._lib.SCT_get0_signature(self._sct, ptrptr)
self._backend.openssl_assert(res > 0)
self._backend.openssl_assert(ptrptr[0] != self._backend._ffi.NULL)
return self._backend._ffi.buffer(ptrptr[0], res)[:]
def __hash__(self):
return hash(self._signature)
def __eq__(self, other):
if not isinstance(other, _SignedCertificateTimestamp):
return NotImplemented
return self._signature == other._signature
def __ne__(self, other):
return not self == other

View File

@ -0,0 +1,5 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function

View File

@ -0,0 +1,5 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function

View File

@ -0,0 +1,441 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
def cryptography_has_ec2m():
return [
"EC_POINT_set_affine_coordinates_GF2m",
"EC_POINT_get_affine_coordinates_GF2m",
"EC_POINT_set_compressed_coordinates_GF2m",
]
def cryptography_has_ec_1_0_2():
return [
"EC_curve_nid2nist",
]
def cryptography_has_set_ecdh_auto():
return [
"SSL_CTX_set_ecdh_auto",
]
def cryptography_has_rsa_r_pkcs_decoding_error():
return [
"RSA_R_PKCS_DECODING_ERROR"
]
def cryptography_has_rsa_oaep_md():
return [
"EVP_PKEY_CTX_set_rsa_oaep_md",
]
def cryptography_has_rsa_oaep_label():
return [
"EVP_PKEY_CTX_set0_rsa_oaep_label",
]
def cryptography_has_ssl3_method():
return [
"SSLv3_method",
"SSLv3_client_method",
"SSLv3_server_method",
]
def cryptography_has_alpn():
return [
"SSL_CTX_set_alpn_protos",
"SSL_set_alpn_protos",
"SSL_CTX_set_alpn_select_cb",
"SSL_get0_alpn_selected",
]
def cryptography_has_compression():
return [
"SSL_get_current_compression",
"SSL_get_current_expansion",
"SSL_COMP_get_name",
]
def cryptography_has_get_server_tmp_key():
return [
"SSL_get_server_tmp_key",
]
def cryptography_has_102_verification_error_codes():
return [
'X509_V_ERR_SUITE_B_INVALID_VERSION',
'X509_V_ERR_SUITE_B_INVALID_ALGORITHM',
'X509_V_ERR_SUITE_B_INVALID_CURVE',
'X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM',
'X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED',
'X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256',
'X509_V_ERR_HOSTNAME_MISMATCH',
'X509_V_ERR_EMAIL_MISMATCH',
'X509_V_ERR_IP_ADDRESS_MISMATCH'
]
def cryptography_has_102_verification_params():
return [
"X509_V_FLAG_SUITEB_128_LOS_ONLY",
"X509_V_FLAG_SUITEB_192_LOS",
"X509_V_FLAG_SUITEB_128_LOS",
"X509_VERIFY_PARAM_set1_host",
"X509_VERIFY_PARAM_set1_email",
"X509_VERIFY_PARAM_set1_ip",
"X509_VERIFY_PARAM_set1_ip_asc",
"X509_VERIFY_PARAM_set_hostflags",
"SSL_get0_param",
"X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT",
"X509_CHECK_FLAG_NO_WILDCARDS",
"X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS",
"X509_CHECK_FLAG_MULTI_LABEL_WILDCARDS",
"X509_CHECK_FLAG_SINGLE_LABEL_SUBDOMAINS"
]
def cryptography_has_110_verification_params():
return [
"X509_CHECK_FLAG_NEVER_CHECK_SUBJECT"
]
def cryptography_has_x509_v_flag_trusted_first():
return [
"X509_V_FLAG_TRUSTED_FIRST",
]
def cryptography_has_x509_v_flag_partial_chain():
return [
"X509_V_FLAG_PARTIAL_CHAIN",
]
def cryptography_has_set_cert_cb():
return [
"SSL_CTX_set_cert_cb",
"SSL_set_cert_cb",
]
def cryptography_has_ssl_st():
return [
"SSL_ST_BEFORE",
"SSL_ST_OK",
"SSL_ST_INIT",
"SSL_ST_RENEGOTIATE",
]
def cryptography_has_tls_st():
return [
"TLS_ST_BEFORE",
"TLS_ST_OK",
]
def cryptography_has_locking_callbacks():
return [
"Cryptography_setup_ssl_threads",
]
def cryptography_has_scrypt():
return [
"EVP_PBE_scrypt",
]
def cryptography_has_generic_dtls_method():
return [
"DTLS_method",
"DTLS_server_method",
"DTLS_client_method",
"SSL_OP_NO_DTLSv1",
"SSL_OP_NO_DTLSv1_2",
"DTLS_set_link_mtu",
"DTLS_get_link_min_mtu",
]
def cryptography_has_evp_pkey_dhx():
return [
"EVP_PKEY_DHX",
]
def cryptography_has_mem_functions():
return [
"Cryptography_CRYPTO_set_mem_functions",
]
def cryptography_has_sct():
return [
"SCT_get_version",
"SCT_get_log_entry_type",
"SCT_get0_log_id",
"SCT_get0_signature",
"SCT_get_timestamp",
"SCT_set_source",
"sk_SCT_num",
"sk_SCT_value",
"SCT_LIST_free",
"sk_SCT_push",
"sk_SCT_new_null",
"SCT_new",
"SCT_set1_log_id",
"SCT_set_timestamp",
"SCT_set_version",
"SCT_set_log_entry_type",
]
def cryptography_has_x509_store_ctx_get_issuer():
return [
"X509_STORE_get_get_issuer",
"X509_STORE_set_get_issuer",
]
def cryptography_has_x25519():
return [
"EVP_PKEY_X25519",
"NID_X25519",
]
def cryptography_has_x448():
return [
"EVP_PKEY_X448",
"NID_X448",
]
def cryptography_has_ed448():
return [
"EVP_PKEY_ED448",
"NID_ED448",
]
def cryptography_has_ed25519():
return [
"NID_ED25519",
"EVP_PKEY_ED25519",
]
def cryptography_has_poly1305():
return [
"NID_poly1305",
"EVP_PKEY_POLY1305",
]
def cryptography_has_oneshot_evp_digest_sign_verify():
return [
"EVP_DigestSign",
"EVP_DigestVerify",
]
def cryptography_has_evp_digestfinal_xof():
return [
"EVP_DigestFinalXOF",
]
def cryptography_has_evp_pkey_get_set_tls_encodedpoint():
return [
"EVP_PKEY_get1_tls_encodedpoint",
"EVP_PKEY_set1_tls_encodedpoint",
]
def cryptography_has_fips():
return [
"FIPS_mode_set",
"FIPS_mode",
]
def cryptography_has_ssl_sigalgs():
return [
"SSL_CTX_set1_sigalgs_list",
"SSL_get_sigalgs",
]
def cryptography_has_psk():
return [
"SSL_CTX_use_psk_identity_hint",
"SSL_CTX_set_psk_server_callback",
"SSL_CTX_set_psk_client_callback",
]
def cryptography_has_custom_ext():
return [
"SSL_CTX_add_client_custom_ext",
"SSL_CTX_add_server_custom_ext",
"SSL_extension_supported",
]
def cryptography_has_openssl_cleanup():
return [
"OPENSSL_cleanup",
]
def cryptography_has_cipher_details():
return [
"SSL_CIPHER_is_aead",
"SSL_CIPHER_get_cipher_nid",
"SSL_CIPHER_get_digest_nid",
"SSL_CIPHER_get_kx_nid",
"SSL_CIPHER_get_auth_nid",
]
def cryptography_has_tlsv13():
return [
"SSL_OP_NO_TLSv1_3",
"SSL_VERIFY_POST_HANDSHAKE",
"SSL_CTX_set_ciphersuites",
"SSL_verify_client_post_handshake",
"SSL_CTX_set_post_handshake_auth",
"SSL_set_post_handshake_auth",
"SSL_SESSION_get_max_early_data",
"SSL_write_early_data",
"SSL_read_early_data",
"SSL_CTX_set_max_early_data",
]
def cryptography_has_raw_key():
return [
"EVP_PKEY_new_raw_private_key",
"EVP_PKEY_new_raw_public_key",
"EVP_PKEY_get_raw_private_key",
"EVP_PKEY_get_raw_public_key",
]
def cryptography_has_evp_r_memory_limit_exceeded():
return [
"EVP_R_MEMORY_LIMIT_EXCEEDED",
]
def cryptography_has_engine():
return [
"ENGINE_by_id",
"ENGINE_init",
"ENGINE_finish",
"ENGINE_get_default_RAND",
"ENGINE_set_default_RAND",
"ENGINE_unregister_RAND",
"ENGINE_ctrl_cmd",
"ENGINE_free",
"ENGINE_get_name",
"Cryptography_add_osrandom_engine",
]
def cryptography_has_verified_chain():
return [
"SSL_get0_verified_chain",
]
# This is a mapping of
# {condition: function-returning-names-dependent-on-that-condition} so we can
# loop over them and delete unsupported names at runtime. It will be removed
# when cffi supports #if in cdef. We use functions instead of just a dict of
# lists so we can use coverage to measure which are used.
CONDITIONAL_NAMES = {
"Cryptography_HAS_EC2M": cryptography_has_ec2m,
"Cryptography_HAS_EC_1_0_2": cryptography_has_ec_1_0_2,
"Cryptography_HAS_SET_ECDH_AUTO": cryptography_has_set_ecdh_auto,
"Cryptography_HAS_RSA_R_PKCS_DECODING_ERROR": (
cryptography_has_rsa_r_pkcs_decoding_error
),
"Cryptography_HAS_RSA_OAEP_MD": cryptography_has_rsa_oaep_md,
"Cryptography_HAS_RSA_OAEP_LABEL": cryptography_has_rsa_oaep_label,
"Cryptography_HAS_SSL3_METHOD": cryptography_has_ssl3_method,
"Cryptography_HAS_ALPN": cryptography_has_alpn,
"Cryptography_HAS_COMPRESSION": cryptography_has_compression,
"Cryptography_HAS_GET_SERVER_TMP_KEY": cryptography_has_get_server_tmp_key,
"Cryptography_HAS_102_VERIFICATION_ERROR_CODES": (
cryptography_has_102_verification_error_codes
),
"Cryptography_HAS_102_VERIFICATION_PARAMS": (
cryptography_has_102_verification_params
),
"Cryptography_HAS_110_VERIFICATION_PARAMS": (
cryptography_has_110_verification_params
),
"Cryptography_HAS_X509_V_FLAG_TRUSTED_FIRST": (
cryptography_has_x509_v_flag_trusted_first
),
"Cryptography_HAS_X509_V_FLAG_PARTIAL_CHAIN": (
cryptography_has_x509_v_flag_partial_chain
),
"Cryptography_HAS_SET_CERT_CB": cryptography_has_set_cert_cb,
"Cryptography_HAS_SSL_ST": cryptography_has_ssl_st,
"Cryptography_HAS_TLS_ST": cryptography_has_tls_st,
"Cryptography_HAS_LOCKING_CALLBACKS": cryptography_has_locking_callbacks,
"Cryptography_HAS_SCRYPT": cryptography_has_scrypt,
"Cryptography_HAS_GENERIC_DTLS_METHOD": (
cryptography_has_generic_dtls_method
),
"Cryptography_HAS_EVP_PKEY_DHX": cryptography_has_evp_pkey_dhx,
"Cryptography_HAS_MEM_FUNCTIONS": cryptography_has_mem_functions,
"Cryptography_HAS_SCT": cryptography_has_sct,
"Cryptography_HAS_X509_STORE_CTX_GET_ISSUER": (
cryptography_has_x509_store_ctx_get_issuer
),
"Cryptography_HAS_X25519": cryptography_has_x25519,
"Cryptography_HAS_X448": cryptography_has_x448,
"Cryptography_HAS_ED448": cryptography_has_ed448,
"Cryptography_HAS_ED25519": cryptography_has_ed25519,
"Cryptography_HAS_POLY1305": cryptography_has_poly1305,
"Cryptography_HAS_ONESHOT_EVP_DIGEST_SIGN_VERIFY": (
cryptography_has_oneshot_evp_digest_sign_verify
),
"Cryptography_HAS_EVP_PKEY_get_set_tls_encodedpoint": (
cryptography_has_evp_pkey_get_set_tls_encodedpoint
),
"Cryptography_HAS_FIPS": cryptography_has_fips,
"Cryptography_HAS_SIGALGS": cryptography_has_ssl_sigalgs,
"Cryptography_HAS_PSK": cryptography_has_psk,
"Cryptography_HAS_CUSTOM_EXT": cryptography_has_custom_ext,
"Cryptography_HAS_OPENSSL_CLEANUP": cryptography_has_openssl_cleanup,
"Cryptography_HAS_CIPHER_DETAILS": cryptography_has_cipher_details,
"Cryptography_HAS_TLSv1_3": cryptography_has_tlsv13,
"Cryptography_HAS_RAW_KEY": cryptography_has_raw_key,
"Cryptography_HAS_EVP_DIGESTFINAL_XOF": (
cryptography_has_evp_digestfinal_xof
),
"Cryptography_HAS_EVP_R_MEMORY_LIMIT_EXCEEDED": (
cryptography_has_evp_r_memory_limit_exceeded
),
"Cryptography_HAS_ENGINE": cryptography_has_engine,
"Cryptography_HAS_VERIFIED_CHAIN": cryptography_has_verified_chain,
}

View File

@ -0,0 +1,197 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import collections
import threading
import types
import warnings
import cryptography
from cryptography import utils
from cryptography.exceptions import InternalError
from cryptography.hazmat.bindings._openssl import ffi, lib
from cryptography.hazmat.bindings.openssl._conditional import CONDITIONAL_NAMES
_OpenSSLErrorWithText = collections.namedtuple(
"_OpenSSLErrorWithText", ["code", "lib", "func", "reason", "reason_text"]
)
class _OpenSSLError(object):
def __init__(self, code, lib, func, reason):
self._code = code
self._lib = lib
self._func = func
self._reason = reason
def _lib_reason_match(self, lib, reason):
return lib == self.lib and reason == self.reason
code = utils.read_only_property("_code")
lib = utils.read_only_property("_lib")
func = utils.read_only_property("_func")
reason = utils.read_only_property("_reason")
def _consume_errors(lib):
errors = []
while True:
code = lib.ERR_get_error()
if code == 0:
break
err_lib = lib.ERR_GET_LIB(code)
err_func = lib.ERR_GET_FUNC(code)
err_reason = lib.ERR_GET_REASON(code)
errors.append(_OpenSSLError(code, err_lib, err_func, err_reason))
return errors
def _openssl_assert(lib, ok):
if not ok:
errors = _consume_errors(lib)
errors_with_text = []
for err in errors:
buf = ffi.new("char[]", 256)
lib.ERR_error_string_n(err.code, buf, len(buf))
err_text_reason = ffi.string(buf)
errors_with_text.append(
_OpenSSLErrorWithText(
err.code, err.lib, err.func, err.reason, err_text_reason
)
)
raise InternalError(
"Unknown OpenSSL error. This error is commonly encountered when "
"another library is not cleaning up the OpenSSL error stack. If "
"you are using cryptography with another library that uses "
"OpenSSL try disabling it before reporting a bug. Otherwise "
"please file an issue at https://github.com/pyca/cryptography/"
"issues with information on how to reproduce "
"this. ({0!r})".format(errors_with_text),
errors_with_text
)
def build_conditional_library(lib, conditional_names):
conditional_lib = types.ModuleType("lib")
conditional_lib._original_lib = lib
excluded_names = set()
for condition, names_cb in conditional_names.items():
if not getattr(lib, condition):
excluded_names.update(names_cb())
for attr in dir(lib):
if attr not in excluded_names:
setattr(conditional_lib, attr, getattr(lib, attr))
return conditional_lib
class Binding(object):
"""
OpenSSL API wrapper.
"""
lib = None
ffi = ffi
_lib_loaded = False
_init_lock = threading.Lock()
_lock_init_lock = threading.Lock()
def __init__(self):
self._ensure_ffi_initialized()
@classmethod
def _register_osrandom_engine(cls):
# Clear any errors extant in the queue before we start. In many
# scenarios other things may be interacting with OpenSSL in the same
# process space and it has proven untenable to assume that they will
# reliably clear the error queue. Once we clear it here we will
# error on any subsequent unexpected item in the stack.
cls.lib.ERR_clear_error()
if cls.lib.Cryptography_HAS_ENGINE:
result = cls.lib.Cryptography_add_osrandom_engine()
_openssl_assert(cls.lib, result in (1, 2))
@classmethod
def _ensure_ffi_initialized(cls):
with cls._init_lock:
if not cls._lib_loaded:
cls.lib = build_conditional_library(lib, CONDITIONAL_NAMES)
cls._lib_loaded = True
# initialize the SSL library
cls.lib.SSL_library_init()
# adds all ciphers/digests for EVP
cls.lib.OpenSSL_add_all_algorithms()
# loads error strings for libcrypto and libssl functions
cls.lib.SSL_load_error_strings()
cls._register_osrandom_engine()
@classmethod
def init_static_locks(cls):
with cls._lock_init_lock:
cls._ensure_ffi_initialized()
# Use Python's implementation if available, importing _ssl triggers
# the setup for this.
__import__("_ssl")
if (not cls.lib.Cryptography_HAS_LOCKING_CALLBACKS or
cls.lib.CRYPTO_get_locking_callback() != cls.ffi.NULL):
return
# If nothing else has setup a locking callback already, we set up
# our own
res = lib.Cryptography_setup_ssl_threads()
_openssl_assert(cls.lib, res == 1)
def _verify_openssl_version(lib):
if (
lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_102 and
not lib.CRYPTOGRAPHY_IS_LIBRESSL
):
warnings.warn(
"OpenSSL version 1.0.1 is no longer supported by the OpenSSL "
"project, please upgrade. The next version of cryptography will "
"drop support for it.",
utils.CryptographyDeprecationWarning
)
def _verify_package_version(version):
# Occasionally we run into situations where the version of the Python
# package does not match the version of the shared object that is loaded.
# This may occur in environments where multiple versions of cryptography
# are installed and available in the python path. To avoid errors cropping
# up later this code checks that the currently imported package and the
# shared object that were loaded have the same version and raise an
# ImportError if they do not
so_package_version = ffi.string(lib.CRYPTOGRAPHY_PACKAGE_VERSION)
if version.encode("ascii") != so_package_version:
raise ImportError(
"The version of cryptography does not match the loaded "
"shared object. This can happen if you have multiple copies of "
"cryptography installed in your Python path. Please try creating "
"a new virtual environment to resolve this issue. "
"Loaded python version: {}, shared object version: {}".format(
version, so_package_version
)
)
_verify_package_version(cryptography.__version__)
# OpenSSL is not thread safe until the locks are initialized. We call this
# method in module scope so that it executes with the import lock. On
# Pythons < 3.4 this import lock is a global lock, which can prevent a race
# condition registering the OpenSSL locks. On Python 3.4+ the import lock
# is per module so this approach will not work.
Binding.init_static_locks()
_verify_openssl_version(Binding.lib)

View File

@ -0,0 +1,5 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function

View File

@ -0,0 +1,40 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class AsymmetricSignatureContext(object):
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes and returns nothing.
"""
@abc.abstractmethod
def finalize(self):
"""
Returns the signature as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class AsymmetricVerificationContext(object):
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes and returns nothing.
"""
@abc.abstractmethod
def verify(self):
"""
Raises an exception if the bytes provided to update do not match the
signature or the signature does not match the public key.
"""

View File

@ -0,0 +1,212 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
def generate_parameters(generator, key_size, backend):
return backend.generate_dh_parameters(generator, key_size)
class DHPrivateNumbers(object):
def __init__(self, x, public_numbers):
if not isinstance(x, six.integer_types):
raise TypeError("x must be an integer.")
if not isinstance(public_numbers, DHPublicNumbers):
raise TypeError("public_numbers must be an instance of "
"DHPublicNumbers.")
self._x = x
self._public_numbers = public_numbers
def __eq__(self, other):
if not isinstance(other, DHPrivateNumbers):
return NotImplemented
return (
self._x == other._x and
self._public_numbers == other._public_numbers
)
def __ne__(self, other):
return not self == other
def private_key(self, backend):
return backend.load_dh_private_numbers(self)
public_numbers = utils.read_only_property("_public_numbers")
x = utils.read_only_property("_x")
class DHPublicNumbers(object):
def __init__(self, y, parameter_numbers):
if not isinstance(y, six.integer_types):
raise TypeError("y must be an integer.")
if not isinstance(parameter_numbers, DHParameterNumbers):
raise TypeError(
"parameters must be an instance of DHParameterNumbers.")
self._y = y
self._parameter_numbers = parameter_numbers
def __eq__(self, other):
if not isinstance(other, DHPublicNumbers):
return NotImplemented
return (
self._y == other._y and
self._parameter_numbers == other._parameter_numbers
)
def __ne__(self, other):
return not self == other
def public_key(self, backend):
return backend.load_dh_public_numbers(self)
y = utils.read_only_property("_y")
parameter_numbers = utils.read_only_property("_parameter_numbers")
class DHParameterNumbers(object):
def __init__(self, p, g, q=None):
if (
not isinstance(p, six.integer_types) or
not isinstance(g, six.integer_types)
):
raise TypeError("p and g must be integers")
if q is not None and not isinstance(q, six.integer_types):
raise TypeError("q must be integer or None")
if g < 2:
raise ValueError("DH generator must be 2 or greater")
self._p = p
self._g = g
self._q = q
def __eq__(self, other):
if not isinstance(other, DHParameterNumbers):
return NotImplemented
return (
self._p == other._p and
self._g == other._g and
self._q == other._q
)
def __ne__(self, other):
return not self == other
def parameters(self, backend):
return backend.load_dh_parameter_numbers(self)
p = utils.read_only_property("_p")
g = utils.read_only_property("_g")
q = utils.read_only_property("_q")
@six.add_metaclass(abc.ABCMeta)
class DHParameters(object):
@abc.abstractmethod
def generate_private_key(self):
"""
Generates and returns a DHPrivateKey.
"""
@abc.abstractmethod
def parameter_bytes(self, encoding, format):
"""
Returns the parameters serialized as bytes.
"""
@abc.abstractmethod
def parameter_numbers(self):
"""
Returns a DHParameterNumbers.
"""
DHParametersWithSerialization = DHParameters
@six.add_metaclass(abc.ABCMeta)
class DHPrivateKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self):
"""
The DHPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self):
"""
The DHParameters object associated with this private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key):
"""
Given peer's DHPublicKey, carry out the key exchange and
return shared key as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class DHPrivateKeyWithSerialization(DHPrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns a DHPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
Returns the key serialized as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class DHPublicKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self):
"""
The DHParameters object associated with this public key.
"""
@abc.abstractmethod
def public_numbers(self):
"""
Returns a DHPublicNumbers.
"""
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
Returns the key serialized as bytes.
"""
DHPublicKeyWithSerialization = DHPublicKey

View File

@ -0,0 +1,254 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
@six.add_metaclass(abc.ABCMeta)
class DSAParameters(object):
@abc.abstractmethod
def generate_private_key(self):
"""
Generates and returns a DSAPrivateKey.
"""
@six.add_metaclass(abc.ABCMeta)
class DSAParametersWithNumbers(DSAParameters):
@abc.abstractmethod
def parameter_numbers(self):
"""
Returns a DSAParameterNumbers.
"""
@six.add_metaclass(abc.ABCMeta)
class DSAPrivateKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self):
"""
The DSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self):
"""
The DSAParameters object associated with this private key.
"""
@abc.abstractmethod
def signer(self, signature_algorithm):
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def sign(self, data, algorithm):
"""
Signs the data
"""
@six.add_metaclass(abc.ABCMeta)
class DSAPrivateKeyWithSerialization(DSAPrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns a DSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
Returns the key serialized as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class DSAPublicKey(object):
@abc.abstractproperty
def key_size(self):
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self):
"""
The DSAParameters object associated with this public key.
"""
@abc.abstractmethod
def verifier(self, signature, signature_algorithm):
"""
Returns an AsymmetricVerificationContext used for signing data.
"""
@abc.abstractmethod
def public_numbers(self):
"""
Returns a DSAPublicNumbers.
"""
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(self, signature, data, algorithm):
"""
Verifies the signature of the data.
"""
DSAPublicKeyWithSerialization = DSAPublicKey
def generate_parameters(key_size, backend):
return backend.generate_dsa_parameters(key_size)
def generate_private_key(key_size, backend):
return backend.generate_dsa_private_key_and_parameters(key_size)
def _check_dsa_parameters(parameters):
if parameters.p.bit_length() not in [1024, 2048, 3072]:
raise ValueError("p must be exactly 1024, 2048, or 3072 bits long")
if parameters.q.bit_length() not in [160, 224, 256]:
raise ValueError("q must be exactly 160, 224, or 256 bits long")
if not (1 < parameters.g < parameters.p):
raise ValueError("g, p don't satisfy 1 < g < p.")
def _check_dsa_private_numbers(numbers):
parameters = numbers.public_numbers.parameter_numbers
_check_dsa_parameters(parameters)
if numbers.x <= 0 or numbers.x >= parameters.q:
raise ValueError("x must be > 0 and < q.")
if numbers.public_numbers.y != pow(parameters.g, numbers.x, parameters.p):
raise ValueError("y must be equal to (g ** x % p).")
class DSAParameterNumbers(object):
def __init__(self, p, q, g):
if (
not isinstance(p, six.integer_types) or
not isinstance(q, six.integer_types) or
not isinstance(g, six.integer_types)
):
raise TypeError(
"DSAParameterNumbers p, q, and g arguments must be integers."
)
self._p = p
self._q = q
self._g = g
p = utils.read_only_property("_p")
q = utils.read_only_property("_q")
g = utils.read_only_property("_g")
def parameters(self, backend):
return backend.load_dsa_parameter_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAParameterNumbers):
return NotImplemented
return self.p == other.p and self.q == other.q and self.g == other.g
def __ne__(self, other):
return not self == other
def __repr__(self):
return (
"<DSAParameterNumbers(p={self.p}, q={self.q}, g={self.g})>".format(
self=self
)
)
class DSAPublicNumbers(object):
def __init__(self, y, parameter_numbers):
if not isinstance(y, six.integer_types):
raise TypeError("DSAPublicNumbers y argument must be an integer.")
if not isinstance(parameter_numbers, DSAParameterNumbers):
raise TypeError(
"parameter_numbers must be a DSAParameterNumbers instance."
)
self._y = y
self._parameter_numbers = parameter_numbers
y = utils.read_only_property("_y")
parameter_numbers = utils.read_only_property("_parameter_numbers")
def public_key(self, backend):
return backend.load_dsa_public_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAPublicNumbers):
return NotImplemented
return (
self.y == other.y and
self.parameter_numbers == other.parameter_numbers
)
def __ne__(self, other):
return not self == other
def __repr__(self):
return (
"<DSAPublicNumbers(y={self.y}, "
"parameter_numbers={self.parameter_numbers})>".format(self=self)
)
class DSAPrivateNumbers(object):
def __init__(self, x, public_numbers):
if not isinstance(x, six.integer_types):
raise TypeError("DSAPrivateNumbers x argument must be an integer.")
if not isinstance(public_numbers, DSAPublicNumbers):
raise TypeError(
"public_numbers must be a DSAPublicNumbers instance."
)
self._public_numbers = public_numbers
self._x = x
x = utils.read_only_property("_x")
public_numbers = utils.read_only_property("_public_numbers")
def private_key(self, backend):
return backend.load_dsa_private_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAPrivateNumbers):
return NotImplemented
return (
self.x == other.x and self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other

View File

@ -0,0 +1,500 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import warnings
import six
from cryptography import utils
from cryptography.hazmat._oid import ObjectIdentifier
class EllipticCurveOID(object):
SECP192R1 = ObjectIdentifier("1.2.840.10045.3.1.1")
SECP224R1 = ObjectIdentifier("1.3.132.0.33")
SECP256K1 = ObjectIdentifier("1.3.132.0.10")
SECP256R1 = ObjectIdentifier("1.2.840.10045.3.1.7")
SECP384R1 = ObjectIdentifier("1.3.132.0.34")
SECP521R1 = ObjectIdentifier("1.3.132.0.35")
BRAINPOOLP256R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.7")
BRAINPOOLP384R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.11")
BRAINPOOLP512R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.13")
SECT163K1 = ObjectIdentifier("1.3.132.0.1")
SECT163R2 = ObjectIdentifier("1.3.132.0.15")
SECT233K1 = ObjectIdentifier("1.3.132.0.26")
SECT233R1 = ObjectIdentifier("1.3.132.0.27")
SECT283K1 = ObjectIdentifier("1.3.132.0.16")
SECT283R1 = ObjectIdentifier("1.3.132.0.17")
SECT409K1 = ObjectIdentifier("1.3.132.0.36")
SECT409R1 = ObjectIdentifier("1.3.132.0.37")
SECT571K1 = ObjectIdentifier("1.3.132.0.38")
SECT571R1 = ObjectIdentifier("1.3.132.0.39")
@six.add_metaclass(abc.ABCMeta)
class EllipticCurve(object):
@abc.abstractproperty
def name(self):
"""
The name of the curve. e.g. secp256r1.
"""
@abc.abstractproperty
def key_size(self):
"""
Bit size of a secret scalar for the curve.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurveSignatureAlgorithm(object):
@abc.abstractproperty
def algorithm(self):
"""
The digest algorithm used with this signature.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurvePrivateKey(object):
@abc.abstractmethod
def signer(self, signature_algorithm):
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def exchange(self, algorithm, peer_public_key):
"""
Performs a key exchange operation using the provided algorithm with the
provided peer's public key.
"""
@abc.abstractmethod
def public_key(self):
"""
The EllipticCurvePublicKey for this private key.
"""
@abc.abstractproperty
def curve(self):
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self):
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def sign(self, data, signature_algorithm):
"""
Signs the data
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurvePrivateKeyWithSerialization(EllipticCurvePrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns an EllipticCurvePrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
Returns the key serialized as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class EllipticCurvePublicKey(object):
@abc.abstractmethod
def verifier(self, signature, signature_algorithm):
"""
Returns an AsymmetricVerificationContext used for signing data.
"""
@abc.abstractproperty
def curve(self):
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self):
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def public_numbers(self):
"""
Returns an EllipticCurvePublicNumbers.
"""
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(self, signature, data, signature_algorithm):
"""
Verifies the signature of the data.
"""
@classmethod
def from_encoded_point(cls, curve, data):
utils._check_bytes("data", data)
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
if len(data) == 0:
raise ValueError("data must not be an empty byte string")
if six.indexbytes(data, 0) not in [0x02, 0x03, 0x04]:
raise ValueError("Unsupported elliptic curve point type")
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_elliptic_curve_public_bytes(curve, data)
EllipticCurvePublicKeyWithSerialization = EllipticCurvePublicKey
@utils.register_interface(EllipticCurve)
class SECT571R1(object):
name = "sect571r1"
key_size = 570
@utils.register_interface(EllipticCurve)
class SECT409R1(object):
name = "sect409r1"
key_size = 409
@utils.register_interface(EllipticCurve)
class SECT283R1(object):
name = "sect283r1"
key_size = 283
@utils.register_interface(EllipticCurve)
class SECT233R1(object):
name = "sect233r1"
key_size = 233
@utils.register_interface(EllipticCurve)
class SECT163R2(object):
name = "sect163r2"
key_size = 163
@utils.register_interface(EllipticCurve)
class SECT571K1(object):
name = "sect571k1"
key_size = 571
@utils.register_interface(EllipticCurve)
class SECT409K1(object):
name = "sect409k1"
key_size = 409
@utils.register_interface(EllipticCurve)
class SECT283K1(object):
name = "sect283k1"
key_size = 283
@utils.register_interface(EllipticCurve)
class SECT233K1(object):
name = "sect233k1"
key_size = 233
@utils.register_interface(EllipticCurve)
class SECT163K1(object):
name = "sect163k1"
key_size = 163
@utils.register_interface(EllipticCurve)
class SECP521R1(object):
name = "secp521r1"
key_size = 521
@utils.register_interface(EllipticCurve)
class SECP384R1(object):
name = "secp384r1"
key_size = 384
@utils.register_interface(EllipticCurve)
class SECP256R1(object):
name = "secp256r1"
key_size = 256
@utils.register_interface(EllipticCurve)
class SECP256K1(object):
name = "secp256k1"
key_size = 256
@utils.register_interface(EllipticCurve)
class SECP224R1(object):
name = "secp224r1"
key_size = 224
@utils.register_interface(EllipticCurve)
class SECP192R1(object):
name = "secp192r1"
key_size = 192
@utils.register_interface(EllipticCurve)
class BrainpoolP256R1(object):
name = "brainpoolP256r1"
key_size = 256
@utils.register_interface(EllipticCurve)
class BrainpoolP384R1(object):
name = "brainpoolP384r1"
key_size = 384
@utils.register_interface(EllipticCurve)
class BrainpoolP512R1(object):
name = "brainpoolP512r1"
key_size = 512
_CURVE_TYPES = {
"prime192v1": SECP192R1,
"prime256v1": SECP256R1,
"secp192r1": SECP192R1,
"secp224r1": SECP224R1,
"secp256r1": SECP256R1,
"secp384r1": SECP384R1,
"secp521r1": SECP521R1,
"secp256k1": SECP256K1,
"sect163k1": SECT163K1,
"sect233k1": SECT233K1,
"sect283k1": SECT283K1,
"sect409k1": SECT409K1,
"sect571k1": SECT571K1,
"sect163r2": SECT163R2,
"sect233r1": SECT233R1,
"sect283r1": SECT283R1,
"sect409r1": SECT409R1,
"sect571r1": SECT571R1,
"brainpoolP256r1": BrainpoolP256R1,
"brainpoolP384r1": BrainpoolP384R1,
"brainpoolP512r1": BrainpoolP512R1,
}
@utils.register_interface(EllipticCurveSignatureAlgorithm)
class ECDSA(object):
def __init__(self, algorithm):
self._algorithm = algorithm
algorithm = utils.read_only_property("_algorithm")
def generate_private_key(curve, backend):
return backend.generate_elliptic_curve_private_key(curve)
def derive_private_key(private_value, curve, backend):
if not isinstance(private_value, six.integer_types):
raise TypeError("private_value must be an integer type.")
if private_value <= 0:
raise ValueError("private_value must be a positive integer.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
return backend.derive_elliptic_curve_private_key(private_value, curve)
class EllipticCurvePublicNumbers(object):
def __init__(self, x, y, curve):
if (
not isinstance(x, six.integer_types) or
not isinstance(y, six.integer_types)
):
raise TypeError("x and y must be integers.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
self._y = y
self._x = x
self._curve = curve
def public_key(self, backend):
return backend.load_elliptic_curve_public_numbers(self)
def encode_point(self):
warnings.warn(
"encode_point has been deprecated on EllipticCurvePublicNumbers"
" and will be removed in a future version. Please use "
"EllipticCurvePublicKey.public_bytes to obtain both "
"compressed and uncompressed point encoding.",
utils.DeprecatedIn25,
stacklevel=2,
)
# key_size is in bits. Convert to bytes and round up
byte_length = (self.curve.key_size + 7) // 8
return (
b'\x04' + utils.int_to_bytes(self.x, byte_length) +
utils.int_to_bytes(self.y, byte_length)
)
@classmethod
def from_encoded_point(cls, curve, data):
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
warnings.warn(
"Support for unsafe construction of public numbers from "
"encoded data will be removed in a future version. "
"Please use EllipticCurvePublicKey.from_encoded_point",
utils.DeprecatedIn25,
stacklevel=2,
)
if data.startswith(b'\x04'):
# key_size is in bits. Convert to bytes and round up
byte_length = (curve.key_size + 7) // 8
if len(data) == 2 * byte_length + 1:
x = utils.int_from_bytes(data[1:byte_length + 1], 'big')
y = utils.int_from_bytes(data[byte_length + 1:], 'big')
return cls(x, y, curve)
else:
raise ValueError('Invalid elliptic curve point data length')
else:
raise ValueError('Unsupported elliptic curve point type')
curve = utils.read_only_property("_curve")
x = utils.read_only_property("_x")
y = utils.read_only_property("_y")
def __eq__(self, other):
if not isinstance(other, EllipticCurvePublicNumbers):
return NotImplemented
return (
self.x == other.x and
self.y == other.y and
self.curve.name == other.curve.name and
self.curve.key_size == other.curve.key_size
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.x, self.y, self.curve.name, self.curve.key_size))
def __repr__(self):
return (
"<EllipticCurvePublicNumbers(curve={0.curve.name}, x={0.x}, "
"y={0.y}>".format(self)
)
class EllipticCurvePrivateNumbers(object):
def __init__(self, private_value, public_numbers):
if not isinstance(private_value, six.integer_types):
raise TypeError("private_value must be an integer.")
if not isinstance(public_numbers, EllipticCurvePublicNumbers):
raise TypeError(
"public_numbers must be an EllipticCurvePublicNumbers "
"instance."
)
self._private_value = private_value
self._public_numbers = public_numbers
def private_key(self, backend):
return backend.load_elliptic_curve_private_numbers(self)
private_value = utils.read_only_property("_private_value")
public_numbers = utils.read_only_property("_public_numbers")
def __eq__(self, other):
if not isinstance(other, EllipticCurvePrivateNumbers):
return NotImplemented
return (
self.private_value == other.private_value and
self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.private_value, self.public_numbers))
class ECDH(object):
pass
_OID_TO_CURVE = {
EllipticCurveOID.SECP192R1: SECP192R1,
EllipticCurveOID.SECP224R1: SECP224R1,
EllipticCurveOID.SECP256K1: SECP256K1,
EllipticCurveOID.SECP256R1: SECP256R1,
EllipticCurveOID.SECP384R1: SECP384R1,
EllipticCurveOID.SECP521R1: SECP521R1,
EllipticCurveOID.BRAINPOOLP256R1: BrainpoolP256R1,
EllipticCurveOID.BRAINPOOLP384R1: BrainpoolP384R1,
EllipticCurveOID.BRAINPOOLP512R1: BrainpoolP512R1,
EllipticCurveOID.SECT163K1: SECT163K1,
EllipticCurveOID.SECT163R2: SECT163R2,
EllipticCurveOID.SECT233K1: SECT233K1,
EllipticCurveOID.SECT233R1: SECT233R1,
EllipticCurveOID.SECT283K1: SECT283K1,
EllipticCurveOID.SECT283R1: SECT283R1,
EllipticCurveOID.SECT409K1: SECT409K1,
EllipticCurveOID.SECT409R1: SECT409R1,
EllipticCurveOID.SECT571K1: SECT571K1,
EllipticCurveOID.SECT571R1: SECT571R1,
}
def get_curve_for_oid(oid):
try:
return _OID_TO_CURVE[oid]
except KeyError:
raise LookupError(
"The provided object identifier has no matching elliptic "
"curve class"
)

View File

@ -0,0 +1,84 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
_ED25519_KEY_SIZE = 32
_ED25519_SIG_SIZE = 64
@six.add_metaclass(abc.ABCMeta)
class Ed25519PublicKey(object):
@classmethod
def from_public_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
)
return backend.ed25519_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def verify(self, signature, data):
"""
Verify the signature.
"""
@six.add_metaclass(abc.ABCMeta)
class Ed25519PrivateKey(object):
@classmethod
def generate(cls):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
)
return backend.ed25519_generate_key()
@classmethod
def from_private_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
)
return backend.ed25519_load_private_bytes(data)
@abc.abstractmethod
def public_key(self):
"""
The Ed25519PublicKey derived from the private key.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def sign(self, data):
"""
Signs the data.
"""

View File

@ -0,0 +1,79 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
@six.add_metaclass(abc.ABCMeta)
class Ed448PublicKey(object):
@classmethod
def from_public_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
)
return backend.ed448_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def verify(self, signature, data):
"""
Verify the signature.
"""
@six.add_metaclass(abc.ABCMeta)
class Ed448PrivateKey(object):
@classmethod
def generate(cls):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
)
return backend.ed448_generate_key()
@classmethod
def from_private_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
)
return backend.ed448_load_private_bytes(data)
@abc.abstractmethod
def public_key(self):
"""
The Ed448PublicKey derived from the private key.
"""
@abc.abstractmethod
def sign(self, data):
"""
Signs the data.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
The serialized bytes of the private key.
"""

View File

@ -0,0 +1,79 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import math
import six
from cryptography import utils
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import rsa
@six.add_metaclass(abc.ABCMeta)
class AsymmetricPadding(object):
@abc.abstractproperty
def name(self):
"""
A string naming this padding (e.g. "PSS", "PKCS1").
"""
@utils.register_interface(AsymmetricPadding)
class PKCS1v15(object):
name = "EMSA-PKCS1-v1_5"
@utils.register_interface(AsymmetricPadding)
class PSS(object):
MAX_LENGTH = object()
name = "EMSA-PSS"
def __init__(self, mgf, salt_length):
self._mgf = mgf
if (not isinstance(salt_length, six.integer_types) and
salt_length is not self.MAX_LENGTH):
raise TypeError("salt_length must be an integer.")
if salt_length is not self.MAX_LENGTH and salt_length < 0:
raise ValueError("salt_length must be zero or greater.")
self._salt_length = salt_length
@utils.register_interface(AsymmetricPadding)
class OAEP(object):
name = "EME-OAEP"
def __init__(self, mgf, algorithm, label):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._mgf = mgf
self._algorithm = algorithm
self._label = label
class MGF1(object):
MAX_LENGTH = object()
def __init__(self, algorithm):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
def calculate_max_pss_salt_length(key, hash_algorithm):
if not isinstance(key, (rsa.RSAPrivateKey, rsa.RSAPublicKey)):
raise TypeError("key must be an RSA public or private key")
# bit length - 1 per RFC 3447
emlen = int(math.ceil((key.key_size - 1) / 8.0))
salt_length = emlen - hash_algorithm.digest_size - 2
assert salt_length >= 0
return salt_length

View File

@ -0,0 +1,368 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
try:
# Only available in math in 3.5+
from math import gcd
except ImportError:
from fractions import gcd
import six
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.backends.interfaces import RSABackend
@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKey(object):
@abc.abstractmethod
def signer(self, padding, algorithm):
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def decrypt(self, ciphertext, padding):
"""
Decrypts the provided ciphertext.
"""
@abc.abstractproperty
def key_size(self):
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_key(self):
"""
The RSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def sign(self, data, padding, algorithm):
"""
Signs the data.
"""
@six.add_metaclass(abc.ABCMeta)
class RSAPrivateKeyWithSerialization(RSAPrivateKey):
@abc.abstractmethod
def private_numbers(self):
"""
Returns an RSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
Returns the key serialized as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class RSAPublicKey(object):
@abc.abstractmethod
def verifier(self, signature, padding, algorithm):
"""
Returns an AsymmetricVerificationContext used for verifying signatures.
"""
@abc.abstractmethod
def encrypt(self, plaintext, padding):
"""
Encrypts the given plaintext.
"""
@abc.abstractproperty
def key_size(self):
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_numbers(self):
"""
Returns an RSAPublicNumbers
"""
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(self, signature, data, padding, algorithm):
"""
Verifies the signature of the data.
"""
RSAPublicKeyWithSerialization = RSAPublicKey
def generate_private_key(public_exponent, key_size, backend):
if not isinstance(backend, RSABackend):
raise UnsupportedAlgorithm(
"Backend object does not implement RSABackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
_verify_rsa_parameters(public_exponent, key_size)
return backend.generate_rsa_private_key(public_exponent, key_size)
def _verify_rsa_parameters(public_exponent, key_size):
if public_exponent < 3:
raise ValueError("public_exponent must be >= 3.")
if public_exponent & 1 == 0:
raise ValueError("public_exponent must be odd.")
if key_size < 512:
raise ValueError("key_size must be at least 512-bits.")
def _check_private_key_components(p, q, private_exponent, dmp1, dmq1, iqmp,
public_exponent, modulus):
if modulus < 3:
raise ValueError("modulus must be >= 3.")
if p >= modulus:
raise ValueError("p must be < modulus.")
if q >= modulus:
raise ValueError("q must be < modulus.")
if dmp1 >= modulus:
raise ValueError("dmp1 must be < modulus.")
if dmq1 >= modulus:
raise ValueError("dmq1 must be < modulus.")
if iqmp >= modulus:
raise ValueError("iqmp must be < modulus.")
if private_exponent >= modulus:
raise ValueError("private_exponent must be < modulus.")
if public_exponent < 3 or public_exponent >= modulus:
raise ValueError("public_exponent must be >= 3 and < modulus.")
if public_exponent & 1 == 0:
raise ValueError("public_exponent must be odd.")
if dmp1 & 1 == 0:
raise ValueError("dmp1 must be odd.")
if dmq1 & 1 == 0:
raise ValueError("dmq1 must be odd.")
if p * q != modulus:
raise ValueError("p*q must equal modulus.")
def _check_public_key_components(e, n):
if n < 3:
raise ValueError("n must be >= 3.")
if e < 3 or e >= n:
raise ValueError("e must be >= 3 and < n.")
if e & 1 == 0:
raise ValueError("e must be odd.")
def _modinv(e, m):
"""
Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
"""
x1, y1, x2, y2 = 1, 0, 0, 1
a, b = e, m
while b > 0:
q, r = divmod(a, b)
xn, yn = x1 - q * x2, y1 - q * y2
a, b, x1, y1, x2, y2 = b, r, x2, y2, xn, yn
return x1 % m
def rsa_crt_iqmp(p, q):
"""
Compute the CRT (q ** -1) % p value from RSA primes p and q.
"""
return _modinv(q, p)
def rsa_crt_dmp1(private_exponent, p):
"""
Compute the CRT private_exponent % (p - 1) value from the RSA
private_exponent (d) and p.
"""
return private_exponent % (p - 1)
def rsa_crt_dmq1(private_exponent, q):
"""
Compute the CRT private_exponent % (q - 1) value from the RSA
private_exponent (d) and q.
"""
return private_exponent % (q - 1)
# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000
def rsa_recover_prime_factors(n, e, d):
"""
Compute factors p and q from the private exponent d. We assume that n has
no more than two factors. This function is adapted from code in PyCrypto.
"""
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d * e - 1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t % 2 == 0:
t = t // 2
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = False
a = 2
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
k = t
# Cycle through all values a^{t*2^i}=a^k
while k < ktot:
cand = pow(a, k, n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
p = gcd(cand + 1, n)
spotted = True
break
k *= 2
# This value was not any good... let's try another!
a += 2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
q, r = divmod(n, p)
assert r == 0
p, q = sorted((p, q), reverse=True)
return (p, q)
class RSAPrivateNumbers(object):
def __init__(self, p, q, d, dmp1, dmq1, iqmp,
public_numbers):
if (
not isinstance(p, six.integer_types) or
not isinstance(q, six.integer_types) or
not isinstance(d, six.integer_types) or
not isinstance(dmp1, six.integer_types) or
not isinstance(dmq1, six.integer_types) or
not isinstance(iqmp, six.integer_types)
):
raise TypeError(
"RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
" all be an integers."
)
if not isinstance(public_numbers, RSAPublicNumbers):
raise TypeError(
"RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
" instance."
)
self._p = p
self._q = q
self._d = d
self._dmp1 = dmp1
self._dmq1 = dmq1
self._iqmp = iqmp
self._public_numbers = public_numbers
p = utils.read_only_property("_p")
q = utils.read_only_property("_q")
d = utils.read_only_property("_d")
dmp1 = utils.read_only_property("_dmp1")
dmq1 = utils.read_only_property("_dmq1")
iqmp = utils.read_only_property("_iqmp")
public_numbers = utils.read_only_property("_public_numbers")
def private_key(self, backend):
return backend.load_rsa_private_numbers(self)
def __eq__(self, other):
if not isinstance(other, RSAPrivateNumbers):
return NotImplemented
return (
self.p == other.p and
self.q == other.q and
self.d == other.d and
self.dmp1 == other.dmp1 and
self.dmq1 == other.dmq1 and
self.iqmp == other.iqmp and
self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((
self.p,
self.q,
self.d,
self.dmp1,
self.dmq1,
self.iqmp,
self.public_numbers,
))
class RSAPublicNumbers(object):
def __init__(self, e, n):
if (
not isinstance(e, six.integer_types) or
not isinstance(n, six.integer_types)
):
raise TypeError("RSAPublicNumbers arguments must be integers.")
self._e = e
self._n = n
e = utils.read_only_property("_e")
n = utils.read_only_property("_n")
def public_key(self, backend):
return backend.load_rsa_public_numbers(self)
def __repr__(self):
return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
def __eq__(self, other):
if not isinstance(other, RSAPublicNumbers):
return NotImplemented
return self.e == other.e and self.n == other.n
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.e, self.n))

View File

@ -0,0 +1,37 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.hazmat._der import (
DERReader, INTEGER, SEQUENCE, encode_der, encode_der_integer
)
from cryptography.hazmat.primitives import hashes
def decode_dss_signature(signature):
with DERReader(signature).read_single_element(SEQUENCE) as seq:
r = seq.read_element(INTEGER).as_integer()
s = seq.read_element(INTEGER).as_integer()
return r, s
def encode_dss_signature(r, s):
return encode_der(
SEQUENCE,
encode_der(INTEGER, encode_der_integer(r)),
encode_der(INTEGER, encode_der_integer(s)),
)
class Prehashed(object):
def __init__(self, algorithm):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of HashAlgorithm.")
self._algorithm = algorithm
self._digest_size = algorithm.digest_size
digest_size = utils.read_only_property("_digest_size")

View File

@ -0,0 +1,73 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
@six.add_metaclass(abc.ABCMeta)
class X25519PublicKey(object):
@classmethod
def from_public_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
return backend.x25519_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(self, encoding=None, format=None):
"""
The serialized bytes of the public key.
"""
@six.add_metaclass(abc.ABCMeta)
class X25519PrivateKey(object):
@classmethod
def generate(cls):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
return backend.x25519_generate_key()
@classmethod
def from_private_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
return backend.x25519_load_private_bytes(data)
@abc.abstractmethod
def public_key(self):
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key):
"""
Performs a key exchange operation using the provided peer's public key.
"""

View File

@ -0,0 +1,73 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
@six.add_metaclass(abc.ABCMeta)
class X448PublicKey(object):
@classmethod
def from_public_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
return backend.x448_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(self, encoding, format):
"""
The serialized bytes of the public key.
"""
@six.add_metaclass(abc.ABCMeta)
class X448PrivateKey(object):
@classmethod
def generate(cls):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
return backend.x448_generate_key()
@classmethod
def from_private_bytes(cls, data):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
)
return backend.x448_load_private_bytes(data)
@abc.abstractmethod
def public_key(self):
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def private_bytes(self, encoding, format, encryption_algorithm):
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key):
"""
Performs a key exchange operation using the provided peer's public key.
"""

View File

@ -0,0 +1,21 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.primitives.ciphers.base import (
AEADCipherContext, AEADDecryptionContext, AEADEncryptionContext,
BlockCipherAlgorithm, Cipher, CipherAlgorithm, CipherContext
)
__all__ = [
"Cipher",
"CipherAlgorithm",
"BlockCipherAlgorithm",
"CipherContext",
"AEADCipherContext",
"AEADDecryptionContext",
"AEADEncryptionContext",
]

View File

@ -0,0 +1,188 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import os
from cryptography import exceptions, utils
from cryptography.hazmat.backends.openssl import aead
from cryptography.hazmat.backends.openssl.backend import backend
class ChaCha20Poly1305(object):
_MAX_SIZE = 2 ** 32
def __init__(self, key):
if not backend.aead_cipher_supported(self):
raise exceptions.UnsupportedAlgorithm(
"ChaCha20Poly1305 is not supported by this version of OpenSSL",
exceptions._Reasons.UNSUPPORTED_CIPHER
)
utils._check_byteslike("key", key)
if len(key) != 32:
raise ValueError("ChaCha20Poly1305 key must be 32 bytes.")
self._key = key
@classmethod
def generate_key(cls):
return os.urandom(32)
def encrypt(self, nonce, data, associated_data):
if associated_data is None:
associated_data = b""
if len(data) > self._MAX_SIZE or len(associated_data) > self._MAX_SIZE:
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**32 bytes"
)
self._check_params(nonce, data, associated_data)
return aead._encrypt(
backend, self, nonce, data, associated_data, 16
)
def decrypt(self, nonce, data, associated_data):
if associated_data is None:
associated_data = b""
self._check_params(nonce, data, associated_data)
return aead._decrypt(
backend, self, nonce, data, associated_data, 16
)
def _check_params(self, nonce, data, associated_data):
utils._check_byteslike("nonce", nonce)
utils._check_bytes("data", data)
utils._check_bytes("associated_data", associated_data)
if len(nonce) != 12:
raise ValueError("Nonce must be 12 bytes")
class AESCCM(object):
_MAX_SIZE = 2 ** 32
def __init__(self, key, tag_length=16):
utils._check_byteslike("key", key)
if len(key) not in (16, 24, 32):
raise ValueError("AESCCM key must be 128, 192, or 256 bits.")
self._key = key
if not isinstance(tag_length, int):
raise TypeError("tag_length must be an integer")
if tag_length not in (4, 6, 8, 10, 12, 14, 16):
raise ValueError("Invalid tag_length")
self._tag_length = tag_length
if not backend.aead_cipher_supported(self):
raise exceptions.UnsupportedAlgorithm(
"AESCCM is not supported by this version of OpenSSL",
exceptions._Reasons.UNSUPPORTED_CIPHER
)
@classmethod
def generate_key(cls, bit_length):
if not isinstance(bit_length, int):
raise TypeError("bit_length must be an integer")
if bit_length not in (128, 192, 256):
raise ValueError("bit_length must be 128, 192, or 256")
return os.urandom(bit_length // 8)
def encrypt(self, nonce, data, associated_data):
if associated_data is None:
associated_data = b""
if len(data) > self._MAX_SIZE or len(associated_data) > self._MAX_SIZE:
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**32 bytes"
)
self._check_params(nonce, data, associated_data)
self._validate_lengths(nonce, len(data))
return aead._encrypt(
backend, self, nonce, data, associated_data, self._tag_length
)
def decrypt(self, nonce, data, associated_data):
if associated_data is None:
associated_data = b""
self._check_params(nonce, data, associated_data)
return aead._decrypt(
backend, self, nonce, data, associated_data, self._tag_length
)
def _validate_lengths(self, nonce, data_len):
# For information about computing this, see
# https://tools.ietf.org/html/rfc3610#section-2.1
l_val = 15 - len(nonce)
if 2 ** (8 * l_val) < data_len:
raise ValueError("Nonce too long for data")
def _check_params(self, nonce, data, associated_data):
utils._check_byteslike("nonce", nonce)
utils._check_bytes("data", data)
utils._check_bytes("associated_data", associated_data)
if not 7 <= len(nonce) <= 13:
raise ValueError("Nonce must be between 7 and 13 bytes")
class AESGCM(object):
_MAX_SIZE = 2 ** 32
def __init__(self, key):
utils._check_byteslike("key", key)
if len(key) not in (16, 24, 32):
raise ValueError("AESGCM key must be 128, 192, or 256 bits.")
self._key = key
@classmethod
def generate_key(cls, bit_length):
if not isinstance(bit_length, int):
raise TypeError("bit_length must be an integer")
if bit_length not in (128, 192, 256):
raise ValueError("bit_length must be 128, 192, or 256")
return os.urandom(bit_length // 8)
def encrypt(self, nonce, data, associated_data):
if associated_data is None:
associated_data = b""
if len(data) > self._MAX_SIZE or len(associated_data) > self._MAX_SIZE:
# This is OverflowError to match what cffi would raise
raise OverflowError(
"Data or associated data too long. Max 2**32 bytes"
)
self._check_params(nonce, data, associated_data)
return aead._encrypt(
backend, self, nonce, data, associated_data, 16
)
def decrypt(self, nonce, data, associated_data):
if associated_data is None:
associated_data = b""
self._check_params(nonce, data, associated_data)
return aead._decrypt(
backend, self, nonce, data, associated_data, 16
)
def _check_params(self, nonce, data, associated_data):
utils._check_byteslike("nonce", nonce)
utils._check_bytes("data", data)
utils._check_bytes("associated_data", associated_data)
if len(nonce) == 0:
raise ValueError("Nonce must be at least 1 byte")

View File

@ -0,0 +1,167 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.hazmat.primitives.ciphers import (
BlockCipherAlgorithm, CipherAlgorithm
)
from cryptography.hazmat.primitives.ciphers.modes import ModeWithNonce
def _verify_key_size(algorithm, key):
# Verify that the key is instance of bytes
utils._check_byteslike("key", key)
# Verify that the key size matches the expected key size
if len(key) * 8 not in algorithm.key_sizes:
raise ValueError("Invalid key size ({}) for {}.".format(
len(key) * 8, algorithm.name
))
return key
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class AES(object):
name = "AES"
block_size = 128
# 512 added to support AES-256-XTS, which uses 512-bit keys
key_sizes = frozenset([128, 192, 256, 512])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class Camellia(object):
name = "camellia"
block_size = 128
key_sizes = frozenset([128, 192, 256])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class TripleDES(object):
name = "3DES"
block_size = 64
key_sizes = frozenset([64, 128, 192])
def __init__(self, key):
if len(key) == 8:
key += key + key
elif len(key) == 16:
key += key[:8]
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class Blowfish(object):
name = "Blowfish"
block_size = 64
key_sizes = frozenset(range(32, 449, 8))
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class CAST5(object):
name = "CAST5"
block_size = 64
key_sizes = frozenset(range(40, 129, 8))
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(CipherAlgorithm)
class ARC4(object):
name = "RC4"
key_sizes = frozenset([40, 56, 64, 80, 128, 160, 192, 256])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(CipherAlgorithm)
class IDEA(object):
name = "IDEA"
block_size = 64
key_sizes = frozenset([128])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(BlockCipherAlgorithm)
@utils.register_interface(CipherAlgorithm)
class SEED(object):
name = "SEED"
block_size = 128
key_sizes = frozenset([128])
def __init__(self, key):
self.key = _verify_key_size(self, key)
@property
def key_size(self):
return len(self.key) * 8
@utils.register_interface(CipherAlgorithm)
@utils.register_interface(ModeWithNonce)
class ChaCha20(object):
name = "ChaCha20"
key_sizes = frozenset([256])
def __init__(self, key, nonce):
self.key = _verify_key_size(self, key)
utils._check_byteslike("nonce", nonce)
if len(nonce) != 16:
raise ValueError("nonce must be 128-bits (16 bytes)")
self._nonce = nonce
nonce = utils.read_only_property("_nonce")
@property
def key_size(self):
return len(self.key) * 8

View File

@ -0,0 +1,235 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, AlreadyUpdated, NotYetFinalized, UnsupportedAlgorithm,
_Reasons
)
from cryptography.hazmat.backends.interfaces import CipherBackend
from cryptography.hazmat.primitives.ciphers import modes
@six.add_metaclass(abc.ABCMeta)
class CipherAlgorithm(object):
@abc.abstractproperty
def name(self):
"""
A string naming this mode (e.g. "AES", "Camellia").
"""
@abc.abstractproperty
def key_size(self):
"""
The size of the key being used as an integer in bits (e.g. 128, 256).
"""
@six.add_metaclass(abc.ABCMeta)
class BlockCipherAlgorithm(object):
@abc.abstractproperty
def block_size(self):
"""
The size of a block as an integer in bits (e.g. 64, 128).
"""
@six.add_metaclass(abc.ABCMeta)
class CipherContext(object):
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes through the cipher and returns the results
as bytes.
"""
@abc.abstractmethod
def update_into(self, data, buf):
"""
Processes the provided bytes and writes the resulting data into the
provided buffer. Returns the number of bytes written.
"""
@abc.abstractmethod
def finalize(self):
"""
Returns the results of processing the final block as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class AEADCipherContext(object):
@abc.abstractmethod
def authenticate_additional_data(self, data):
"""
Authenticates the provided bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class AEADDecryptionContext(object):
@abc.abstractmethod
def finalize_with_tag(self, tag):
"""
Returns the results of processing the final block as bytes and allows
delayed passing of the authentication tag.
"""
@six.add_metaclass(abc.ABCMeta)
class AEADEncryptionContext(object):
@abc.abstractproperty
def tag(self):
"""
Returns tag bytes. This is only available after encryption is
finalized.
"""
class Cipher(object):
def __init__(self, algorithm, mode, backend):
if not isinstance(backend, CipherBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement CipherBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, CipherAlgorithm):
raise TypeError("Expected interface of CipherAlgorithm.")
if mode is not None:
mode.validate_for_algorithm(algorithm)
self.algorithm = algorithm
self.mode = mode
self._backend = backend
def encryptor(self):
if isinstance(self.mode, modes.ModeWithAuthenticationTag):
if self.mode.tag is not None:
raise ValueError(
"Authentication tag must be None when encrypting."
)
ctx = self._backend.create_symmetric_encryption_ctx(
self.algorithm, self.mode
)
return self._wrap_ctx(ctx, encrypt=True)
def decryptor(self):
ctx = self._backend.create_symmetric_decryption_ctx(
self.algorithm, self.mode
)
return self._wrap_ctx(ctx, encrypt=False)
def _wrap_ctx(self, ctx, encrypt):
if isinstance(self.mode, modes.ModeWithAuthenticationTag):
if encrypt:
return _AEADEncryptionContext(ctx)
else:
return _AEADCipherContext(ctx)
else:
return _CipherContext(ctx)
@utils.register_interface(CipherContext)
class _CipherContext(object):
def __init__(self, ctx):
self._ctx = ctx
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return self._ctx.update(data)
def update_into(self, data, buf):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return self._ctx.update_into(data, buf)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize()
self._ctx = None
return data
@utils.register_interface(AEADCipherContext)
@utils.register_interface(CipherContext)
@utils.register_interface(AEADDecryptionContext)
class _AEADCipherContext(object):
def __init__(self, ctx):
self._ctx = ctx
self._bytes_processed = 0
self._aad_bytes_processed = 0
self._tag = None
self._updated = False
def _check_limit(self, data_size):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
self._updated = True
self._bytes_processed += data_size
if self._bytes_processed > self._ctx._mode._MAX_ENCRYPTED_BYTES:
raise ValueError(
"{} has a maximum encrypted byte limit of {}".format(
self._ctx._mode.name, self._ctx._mode._MAX_ENCRYPTED_BYTES
)
)
def update(self, data):
self._check_limit(len(data))
return self._ctx.update(data)
def update_into(self, data, buf):
self._check_limit(len(data))
return self._ctx.update_into(data, buf)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize()
self._tag = self._ctx.tag
self._ctx = None
return data
def finalize_with_tag(self, tag):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
data = self._ctx.finalize_with_tag(tag)
self._tag = self._ctx.tag
self._ctx = None
return data
def authenticate_additional_data(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
if self._updated:
raise AlreadyUpdated("Update has been called on this context.")
self._aad_bytes_processed += len(data)
if self._aad_bytes_processed > self._ctx._mode._MAX_AAD_BYTES:
raise ValueError(
"{} has a maximum AAD byte limit of {}".format(
self._ctx._mode.name, self._ctx._mode._MAX_AAD_BYTES
)
)
self._ctx.authenticate_additional_data(data)
@utils.register_interface(AEADEncryptionContext)
class _AEADEncryptionContext(_AEADCipherContext):
@property
def tag(self):
if self._ctx is not None:
raise NotYetFinalized("You must finalize encryption before "
"getting the tag.")
return self._tag

View File

@ -0,0 +1,218 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
@six.add_metaclass(abc.ABCMeta)
class Mode(object):
@abc.abstractproperty
def name(self):
"""
A string naming this mode (e.g. "ECB", "CBC").
"""
@abc.abstractmethod
def validate_for_algorithm(self, algorithm):
"""
Checks that all the necessary invariants of this (mode, algorithm)
combination are met.
"""
@six.add_metaclass(abc.ABCMeta)
class ModeWithInitializationVector(object):
@abc.abstractproperty
def initialization_vector(self):
"""
The value of the initialization vector for this mode as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class ModeWithTweak(object):
@abc.abstractproperty
def tweak(self):
"""
The value of the tweak for this mode as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class ModeWithNonce(object):
@abc.abstractproperty
def nonce(self):
"""
The value of the nonce for this mode as bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class ModeWithAuthenticationTag(object):
@abc.abstractproperty
def tag(self):
"""
The value of the tag supplied to the constructor of this mode.
"""
def _check_aes_key_length(self, algorithm):
if algorithm.key_size > 256 and algorithm.name == "AES":
raise ValueError(
"Only 128, 192, and 256 bit keys are allowed for this AES mode"
)
def _check_iv_length(self, algorithm):
if len(self.initialization_vector) * 8 != algorithm.block_size:
raise ValueError("Invalid IV size ({}) for {}.".format(
len(self.initialization_vector), self.name
))
def _check_iv_and_key_length(self, algorithm):
_check_aes_key_length(self, algorithm)
_check_iv_length(self, algorithm)
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class CBC(object):
name = "CBC"
def __init__(self, initialization_vector):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_and_key_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithTweak)
class XTS(object):
name = "XTS"
def __init__(self, tweak):
utils._check_byteslike("tweak", tweak)
if len(tweak) != 16:
raise ValueError("tweak must be 128-bits (16 bytes)")
self._tweak = tweak
tweak = utils.read_only_property("_tweak")
def validate_for_algorithm(self, algorithm):
if algorithm.key_size not in (256, 512):
raise ValueError(
"The XTS specification requires a 256-bit key for AES-128-XTS"
" and 512-bit key for AES-256-XTS"
)
@utils.register_interface(Mode)
class ECB(object):
name = "ECB"
validate_for_algorithm = _check_aes_key_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class OFB(object):
name = "OFB"
def __init__(self, initialization_vector):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_and_key_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class CFB(object):
name = "CFB"
def __init__(self, initialization_vector):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_and_key_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
class CFB8(object):
name = "CFB8"
def __init__(self, initialization_vector):
utils._check_byteslike("initialization_vector", initialization_vector)
self._initialization_vector = initialization_vector
initialization_vector = utils.read_only_property("_initialization_vector")
validate_for_algorithm = _check_iv_and_key_length
@utils.register_interface(Mode)
@utils.register_interface(ModeWithNonce)
class CTR(object):
name = "CTR"
def __init__(self, nonce):
utils._check_byteslike("nonce", nonce)
self._nonce = nonce
nonce = utils.read_only_property("_nonce")
def validate_for_algorithm(self, algorithm):
_check_aes_key_length(self, algorithm)
if len(self.nonce) * 8 != algorithm.block_size:
raise ValueError("Invalid nonce size ({}) for {}.".format(
len(self.nonce), self.name
))
@utils.register_interface(Mode)
@utils.register_interface(ModeWithInitializationVector)
@utils.register_interface(ModeWithAuthenticationTag)
class GCM(object):
name = "GCM"
_MAX_ENCRYPTED_BYTES = (2 ** 39 - 256) // 8
_MAX_AAD_BYTES = (2 ** 64) // 8
def __init__(self, initialization_vector, tag=None, min_tag_length=16):
# len(initialization_vector) must in [1, 2 ** 64), but it's impossible
# to actually construct a bytes object that large, so we don't check
# for it
utils._check_byteslike("initialization_vector", initialization_vector)
if len(initialization_vector) == 0:
raise ValueError("initialization_vector must be at least 1 byte")
self._initialization_vector = initialization_vector
if tag is not None:
utils._check_bytes("tag", tag)
if min_tag_length < 4:
raise ValueError("min_tag_length must be >= 4")
if len(tag) < min_tag_length:
raise ValueError(
"Authentication tag must be {} bytes or longer.".format(
min_tag_length)
)
self._tag = tag
self._min_tag_length = min_tag_length
tag = utils.read_only_property("_tag")
initialization_vector = utils.read_only_property("_initialization_vector")
def validate_for_algorithm(self, algorithm):
_check_aes_key_length(self, algorithm)

View File

@ -0,0 +1,64 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import CMACBackend
from cryptography.hazmat.primitives import ciphers
class CMAC(object):
def __init__(self, algorithm, backend, ctx=None):
if not isinstance(backend, CMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement CMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, ciphers.BlockCipherAlgorithm):
raise TypeError(
"Expected instance of BlockCipherAlgorithm."
)
self._algorithm = algorithm
self._backend = backend
if ctx is None:
self._ctx = self._backend.create_cmac_ctx(self._algorithm)
else:
self._ctx = ctx
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_bytes("data", data)
self._ctx.update(data)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
def verify(self, signature):
utils._check_bytes("signature", signature)
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(signature)
def copy(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return CMAC(
self._algorithm,
backend=self._backend,
ctx=self._ctx.copy()
)

View File

@ -0,0 +1,35 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import hmac
import warnings
from cryptography import utils
from cryptography.hazmat.bindings._constant_time import lib
if hasattr(hmac, "compare_digest"):
def bytes_eq(a, b):
if not isinstance(a, bytes) or not isinstance(b, bytes):
raise TypeError("a and b must be bytes.")
return hmac.compare_digest(a, b)
else:
warnings.warn(
"Support for your Python version is deprecated. The next version of "
"cryptography will remove support. Please upgrade to a release "
"(2.7.7+) that supports hmac.compare_digest as soon as possible.",
utils.PersistentlyDeprecated2018,
)
def bytes_eq(a, b):
if not isinstance(a, bytes) or not isinstance(b, bytes):
raise TypeError("a and b must be bytes.")
return lib.Cryptography_constant_time_bytes_eq(
a, len(a), b, len(b)
) == 1

View File

@ -0,0 +1,255 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HashBackend
@six.add_metaclass(abc.ABCMeta)
class HashAlgorithm(object):
@abc.abstractproperty
def name(self):
"""
A string naming this algorithm (e.g. "sha256", "md5").
"""
@abc.abstractproperty
def digest_size(self):
"""
The size of the resulting digest in bytes.
"""
@six.add_metaclass(abc.ABCMeta)
class HashContext(object):
@abc.abstractproperty
def algorithm(self):
"""
A HashAlgorithm that will be used by this context.
"""
@abc.abstractmethod
def update(self, data):
"""
Processes the provided bytes through the hash.
"""
@abc.abstractmethod
def finalize(self):
"""
Finalizes the hash context and returns the hash digest as bytes.
"""
@abc.abstractmethod
def copy(self):
"""
Return a HashContext that is a copy of the current context.
"""
@six.add_metaclass(abc.ABCMeta)
class ExtendableOutputFunction(object):
"""
An interface for extendable output functions.
"""
@utils.register_interface(HashContext)
class Hash(object):
def __init__(self, algorithm, backend, ctx=None):
if not isinstance(backend, HashBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HashBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
self._backend = backend
if ctx is None:
self._ctx = self._backend.create_hash_ctx(self.algorithm)
else:
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
self._ctx.update(data)
def copy(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return Hash(
self.algorithm, backend=self._backend, ctx=self._ctx.copy()
)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
@utils.register_interface(HashAlgorithm)
class SHA1(object):
name = "sha1"
digest_size = 20
block_size = 64
@utils.register_interface(HashAlgorithm)
class SHA512_224(object): # noqa: N801
name = "sha512-224"
digest_size = 28
block_size = 128
@utils.register_interface(HashAlgorithm)
class SHA512_256(object): # noqa: N801
name = "sha512-256"
digest_size = 32
block_size = 128
@utils.register_interface(HashAlgorithm)
class SHA224(object):
name = "sha224"
digest_size = 28
block_size = 64
@utils.register_interface(HashAlgorithm)
class SHA256(object):
name = "sha256"
digest_size = 32
block_size = 64
@utils.register_interface(HashAlgorithm)
class SHA384(object):
name = "sha384"
digest_size = 48
block_size = 128
@utils.register_interface(HashAlgorithm)
class SHA512(object):
name = "sha512"
digest_size = 64
block_size = 128
@utils.register_interface(HashAlgorithm)
class SHA3_224(object): # noqa: N801
name = "sha3-224"
digest_size = 28
@utils.register_interface(HashAlgorithm)
class SHA3_256(object): # noqa: N801
name = "sha3-256"
digest_size = 32
@utils.register_interface(HashAlgorithm)
class SHA3_384(object): # noqa: N801
name = "sha3-384"
digest_size = 48
@utils.register_interface(HashAlgorithm)
class SHA3_512(object): # noqa: N801
name = "sha3-512"
digest_size = 64
@utils.register_interface(HashAlgorithm)
@utils.register_interface(ExtendableOutputFunction)
class SHAKE128(object):
name = "shake128"
def __init__(self, digest_size):
if not isinstance(digest_size, six.integer_types):
raise TypeError("digest_size must be an integer")
if digest_size < 1:
raise ValueError("digest_size must be a positive integer")
self._digest_size = digest_size
digest_size = utils.read_only_property("_digest_size")
@utils.register_interface(HashAlgorithm)
@utils.register_interface(ExtendableOutputFunction)
class SHAKE256(object):
name = "shake256"
def __init__(self, digest_size):
if not isinstance(digest_size, six.integer_types):
raise TypeError("digest_size must be an integer")
if digest_size < 1:
raise ValueError("digest_size must be a positive integer")
self._digest_size = digest_size
digest_size = utils.read_only_property("_digest_size")
@utils.register_interface(HashAlgorithm)
class MD5(object):
name = "md5"
digest_size = 16
block_size = 64
@utils.register_interface(HashAlgorithm)
class BLAKE2b(object):
name = "blake2b"
_max_digest_size = 64
_min_digest_size = 1
block_size = 128
def __init__(self, digest_size):
if digest_size != 64:
raise ValueError("Digest size must be 64")
self._digest_size = digest_size
digest_size = utils.read_only_property("_digest_size")
@utils.register_interface(HashAlgorithm)
class BLAKE2s(object):
name = "blake2s"
block_size = 64
_max_digest_size = 32
_min_digest_size = 1
def __init__(self, digest_size):
if digest_size != 32:
raise ValueError("Digest size must be 32")
self._digest_size = digest_size
digest_size = utils.read_only_property("_digest_size")

View File

@ -0,0 +1,66 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import hashes
@utils.register_interface(hashes.HashContext)
class HMAC(object):
def __init__(self, key, algorithm, backend, ctx=None):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
self._backend = backend
self._key = key
if ctx is None:
self._ctx = self._backend.create_hmac_ctx(key, self.algorithm)
else:
self._ctx = ctx
algorithm = utils.read_only_property("_algorithm")
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
self._ctx.update(data)
def copy(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
return HMAC(
self._key,
self.algorithm,
backend=self._backend,
ctx=self._ctx.copy()
)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
digest = self._ctx.finalize()
self._ctx = None
return digest
def verify(self, signature):
utils._check_bytes("signature", signature)
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(signature)

View File

@ -0,0 +1,26 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
@six.add_metaclass(abc.ABCMeta)
class KeyDerivationFunction(object):
@abc.abstractmethod
def derive(self, key_material):
"""
Deterministically generates and returns a new key based on the existing
key material.
"""
@abc.abstractmethod
def verify(self, key_material, expected_key):
"""
Checks whether the key generated by the key material matches the
expected derived key. Raises an exception if they do not match.
"""

View File

@ -0,0 +1,124 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.backends.interfaces import HashBackend
from cryptography.hazmat.primitives import constant_time, hashes, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
def _int_to_u32be(n):
return struct.pack('>I', n)
def _common_args_checks(algorithm, length, otherinfo):
max_length = algorithm.digest_size * (2 ** 32 - 1)
if length > max_length:
raise ValueError(
"Can not derive keys larger than {} bits.".format(
max_length
))
if otherinfo is not None:
utils._check_bytes("otherinfo", otherinfo)
def _concatkdf_derive(key_material, length, auxfn, otherinfo):
utils._check_byteslike("key_material", key_material)
output = [b""]
outlen = 0
counter = 1
while (length > outlen):
h = auxfn()
h.update(_int_to_u32be(counter))
h.update(key_material)
h.update(otherinfo)
output.append(h.finalize())
outlen += len(output[-1])
counter += 1
return b"".join(output)[:length]
@utils.register_interface(KeyDerivationFunction)
class ConcatKDFHash(object):
def __init__(self, algorithm, length, otherinfo, backend):
_common_args_checks(algorithm, length, otherinfo)
self._algorithm = algorithm
self._length = length
self._otherinfo = otherinfo
if self._otherinfo is None:
self._otherinfo = b""
if not isinstance(backend, HashBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HashBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._backend = backend
self._used = False
def _hash(self):
return hashes.Hash(self._algorithm, self._backend)
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
self._used = True
return _concatkdf_derive(key_material, self._length,
self._hash, self._otherinfo)
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey
@utils.register_interface(KeyDerivationFunction)
class ConcatKDFHMAC(object):
def __init__(self, algorithm, length, salt, otherinfo, backend):
_common_args_checks(algorithm, length, otherinfo)
self._algorithm = algorithm
self._length = length
self._otherinfo = otherinfo
if self._otherinfo is None:
self._otherinfo = b""
if salt is None:
salt = b"\x00" * algorithm.block_size
else:
utils._check_bytes("salt", salt)
self._salt = salt
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._backend = backend
self._used = False
def _hmac(self):
return hmac.HMAC(self._salt, self._algorithm, self._backend)
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
self._used = True
return _concatkdf_derive(key_material, self._length,
self._hmac, self._otherinfo)
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@ -0,0 +1,110 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import six
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
@utils.register_interface(KeyDerivationFunction)
class HKDF(object):
def __init__(self, algorithm, length, salt, info, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._algorithm = algorithm
if salt is None:
salt = b"\x00" * self._algorithm.digest_size
else:
utils._check_bytes("salt", salt)
self._salt = salt
self._backend = backend
self._hkdf_expand = HKDFExpand(self._algorithm, length, info, backend)
def _extract(self, key_material):
h = hmac.HMAC(self._salt, self._algorithm, backend=self._backend)
h.update(key_material)
return h.finalize()
def derive(self, key_material):
utils._check_byteslike("key_material", key_material)
return self._hkdf_expand.derive(self._extract(key_material))
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey
@utils.register_interface(KeyDerivationFunction)
class HKDFExpand(object):
def __init__(self, algorithm, length, info, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._algorithm = algorithm
self._backend = backend
max_length = 255 * algorithm.digest_size
if length > max_length:
raise ValueError(
"Can not derive keys larger than {} octets.".format(
max_length
))
self._length = length
if info is None:
info = b""
else:
utils._check_bytes("info", info)
self._info = info
self._used = False
def _expand(self, key_material):
output = [b""]
counter = 1
while self._algorithm.digest_size * (len(output) - 1) < self._length:
h = hmac.HMAC(key_material, self._algorithm, backend=self._backend)
h.update(output[-1])
h.update(self._info)
h.update(six.int2byte(counter))
output.append(h.finalize())
counter += 1
return b"".join(output)[:self._length]
def derive(self, key_material):
utils._check_byteslike("key_material", key_material)
if self._used:
raise AlreadyFinalized
self._used = True
return self._expand(key_material)
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@ -0,0 +1,145 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from enum import Enum
from six.moves import range
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time, hashes, hmac
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
class Mode(Enum):
CounterMode = "ctr"
class CounterLocation(Enum):
BeforeFixed = "before_fixed"
AfterFixed = "after_fixed"
@utils.register_interface(KeyDerivationFunction)
class KBKDFHMAC(object):
def __init__(self, algorithm, mode, length, rlen, llen,
location, label, context, fixed, backend):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not isinstance(algorithm, hashes.HashAlgorithm):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported hash algorithm.",
_Reasons.UNSUPPORTED_HASH
)
if not backend.hmac_supported(algorithm):
raise UnsupportedAlgorithm(
"Algorithm supplied is not a supported hmac algorithm.",
_Reasons.UNSUPPORTED_HASH
)
if not isinstance(mode, Mode):
raise TypeError("mode must be of type Mode")
if not isinstance(location, CounterLocation):
raise TypeError("location must be of type CounterLocation")
if (label or context) and fixed:
raise ValueError("When supplying fixed data, "
"label and context are ignored.")
if rlen is None or not self._valid_byte_length(rlen):
raise ValueError("rlen must be between 1 and 4")
if llen is None and fixed is None:
raise ValueError("Please specify an llen")
if llen is not None and not isinstance(llen, int):
raise TypeError("llen must be an integer")
if label is None:
label = b''
if context is None:
context = b''
utils._check_bytes("label", label)
utils._check_bytes("context", context)
self._algorithm = algorithm
self._mode = mode
self._length = length
self._rlen = rlen
self._llen = llen
self._location = location
self._label = label
self._context = context
self._backend = backend
self._used = False
self._fixed_data = fixed
def _valid_byte_length(self, value):
if not isinstance(value, int):
raise TypeError('value must be of type int')
value_bin = utils.int_to_bytes(1, value)
if not 1 <= len(value_bin) <= 4:
return False
return True
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
utils._check_byteslike("key_material", key_material)
self._used = True
# inverse floor division (equivalent to ceiling)
rounds = -(-self._length // self._algorithm.digest_size)
output = [b'']
# For counter mode, the number of iterations shall not be
# larger than 2^r-1, where r <= 32 is the binary length of the counter
# This ensures that the counter values used as an input to the
# PRF will not repeat during a particular call to the KDF function.
r_bin = utils.int_to_bytes(1, self._rlen)
if rounds > pow(2, len(r_bin) * 8) - 1:
raise ValueError('There are too many iterations.')
for i in range(1, rounds + 1):
h = hmac.HMAC(key_material, self._algorithm, backend=self._backend)
counter = utils.int_to_bytes(i, self._rlen)
if self._location == CounterLocation.BeforeFixed:
h.update(counter)
h.update(self._generate_fixed_input())
if self._location == CounterLocation.AfterFixed:
h.update(counter)
output.append(h.finalize())
return b''.join(output)[:self._length]
def _generate_fixed_input(self):
if self._fixed_data and isinstance(self._fixed_data, bytes):
return self._fixed_data
l_val = utils.int_to_bytes(self._length * 8, self._llen)
return b"".join([self._label, b"\x00", self._context, l_val])
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@ -0,0 +1,56 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import PBKDF2HMACBackend
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
@utils.register_interface(KeyDerivationFunction)
class PBKDF2HMAC(object):
def __init__(self, algorithm, length, salt, iterations, backend):
if not isinstance(backend, PBKDF2HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement PBKDF2HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if not backend.pbkdf2_hmac_supported(algorithm):
raise UnsupportedAlgorithm(
"{} is not supported for PBKDF2 by this backend.".format(
algorithm.name),
_Reasons.UNSUPPORTED_HASH
)
self._used = False
self._algorithm = algorithm
self._length = length
utils._check_bytes("salt", salt)
self._salt = salt
self._iterations = iterations
self._backend = backend
def derive(self, key_material):
if self._used:
raise AlreadyFinalized("PBKDF2 instances can only be used once.")
self._used = True
utils._check_byteslike("key_material", key_material)
return self._backend.derive_pbkdf2_hmac(
self._algorithm,
self._length,
self._salt,
self._iterations,
key_material
)
def verify(self, key_material, expected_key):
derived_key = self.derive(key_material)
if not constant_time.bytes_eq(derived_key, expected_key):
raise InvalidKey("Keys do not match.")

View File

@ -0,0 +1,63 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import sys
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import ScryptBackend
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
# This is used by the scrypt tests to skip tests that require more memory
# than the MEM_LIMIT
_MEM_LIMIT = sys.maxsize // 2
@utils.register_interface(KeyDerivationFunction)
class Scrypt(object):
def __init__(self, salt, length, n, r, p, backend):
if not isinstance(backend, ScryptBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement ScryptBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._length = length
utils._check_bytes("salt", salt)
if n < 2 or (n & (n - 1)) != 0:
raise ValueError("n must be greater than 1 and be a power of 2.")
if r < 1:
raise ValueError("r must be greater than or equal to 1.")
if p < 1:
raise ValueError("p must be greater than or equal to 1.")
self._used = False
self._salt = salt
self._n = n
self._r = r
self._p = p
self._backend = backend
def derive(self, key_material):
if self._used:
raise AlreadyFinalized("Scrypt instances can only be used once.")
self._used = True
utils._check_byteslike("key_material", key_material)
return self._backend.derive_scrypt(
key_material, self._salt, self._length, self._n, self._r, self._p
)
def verify(self, key_material, expected_key):
derived_key = self.derive(key_material)
if not constant_time.bytes_eq(derived_key, expected_key):
raise InvalidKey("Keys do not match.")

View File

@ -0,0 +1,68 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidKey, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HashBackend
from cryptography.hazmat.primitives import constant_time, hashes
from cryptography.hazmat.primitives.kdf import KeyDerivationFunction
def _int_to_u32be(n):
return struct.pack('>I', n)
@utils.register_interface(KeyDerivationFunction)
class X963KDF(object):
def __init__(self, algorithm, length, sharedinfo, backend):
max_len = algorithm.digest_size * (2 ** 32 - 1)
if length > max_len:
raise ValueError(
"Can not derive keys larger than {} bits.".format(max_len))
if sharedinfo is not None:
utils._check_bytes("sharedinfo", sharedinfo)
self._algorithm = algorithm
self._length = length
self._sharedinfo = sharedinfo
if not isinstance(backend, HashBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HashBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._backend = backend
self._used = False
def derive(self, key_material):
if self._used:
raise AlreadyFinalized
self._used = True
utils._check_byteslike("key_material", key_material)
output = [b""]
outlen = 0
counter = 1
while self._length > outlen:
h = hashes.Hash(self._algorithm, self._backend)
h.update(key_material)
h.update(_int_to_u32be(counter))
if self._sharedinfo is not None:
h.update(self._sharedinfo)
output.append(h.finalize())
outlen += len(output[-1])
counter += 1
return b"".join(output)[:self._length]
def verify(self, key_material, expected_key):
if not constant_time.bytes_eq(self.derive(key_material), expected_key):
raise InvalidKey

View File

@ -0,0 +1,154 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
from cryptography.hazmat.primitives.ciphers import Cipher
from cryptography.hazmat.primitives.ciphers.algorithms import AES
from cryptography.hazmat.primitives.ciphers.modes import ECB
from cryptography.hazmat.primitives.constant_time import bytes_eq
def _wrap_core(wrapping_key, a, r, backend):
# RFC 3394 Key Wrap - 2.2.1 (index method)
encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
n = len(r)
for j in range(6):
for i in range(n):
# every encryption operation is a discrete 16 byte chunk (because
# AES has a 128-bit block size) and since we're using ECB it is
# safe to reuse the encryptor for the entire operation
b = encryptor.update(a + r[i])
# pack/unpack are safe as these are always 64-bit chunks
a = struct.pack(
">Q", struct.unpack(">Q", b[:8])[0] ^ ((n * j) + i + 1)
)
r[i] = b[-8:]
assert encryptor.finalize() == b""
return a + b"".join(r)
def aes_key_wrap(wrapping_key, key_to_wrap, backend):
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
if len(key_to_wrap) < 16:
raise ValueError("The key to wrap must be at least 16 bytes")
if len(key_to_wrap) % 8 != 0:
raise ValueError("The key to wrap must be a multiple of 8 bytes")
a = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
return _wrap_core(wrapping_key, a, r, backend)
def _unwrap_core(wrapping_key, a, r, backend):
# Implement RFC 3394 Key Unwrap - 2.2.2 (index method)
decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
n = len(r)
for j in reversed(range(6)):
for i in reversed(range(n)):
# pack/unpack are safe as these are always 64-bit chunks
atr = struct.pack(
">Q", struct.unpack(">Q", a)[0] ^ ((n * j) + i + 1)
) + r[i]
# every decryption operation is a discrete 16 byte chunk so
# it is safe to reuse the decryptor for the entire operation
b = decryptor.update(atr)
a = b[:8]
r[i] = b[-8:]
assert decryptor.finalize() == b""
return a, r
def aes_key_wrap_with_padding(wrapping_key, key_to_wrap, backend):
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
aiv = b"\xA6\x59\x59\xA6" + struct.pack(">i", len(key_to_wrap))
# pad the key to wrap if necessary
pad = (8 - (len(key_to_wrap) % 8)) % 8
key_to_wrap = key_to_wrap + b"\x00" * pad
if len(key_to_wrap) == 8:
# RFC 5649 - 4.1 - exactly 8 octets after padding
encryptor = Cipher(AES(wrapping_key), ECB(), backend).encryptor()
b = encryptor.update(aiv + key_to_wrap)
assert encryptor.finalize() == b""
return b
else:
r = [key_to_wrap[i:i + 8] for i in range(0, len(key_to_wrap), 8)]
return _wrap_core(wrapping_key, aiv, r, backend)
def aes_key_unwrap_with_padding(wrapping_key, wrapped_key, backend):
if len(wrapped_key) < 16:
raise InvalidUnwrap("Must be at least 16 bytes")
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
if len(wrapped_key) == 16:
# RFC 5649 - 4.2 - exactly two 64-bit blocks
decryptor = Cipher(AES(wrapping_key), ECB(), backend).decryptor()
b = decryptor.update(wrapped_key)
assert decryptor.finalize() == b""
a = b[:8]
data = b[8:]
n = 1
else:
r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
encrypted_aiv = r.pop(0)
n = len(r)
a, r = _unwrap_core(wrapping_key, encrypted_aiv, r, backend)
data = b"".join(r)
# 1) Check that MSB(32,A) = A65959A6.
# 2) Check that 8*(n-1) < LSB(32,A) <= 8*n. If so, let
# MLI = LSB(32,A).
# 3) Let b = (8*n)-MLI, and then check that the rightmost b octets of
# the output data are zero.
(mli,) = struct.unpack(">I", a[4:])
b = (8 * n) - mli
if (
not bytes_eq(a[:4], b"\xa6\x59\x59\xa6") or not
8 * (n - 1) < mli <= 8 * n or (
b != 0 and not bytes_eq(data[-b:], b"\x00" * b)
)
):
raise InvalidUnwrap()
if b == 0:
return data
else:
return data[:-b]
def aes_key_unwrap(wrapping_key, wrapped_key, backend):
if len(wrapped_key) < 24:
raise InvalidUnwrap("Must be at least 24 bytes")
if len(wrapped_key) % 8 != 0:
raise InvalidUnwrap("The wrapped key must be a multiple of 8 bytes")
if len(wrapping_key) not in [16, 24, 32]:
raise ValueError("The wrapping key must be a valid AES key length")
aiv = b"\xa6\xa6\xa6\xa6\xa6\xa6\xa6\xa6"
r = [wrapped_key[i:i + 8] for i in range(0, len(wrapped_key), 8)]
a = r.pop(0)
a, r = _unwrap_core(wrapping_key, a, r, backend)
if not bytes_eq(a, aiv):
raise InvalidUnwrap()
return b"".join(r)
class InvalidUnwrap(Exception):
pass

View File

@ -0,0 +1,200 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import six
from cryptography import utils
from cryptography.exceptions import AlreadyFinalized
from cryptography.hazmat.bindings._padding import lib
@six.add_metaclass(abc.ABCMeta)
class PaddingContext(object):
@abc.abstractmethod
def update(self, data):
"""
Pads the provided bytes and returns any available data as bytes.
"""
@abc.abstractmethod
def finalize(self):
"""
Finalize the padding, returns bytes.
"""
def _byte_padding_check(block_size):
if not (0 <= block_size <= 2040):
raise ValueError("block_size must be in range(0, 2041).")
if block_size % 8 != 0:
raise ValueError("block_size must be a multiple of 8.")
def _byte_padding_update(buffer_, data, block_size):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_bytes("data", data)
buffer_ += data
finished_blocks = len(buffer_) // (block_size // 8)
result = buffer_[:finished_blocks * (block_size // 8)]
buffer_ = buffer_[finished_blocks * (block_size // 8):]
return buffer_, result
def _byte_padding_pad(buffer_, block_size, paddingfn):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
pad_size = block_size // 8 - len(buffer_)
return buffer_ + paddingfn(pad_size)
def _byte_unpadding_update(buffer_, data, block_size):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_bytes("data", data)
buffer_ += data
finished_blocks = max(len(buffer_) // (block_size // 8) - 1, 0)
result = buffer_[:finished_blocks * (block_size // 8)]
buffer_ = buffer_[finished_blocks * (block_size // 8):]
return buffer_, result
def _byte_unpadding_check(buffer_, block_size, checkfn):
if buffer_ is None:
raise AlreadyFinalized("Context was already finalized.")
if len(buffer_) != block_size // 8:
raise ValueError("Invalid padding bytes.")
valid = checkfn(buffer_, block_size // 8)
if not valid:
raise ValueError("Invalid padding bytes.")
pad_size = six.indexbytes(buffer_, -1)
return buffer_[:-pad_size]
class PKCS7(object):
def __init__(self, block_size):
_byte_padding_check(block_size)
self.block_size = block_size
def padder(self):
return _PKCS7PaddingContext(self.block_size)
def unpadder(self):
return _PKCS7UnpaddingContext(self.block_size)
@utils.register_interface(PaddingContext)
class _PKCS7PaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_padding_update(
self._buffer, data, self.block_size)
return result
def _padding(self, size):
return six.int2byte(size) * size
def finalize(self):
result = _byte_padding_pad(
self._buffer, self.block_size, self._padding)
self._buffer = None
return result
@utils.register_interface(PaddingContext)
class _PKCS7UnpaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_unpadding_update(
self._buffer, data, self.block_size)
return result
def finalize(self):
result = _byte_unpadding_check(
self._buffer, self.block_size,
lib.Cryptography_check_pkcs7_padding)
self._buffer = None
return result
class ANSIX923(object):
def __init__(self, block_size):
_byte_padding_check(block_size)
self.block_size = block_size
def padder(self):
return _ANSIX923PaddingContext(self.block_size)
def unpadder(self):
return _ANSIX923UnpaddingContext(self.block_size)
@utils.register_interface(PaddingContext)
class _ANSIX923PaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_padding_update(
self._buffer, data, self.block_size)
return result
def _padding(self, size):
return six.int2byte(0) * (size - 1) + six.int2byte(size)
def finalize(self):
result = _byte_padding_pad(
self._buffer, self.block_size, self._padding)
self._buffer = None
return result
@utils.register_interface(PaddingContext)
class _ANSIX923UnpaddingContext(object):
def __init__(self, block_size):
self.block_size = block_size
# TODO: more copies than necessary, we should use zero-buffer (#193)
self._buffer = b""
def update(self, data):
self._buffer, result = _byte_unpadding_update(
self._buffer, data, self.block_size)
return result
def finalize(self):
result = _byte_unpadding_check(
self._buffer, self.block_size,
lib.Cryptography_check_ansix923_padding)
self._buffer = None
return result

View File

@ -0,0 +1,55 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, UnsupportedAlgorithm, _Reasons
)
class Poly1305(object):
def __init__(self, key):
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.poly1305_supported():
raise UnsupportedAlgorithm(
"poly1305 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_MAC
)
self._ctx = backend.create_poly1305_ctx(key)
def update(self, data):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
utils._check_byteslike("data", data)
self._ctx.update(data)
def finalize(self):
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
mac = self._ctx.finalize()
self._ctx = None
return mac
def verify(self, tag):
utils._check_bytes("tag", tag)
if self._ctx is None:
raise AlreadyFinalized("Context was already finalized.")
ctx, self._ctx = self._ctx, None
ctx.verify(tag)
@classmethod
def generate_tag(cls, key, data):
p = Poly1305(key)
p.update(data)
return p.finalize()
@classmethod
def verify_tag(cls, key, data, tag):
p = Poly1305(key)
p.update(data)
p.verify(tag)

View File

@ -0,0 +1,26 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat.primitives.serialization.base import (
BestAvailableEncryption, Encoding, KeySerializationEncryption,
NoEncryption, ParameterFormat, PrivateFormat, PublicFormat,
load_der_parameters, load_der_private_key, load_der_public_key,
load_pem_parameters, load_pem_private_key, load_pem_public_key,
)
from cryptography.hazmat.primitives.serialization.ssh import (
load_ssh_public_key
)
_PEM_DER = (Encoding.PEM, Encoding.DER)
__all__ = [
"load_der_parameters", "load_der_private_key", "load_der_public_key",
"load_pem_parameters", "load_pem_private_key", "load_pem_public_key",
"load_ssh_public_key", "Encoding", "PrivateFormat", "PublicFormat",
"ParameterFormat", "KeySerializationEncryption", "BestAvailableEncryption",
"NoEncryption",
]

View File

@ -0,0 +1,82 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
from enum import Enum
import six
from cryptography import utils
def load_pem_private_key(data, password, backend):
return backend.load_pem_private_key(data, password)
def load_pem_public_key(data, backend):
return backend.load_pem_public_key(data)
def load_pem_parameters(data, backend):
return backend.load_pem_parameters(data)
def load_der_private_key(data, password, backend):
return backend.load_der_private_key(data, password)
def load_der_public_key(data, backend):
return backend.load_der_public_key(data)
def load_der_parameters(data, backend):
return backend.load_der_parameters(data)
class Encoding(Enum):
PEM = "PEM"
DER = "DER"
OpenSSH = "OpenSSH"
Raw = "Raw"
X962 = "ANSI X9.62"
class PrivateFormat(Enum):
PKCS8 = "PKCS8"
TraditionalOpenSSL = "TraditionalOpenSSL"
Raw = "Raw"
class PublicFormat(Enum):
SubjectPublicKeyInfo = "X.509 subjectPublicKeyInfo with PKCS#1"
PKCS1 = "Raw PKCS#1"
OpenSSH = "OpenSSH"
Raw = "Raw"
CompressedPoint = "X9.62 Compressed Point"
UncompressedPoint = "X9.62 Uncompressed Point"
class ParameterFormat(Enum):
PKCS3 = "PKCS3"
@six.add_metaclass(abc.ABCMeta)
class KeySerializationEncryption(object):
pass
@utils.register_interface(KeySerializationEncryption)
class BestAvailableEncryption(object):
def __init__(self, password):
if not isinstance(password, bytes) or len(password) == 0:
raise ValueError("Password must be 1 or more bytes.")
self.password = password
@utils.register_interface(KeySerializationEncryption)
class NoEncryption(object):
pass

View File

@ -0,0 +1,9 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
def load_key_and_certificates(data, password, backend):
return backend.load_key_and_certificates_from_pkcs12(data, password)

View File

@ -0,0 +1,153 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import base64
import struct
import six
from cryptography import utils
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.primitives.asymmetric import dsa, ec, ed25519, rsa
def load_ssh_public_key(data, backend):
key_parts = data.split(b' ', 2)
if len(key_parts) < 2:
raise ValueError(
'Key is not in the proper format or contains extra data.')
key_type = key_parts[0]
if key_type == b'ssh-rsa':
loader = _load_ssh_rsa_public_key
elif key_type == b'ssh-dss':
loader = _load_ssh_dss_public_key
elif key_type in [
b'ecdsa-sha2-nistp256', b'ecdsa-sha2-nistp384', b'ecdsa-sha2-nistp521',
]:
loader = _load_ssh_ecdsa_public_key
elif key_type == b'ssh-ed25519':
loader = _load_ssh_ed25519_public_key
else:
raise UnsupportedAlgorithm('Key type is not supported.')
key_body = key_parts[1]
try:
decoded_data = base64.b64decode(key_body)
except TypeError:
raise ValueError('Key is not in the proper format.')
inner_key_type, rest = _ssh_read_next_string(decoded_data)
if inner_key_type != key_type:
raise ValueError(
'Key header and key body contain different key type values.'
)
return loader(key_type, rest, backend)
def _load_ssh_rsa_public_key(key_type, decoded_data, backend):
e, rest = _ssh_read_next_mpint(decoded_data)
n, rest = _ssh_read_next_mpint(rest)
if rest:
raise ValueError('Key body contains extra bytes.')
return rsa.RSAPublicNumbers(e, n).public_key(backend)
def _load_ssh_dss_public_key(key_type, decoded_data, backend):
p, rest = _ssh_read_next_mpint(decoded_data)
q, rest = _ssh_read_next_mpint(rest)
g, rest = _ssh_read_next_mpint(rest)
y, rest = _ssh_read_next_mpint(rest)
if rest:
raise ValueError('Key body contains extra bytes.')
parameter_numbers = dsa.DSAParameterNumbers(p, q, g)
public_numbers = dsa.DSAPublicNumbers(y, parameter_numbers)
return public_numbers.public_key(backend)
def _load_ssh_ecdsa_public_key(expected_key_type, decoded_data, backend):
curve_name, rest = _ssh_read_next_string(decoded_data)
data, rest = _ssh_read_next_string(rest)
if expected_key_type != b"ecdsa-sha2-" + curve_name:
raise ValueError(
'Key header and key body contain different key type values.'
)
if rest:
raise ValueError('Key body contains extra bytes.')
curve = {
b"nistp256": ec.SECP256R1,
b"nistp384": ec.SECP384R1,
b"nistp521": ec.SECP521R1,
}[curve_name]()
if six.indexbytes(data, 0) != 4:
raise NotImplementedError(
"Compressed elliptic curve points are not supported"
)
return ec.EllipticCurvePublicKey.from_encoded_point(curve, data)
def _load_ssh_ed25519_public_key(expected_key_type, decoded_data, backend):
data, rest = _ssh_read_next_string(decoded_data)
if rest:
raise ValueError('Key body contains extra bytes.')
return ed25519.Ed25519PublicKey.from_public_bytes(data)
def _ssh_read_next_string(data):
"""
Retrieves the next RFC 4251 string value from the data.
While the RFC calls these strings, in Python they are bytes objects.
"""
if len(data) < 4:
raise ValueError("Key is not in the proper format")
str_len, = struct.unpack('>I', data[:4])
if len(data) < str_len + 4:
raise ValueError("Key is not in the proper format")
return data[4:4 + str_len], data[4 + str_len:]
def _ssh_read_next_mpint(data):
"""
Reads the next mpint from the data.
Currently, all mpints are interpreted as unsigned.
"""
mpint_data, rest = _ssh_read_next_string(data)
return (
utils.int_from_bytes(mpint_data, byteorder='big', signed=False), rest
)
def _ssh_write_string(data):
return struct.pack(">I", len(data)) + data
def _ssh_write_mpint(value):
data = utils.int_to_bytes(value)
if six.indexbytes(data, 0) & 0x80:
data = b"\x00" + data
return _ssh_write_string(data)

View File

@ -0,0 +1,9 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
class InvalidToken(Exception):
pass

View File

@ -0,0 +1,68 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import struct
import six
from cryptography.exceptions import (
UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time, hmac
from cryptography.hazmat.primitives.hashes import SHA1, SHA256, SHA512
from cryptography.hazmat.primitives.twofactor import InvalidToken
from cryptography.hazmat.primitives.twofactor.utils import _generate_uri
class HOTP(object):
def __init__(self, key, length, algorithm, backend,
enforce_key_length=True):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
if len(key) < 16 and enforce_key_length is True:
raise ValueError("Key length has to be at least 128 bits.")
if not isinstance(length, six.integer_types):
raise TypeError("Length parameter must be an integer type.")
if length < 6 or length > 8:
raise ValueError("Length of HOTP has to be between 6 to 8.")
if not isinstance(algorithm, (SHA1, SHA256, SHA512)):
raise TypeError("Algorithm must be SHA1, SHA256 or SHA512.")
self._key = key
self._length = length
self._algorithm = algorithm
self._backend = backend
def generate(self, counter):
truncated_value = self._dynamic_truncate(counter)
hotp = truncated_value % (10 ** self._length)
return "{0:0{1}}".format(hotp, self._length).encode()
def verify(self, hotp, counter):
if not constant_time.bytes_eq(self.generate(counter), hotp):
raise InvalidToken("Supplied HOTP value does not match.")
def _dynamic_truncate(self, counter):
ctx = hmac.HMAC(self._key, self._algorithm, self._backend)
ctx.update(struct.pack(">Q", counter))
hmac_value = ctx.finalize()
offset = six.indexbytes(hmac_value, len(hmac_value) - 1) & 0b1111
p = hmac_value[offset:offset + 4]
return struct.unpack(">I", p)[0] & 0x7fffffff
def get_provisioning_uri(self, account_name, counter, issuer):
return _generate_uri(self, "hotp", account_name, issuer, [
("counter", int(counter)),
])

View File

@ -0,0 +1,40 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.exceptions import (
UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.interfaces import HMACBackend
from cryptography.hazmat.primitives import constant_time
from cryptography.hazmat.primitives.twofactor import InvalidToken
from cryptography.hazmat.primitives.twofactor.hotp import HOTP
from cryptography.hazmat.primitives.twofactor.utils import _generate_uri
class TOTP(object):
def __init__(self, key, length, algorithm, time_step, backend,
enforce_key_length=True):
if not isinstance(backend, HMACBackend):
raise UnsupportedAlgorithm(
"Backend object does not implement HMACBackend.",
_Reasons.BACKEND_MISSING_INTERFACE
)
self._time_step = time_step
self._hotp = HOTP(key, length, algorithm, backend, enforce_key_length)
def generate(self, time):
counter = int(time / self._time_step)
return self._hotp.generate(counter)
def verify(self, totp, time):
if not constant_time.bytes_eq(self.generate(time), totp):
raise InvalidToken("Supplied TOTP value does not match.")
def get_provisioning_uri(self, account_name, issuer):
return _generate_uri(self._hotp, "totp", account_name, issuer, [
("period", int(self._time_step)),
])

View File

@ -0,0 +1,30 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import base64
from six.moves.urllib.parse import quote, urlencode
def _generate_uri(hotp, type_name, account_name, issuer, extra_parameters):
parameters = [
("digits", hotp._length),
("secret", base64.b32encode(hotp._key)),
("algorithm", hotp._algorithm.name.upper()),
]
if issuer is not None:
parameters.append(("issuer", issuer))
parameters.extend(extra_parameters)
uriparts = {
"type": type_name,
"label": ("%s:%s" % (quote(issuer), quote(account_name)) if issuer
else quote(account_name)),
"parameters": urlencode(parameters),
}
return "otpauth://{type}/{label}?{parameters}".format(**uriparts)

View File

@ -0,0 +1,173 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import binascii
import inspect
import sys
import warnings
# We use a UserWarning subclass, instead of DeprecationWarning, because CPython
# decided deprecation warnings should be invisble by default.
class CryptographyDeprecationWarning(UserWarning):
pass
# Several APIs were deprecated with no specific end-of-life date because of the
# ubiquity of their use. They should not be removed until we agree on when that
# cycle ends.
PersistentlyDeprecated2017 = CryptographyDeprecationWarning
PersistentlyDeprecated2018 = CryptographyDeprecationWarning
DeprecatedIn25 = CryptographyDeprecationWarning
DeprecatedIn27 = CryptographyDeprecationWarning
def _check_bytes(name, value):
if not isinstance(value, bytes):
raise TypeError("{} must be bytes".format(name))
def _check_byteslike(name, value):
try:
memoryview(value)
except TypeError:
raise TypeError("{} must be bytes-like".format(name))
def read_only_property(name):
return property(lambda self: getattr(self, name))
def register_interface(iface):
def register_decorator(klass):
verify_interface(iface, klass)
iface.register(klass)
return klass
return register_decorator
def register_interface_if(predicate, iface):
def register_decorator(klass):
if predicate:
verify_interface(iface, klass)
iface.register(klass)
return klass
return register_decorator
if hasattr(int, "from_bytes"):
int_from_bytes = int.from_bytes
else:
def int_from_bytes(data, byteorder, signed=False):
assert byteorder == 'big'
assert not signed
return int(binascii.hexlify(data), 16)
if hasattr(int, "to_bytes"):
def int_to_bytes(integer, length=None):
return integer.to_bytes(
length or (integer.bit_length() + 7) // 8 or 1, 'big'
)
else:
def int_to_bytes(integer, length=None):
hex_string = '%x' % integer
if length is None:
n = len(hex_string)
else:
n = length * 2
return binascii.unhexlify(hex_string.zfill(n + (n & 1)))
class InterfaceNotImplemented(Exception):
pass
if hasattr(inspect, "signature"):
signature = inspect.signature
else:
signature = inspect.getargspec
def verify_interface(iface, klass):
for method in iface.__abstractmethods__:
if not hasattr(klass, method):
raise InterfaceNotImplemented(
"{} is missing a {!r} method".format(klass, method)
)
if isinstance(getattr(iface, method), abc.abstractproperty):
# Can't properly verify these yet.
continue
sig = signature(getattr(iface, method))
actual = signature(getattr(klass, method))
if sig != actual:
raise InterfaceNotImplemented(
"{}.{}'s signature differs from the expected. Expected: "
"{!r}. Received: {!r}".format(
klass, method, sig, actual
)
)
# No longer needed as of 2.2, but retained because we have external consumers
# who use it.
def bit_length(x):
return x.bit_length()
class _DeprecatedValue(object):
def __init__(self, value, message, warning_class):
self.value = value
self.message = message
self.warning_class = warning_class
class _ModuleWithDeprecations(object):
def __init__(self, module):
self.__dict__["_module"] = module
def __getattr__(self, attr):
obj = getattr(self._module, attr)
if isinstance(obj, _DeprecatedValue):
warnings.warn(obj.message, obj.warning_class, stacklevel=2)
obj = obj.value
return obj
def __setattr__(self, attr, value):
setattr(self._module, attr, value)
def __delattr__(self, attr):
obj = getattr(self._module, attr)
if isinstance(obj, _DeprecatedValue):
warnings.warn(obj.message, obj.warning_class, stacklevel=2)
delattr(self._module, attr)
def __dir__(self):
return ["_module"] + dir(self._module)
def deprecated(value, module_name, message, warning_class):
module = sys.modules[module_name]
if not isinstance(module, _ModuleWithDeprecations):
sys.modules[module_name] = _ModuleWithDeprecations(module)
return _DeprecatedValue(value, message, warning_class)
def cached_property(func):
cached_name = "_cached_{}".format(func)
sentinel = object()
def inner(instance):
cache = getattr(instance, cached_name, sentinel)
if cache is not sentinel:
return cache
result = func(instance)
setattr(instance, cached_name, result)
return result
return property(inner)

View File

@ -0,0 +1,189 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.x509 import certificate_transparency
from cryptography.x509.base import (
Certificate, CertificateBuilder, CertificateRevocationList,
CertificateRevocationListBuilder,
CertificateSigningRequest, CertificateSigningRequestBuilder,
InvalidVersion, RevokedCertificate, RevokedCertificateBuilder,
Version, load_der_x509_certificate, load_der_x509_crl, load_der_x509_csr,
load_pem_x509_certificate, load_pem_x509_crl, load_pem_x509_csr,
random_serial_number,
)
from cryptography.x509.extensions import (
AccessDescription, AuthorityInformationAccess,
AuthorityKeyIdentifier, BasicConstraints, CRLDistributionPoints,
CRLNumber, CRLReason, CertificateIssuer, CertificatePolicies,
DeltaCRLIndicator, DistributionPoint, DuplicateExtension, ExtendedKeyUsage,
Extension, ExtensionNotFound, ExtensionType, Extensions, FreshestCRL,
GeneralNames, InhibitAnyPolicy, InvalidityDate, IssuerAlternativeName,
IssuingDistributionPoint, KeyUsage, NameConstraints, NoticeReference,
OCSPNoCheck, OCSPNonce, PolicyConstraints, PolicyInformation,
PrecertPoison, PrecertificateSignedCertificateTimestamps, ReasonFlags,
SubjectAlternativeName, SubjectKeyIdentifier, TLSFeature, TLSFeatureType,
UnrecognizedExtension, UserNotice
)
from cryptography.x509.general_name import (
DNSName, DirectoryName, GeneralName, IPAddress, OtherName, RFC822Name,
RegisteredID, UniformResourceIdentifier, UnsupportedGeneralNameType,
_GENERAL_NAMES
)
from cryptography.x509.name import (
Name, NameAttribute, RelativeDistinguishedName
)
from cryptography.x509.oid import (
AuthorityInformationAccessOID, CRLEntryExtensionOID,
CertificatePoliciesOID, ExtendedKeyUsageOID, ExtensionOID, NameOID,
ObjectIdentifier, SignatureAlgorithmOID, _SIG_OIDS_TO_HASH
)
OID_AUTHORITY_INFORMATION_ACCESS = ExtensionOID.AUTHORITY_INFORMATION_ACCESS
OID_AUTHORITY_KEY_IDENTIFIER = ExtensionOID.AUTHORITY_KEY_IDENTIFIER
OID_BASIC_CONSTRAINTS = ExtensionOID.BASIC_CONSTRAINTS
OID_CERTIFICATE_POLICIES = ExtensionOID.CERTIFICATE_POLICIES
OID_CRL_DISTRIBUTION_POINTS = ExtensionOID.CRL_DISTRIBUTION_POINTS
OID_EXTENDED_KEY_USAGE = ExtensionOID.EXTENDED_KEY_USAGE
OID_FRESHEST_CRL = ExtensionOID.FRESHEST_CRL
OID_INHIBIT_ANY_POLICY = ExtensionOID.INHIBIT_ANY_POLICY
OID_ISSUER_ALTERNATIVE_NAME = ExtensionOID.ISSUER_ALTERNATIVE_NAME
OID_KEY_USAGE = ExtensionOID.KEY_USAGE
OID_NAME_CONSTRAINTS = ExtensionOID.NAME_CONSTRAINTS
OID_OCSP_NO_CHECK = ExtensionOID.OCSP_NO_CHECK
OID_POLICY_CONSTRAINTS = ExtensionOID.POLICY_CONSTRAINTS
OID_POLICY_MAPPINGS = ExtensionOID.POLICY_MAPPINGS
OID_SUBJECT_ALTERNATIVE_NAME = ExtensionOID.SUBJECT_ALTERNATIVE_NAME
OID_SUBJECT_DIRECTORY_ATTRIBUTES = ExtensionOID.SUBJECT_DIRECTORY_ATTRIBUTES
OID_SUBJECT_INFORMATION_ACCESS = ExtensionOID.SUBJECT_INFORMATION_ACCESS
OID_SUBJECT_KEY_IDENTIFIER = ExtensionOID.SUBJECT_KEY_IDENTIFIER
OID_DSA_WITH_SHA1 = SignatureAlgorithmOID.DSA_WITH_SHA1
OID_DSA_WITH_SHA224 = SignatureAlgorithmOID.DSA_WITH_SHA224
OID_DSA_WITH_SHA256 = SignatureAlgorithmOID.DSA_WITH_SHA256
OID_ECDSA_WITH_SHA1 = SignatureAlgorithmOID.ECDSA_WITH_SHA1
OID_ECDSA_WITH_SHA224 = SignatureAlgorithmOID.ECDSA_WITH_SHA224
OID_ECDSA_WITH_SHA256 = SignatureAlgorithmOID.ECDSA_WITH_SHA256
OID_ECDSA_WITH_SHA384 = SignatureAlgorithmOID.ECDSA_WITH_SHA384
OID_ECDSA_WITH_SHA512 = SignatureAlgorithmOID.ECDSA_WITH_SHA512
OID_RSA_WITH_MD5 = SignatureAlgorithmOID.RSA_WITH_MD5
OID_RSA_WITH_SHA1 = SignatureAlgorithmOID.RSA_WITH_SHA1
OID_RSA_WITH_SHA224 = SignatureAlgorithmOID.RSA_WITH_SHA224
OID_RSA_WITH_SHA256 = SignatureAlgorithmOID.RSA_WITH_SHA256
OID_RSA_WITH_SHA384 = SignatureAlgorithmOID.RSA_WITH_SHA384
OID_RSA_WITH_SHA512 = SignatureAlgorithmOID.RSA_WITH_SHA512
OID_RSASSA_PSS = SignatureAlgorithmOID.RSASSA_PSS
OID_COMMON_NAME = NameOID.COMMON_NAME
OID_COUNTRY_NAME = NameOID.COUNTRY_NAME
OID_DOMAIN_COMPONENT = NameOID.DOMAIN_COMPONENT
OID_DN_QUALIFIER = NameOID.DN_QUALIFIER
OID_EMAIL_ADDRESS = NameOID.EMAIL_ADDRESS
OID_GENERATION_QUALIFIER = NameOID.GENERATION_QUALIFIER
OID_GIVEN_NAME = NameOID.GIVEN_NAME
OID_LOCALITY_NAME = NameOID.LOCALITY_NAME
OID_ORGANIZATIONAL_UNIT_NAME = NameOID.ORGANIZATIONAL_UNIT_NAME
OID_ORGANIZATION_NAME = NameOID.ORGANIZATION_NAME
OID_PSEUDONYM = NameOID.PSEUDONYM
OID_SERIAL_NUMBER = NameOID.SERIAL_NUMBER
OID_STATE_OR_PROVINCE_NAME = NameOID.STATE_OR_PROVINCE_NAME
OID_SURNAME = NameOID.SURNAME
OID_TITLE = NameOID.TITLE
OID_CLIENT_AUTH = ExtendedKeyUsageOID.CLIENT_AUTH
OID_CODE_SIGNING = ExtendedKeyUsageOID.CODE_SIGNING
OID_EMAIL_PROTECTION = ExtendedKeyUsageOID.EMAIL_PROTECTION
OID_OCSP_SIGNING = ExtendedKeyUsageOID.OCSP_SIGNING
OID_SERVER_AUTH = ExtendedKeyUsageOID.SERVER_AUTH
OID_TIME_STAMPING = ExtendedKeyUsageOID.TIME_STAMPING
OID_ANY_POLICY = CertificatePoliciesOID.ANY_POLICY
OID_CPS_QUALIFIER = CertificatePoliciesOID.CPS_QUALIFIER
OID_CPS_USER_NOTICE = CertificatePoliciesOID.CPS_USER_NOTICE
OID_CERTIFICATE_ISSUER = CRLEntryExtensionOID.CERTIFICATE_ISSUER
OID_CRL_REASON = CRLEntryExtensionOID.CRL_REASON
OID_INVALIDITY_DATE = CRLEntryExtensionOID.INVALIDITY_DATE
OID_CA_ISSUERS = AuthorityInformationAccessOID.CA_ISSUERS
OID_OCSP = AuthorityInformationAccessOID.OCSP
__all__ = [
"certificate_transparency",
"load_pem_x509_certificate",
"load_der_x509_certificate",
"load_pem_x509_csr",
"load_der_x509_csr",
"load_pem_x509_crl",
"load_der_x509_crl",
"random_serial_number",
"InvalidVersion",
"DeltaCRLIndicator",
"DuplicateExtension",
"ExtensionNotFound",
"UnsupportedGeneralNameType",
"NameAttribute",
"Name",
"RelativeDistinguishedName",
"ObjectIdentifier",
"ExtensionType",
"Extensions",
"Extension",
"ExtendedKeyUsage",
"FreshestCRL",
"IssuingDistributionPoint",
"TLSFeature",
"TLSFeatureType",
"OCSPNoCheck",
"BasicConstraints",
"CRLNumber",
"KeyUsage",
"AuthorityInformationAccess",
"AccessDescription",
"CertificatePolicies",
"PolicyInformation",
"UserNotice",
"NoticeReference",
"SubjectKeyIdentifier",
"NameConstraints",
"CRLDistributionPoints",
"DistributionPoint",
"ReasonFlags",
"InhibitAnyPolicy",
"SubjectAlternativeName",
"IssuerAlternativeName",
"AuthorityKeyIdentifier",
"GeneralNames",
"GeneralName",
"RFC822Name",
"DNSName",
"UniformResourceIdentifier",
"RegisteredID",
"DirectoryName",
"IPAddress",
"OtherName",
"Certificate",
"CertificateRevocationList",
"CertificateRevocationListBuilder",
"CertificateSigningRequest",
"RevokedCertificate",
"RevokedCertificateBuilder",
"CertificateSigningRequestBuilder",
"CertificateBuilder",
"Version",
"_SIG_OIDS_TO_HASH",
"OID_CA_ISSUERS",
"OID_OCSP",
"_GENERAL_NAMES",
"CertificateIssuer",
"CRLReason",
"InvalidityDate",
"UnrecognizedExtension",
"PolicyConstraints",
"PrecertificateSignedCertificateTimestamps",
"PrecertPoison",
"OCSPNonce",
]

View File

@ -0,0 +1,758 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import datetime
import os
from enum import Enum
import six
from cryptography import utils
from cryptography.hazmat.primitives.asymmetric import (
dsa, ec, ed25519, ed448, rsa
)
from cryptography.x509.extensions import Extension, ExtensionType
from cryptography.x509.name import Name
_EARLIEST_UTC_TIME = datetime.datetime(1950, 1, 1)
def _reject_duplicate_extension(extension, extensions):
# This is quadratic in the number of extensions
for e in extensions:
if e.oid == extension.oid:
raise ValueError('This extension has already been set.')
def _convert_to_naive_utc_time(time):
"""Normalizes a datetime to a naive datetime in UTC.
time -- datetime to normalize. Assumed to be in UTC if not timezone
aware.
"""
if time.tzinfo is not None:
offset = time.utcoffset()
offset = offset if offset else datetime.timedelta()
return time.replace(tzinfo=None) - offset
else:
return time
class Version(Enum):
v1 = 0
v3 = 2
def load_pem_x509_certificate(data, backend):
return backend.load_pem_x509_certificate(data)
def load_der_x509_certificate(data, backend):
return backend.load_der_x509_certificate(data)
def load_pem_x509_csr(data, backend):
return backend.load_pem_x509_csr(data)
def load_der_x509_csr(data, backend):
return backend.load_der_x509_csr(data)
def load_pem_x509_crl(data, backend):
return backend.load_pem_x509_crl(data)
def load_der_x509_crl(data, backend):
return backend.load_der_x509_crl(data)
class InvalidVersion(Exception):
def __init__(self, msg, parsed_version):
super(InvalidVersion, self).__init__(msg)
self.parsed_version = parsed_version
@six.add_metaclass(abc.ABCMeta)
class Certificate(object):
@abc.abstractmethod
def fingerprint(self, algorithm):
"""
Returns bytes using digest passed.
"""
@abc.abstractproperty
def serial_number(self):
"""
Returns certificate serial number
"""
@abc.abstractproperty
def version(self):
"""
Returns the certificate version
"""
@abc.abstractmethod
def public_key(self):
"""
Returns the public key
"""
@abc.abstractproperty
def not_valid_before(self):
"""
Not before time (represented as UTC datetime)
"""
@abc.abstractproperty
def not_valid_after(self):
"""
Not after time (represented as UTC datetime)
"""
@abc.abstractproperty
def issuer(self):
"""
Returns the issuer name object.
"""
@abc.abstractproperty
def subject(self):
"""
Returns the subject name object.
"""
@abc.abstractproperty
def signature_hash_algorithm(self):
"""
Returns a HashAlgorithm corresponding to the type of the digest signed
in the certificate.
"""
@abc.abstractproperty
def signature_algorithm_oid(self):
"""
Returns the ObjectIdentifier of the signature algorithm.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns an Extensions object.
"""
@abc.abstractproperty
def signature(self):
"""
Returns the signature bytes.
"""
@abc.abstractproperty
def tbs_certificate_bytes(self):
"""
Returns the tbsCertificate payload bytes as defined in RFC 5280.
"""
@abc.abstractmethod
def __eq__(self, other):
"""
Checks equality.
"""
@abc.abstractmethod
def __ne__(self, other):
"""
Checks not equal.
"""
@abc.abstractmethod
def __hash__(self):
"""
Computes a hash.
"""
@abc.abstractmethod
def public_bytes(self, encoding):
"""
Serializes the certificate to PEM or DER format.
"""
@six.add_metaclass(abc.ABCMeta)
class CertificateRevocationList(object):
@abc.abstractmethod
def public_bytes(self, encoding):
"""
Serializes the CRL to PEM or DER format.
"""
@abc.abstractmethod
def fingerprint(self, algorithm):
"""
Returns bytes using digest passed.
"""
@abc.abstractmethod
def get_revoked_certificate_by_serial_number(self, serial_number):
"""
Returns an instance of RevokedCertificate or None if the serial_number
is not in the CRL.
"""
@abc.abstractproperty
def signature_hash_algorithm(self):
"""
Returns a HashAlgorithm corresponding to the type of the digest signed
in the certificate.
"""
@abc.abstractproperty
def signature_algorithm_oid(self):
"""
Returns the ObjectIdentifier of the signature algorithm.
"""
@abc.abstractproperty
def issuer(self):
"""
Returns the X509Name with the issuer of this CRL.
"""
@abc.abstractproperty
def next_update(self):
"""
Returns the date of next update for this CRL.
"""
@abc.abstractproperty
def last_update(self):
"""
Returns the date of last update for this CRL.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns an Extensions object containing a list of CRL extensions.
"""
@abc.abstractproperty
def signature(self):
"""
Returns the signature bytes.
"""
@abc.abstractproperty
def tbs_certlist_bytes(self):
"""
Returns the tbsCertList payload bytes as defined in RFC 5280.
"""
@abc.abstractmethod
def __eq__(self, other):
"""
Checks equality.
"""
@abc.abstractmethod
def __ne__(self, other):
"""
Checks not equal.
"""
@abc.abstractmethod
def __len__(self):
"""
Number of revoked certificates in the CRL.
"""
@abc.abstractmethod
def __getitem__(self, idx):
"""
Returns a revoked certificate (or slice of revoked certificates).
"""
@abc.abstractmethod
def __iter__(self):
"""
Iterator over the revoked certificates
"""
@abc.abstractmethod
def is_signature_valid(self, public_key):
"""
Verifies signature of revocation list against given public key.
"""
@six.add_metaclass(abc.ABCMeta)
class CertificateSigningRequest(object):
@abc.abstractmethod
def __eq__(self, other):
"""
Checks equality.
"""
@abc.abstractmethod
def __ne__(self, other):
"""
Checks not equal.
"""
@abc.abstractmethod
def __hash__(self):
"""
Computes a hash.
"""
@abc.abstractmethod
def public_key(self):
"""
Returns the public key
"""
@abc.abstractproperty
def subject(self):
"""
Returns the subject name object.
"""
@abc.abstractproperty
def signature_hash_algorithm(self):
"""
Returns a HashAlgorithm corresponding to the type of the digest signed
in the certificate.
"""
@abc.abstractproperty
def signature_algorithm_oid(self):
"""
Returns the ObjectIdentifier of the signature algorithm.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns the extensions in the signing request.
"""
@abc.abstractmethod
def public_bytes(self, encoding):
"""
Encodes the request to PEM or DER format.
"""
@abc.abstractproperty
def signature(self):
"""
Returns the signature bytes.
"""
@abc.abstractproperty
def tbs_certrequest_bytes(self):
"""
Returns the PKCS#10 CertificationRequestInfo bytes as defined in RFC
2986.
"""
@abc.abstractproperty
def is_signature_valid(self):
"""
Verifies signature of signing request.
"""
@six.add_metaclass(abc.ABCMeta)
class RevokedCertificate(object):
@abc.abstractproperty
def serial_number(self):
"""
Returns the serial number of the revoked certificate.
"""
@abc.abstractproperty
def revocation_date(self):
"""
Returns the date of when this certificate was revoked.
"""
@abc.abstractproperty
def extensions(self):
"""
Returns an Extensions object containing a list of Revoked extensions.
"""
class CertificateSigningRequestBuilder(object):
def __init__(self, subject_name=None, extensions=[]):
"""
Creates an empty X.509 certificate request (v1).
"""
self._subject_name = subject_name
self._extensions = extensions
def subject_name(self, name):
"""
Sets the certificate requestor's distinguished name.
"""
if not isinstance(name, Name):
raise TypeError('Expecting x509.Name object.')
if self._subject_name is not None:
raise ValueError('The subject name may only be set once.')
return CertificateSigningRequestBuilder(name, self._extensions)
def add_extension(self, extension, critical):
"""
Adds an X.509 extension to the certificate request.
"""
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
_reject_duplicate_extension(extension, self._extensions)
return CertificateSigningRequestBuilder(
self._subject_name, self._extensions + [extension]
)
def sign(self, private_key, algorithm, backend):
"""
Signs the request using the requestor's private key.
"""
if self._subject_name is None:
raise ValueError("A CertificateSigningRequest must have a subject")
return backend.create_x509_csr(self, private_key, algorithm)
class CertificateBuilder(object):
def __init__(self, issuer_name=None, subject_name=None,
public_key=None, serial_number=None, not_valid_before=None,
not_valid_after=None, extensions=[]):
self._version = Version.v3
self._issuer_name = issuer_name
self._subject_name = subject_name
self._public_key = public_key
self._serial_number = serial_number
self._not_valid_before = not_valid_before
self._not_valid_after = not_valid_after
self._extensions = extensions
def issuer_name(self, name):
"""
Sets the CA's distinguished name.
"""
if not isinstance(name, Name):
raise TypeError('Expecting x509.Name object.')
if self._issuer_name is not None:
raise ValueError('The issuer name may only be set once.')
return CertificateBuilder(
name, self._subject_name, self._public_key,
self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def subject_name(self, name):
"""
Sets the requestor's distinguished name.
"""
if not isinstance(name, Name):
raise TypeError('Expecting x509.Name object.')
if self._subject_name is not None:
raise ValueError('The subject name may only be set once.')
return CertificateBuilder(
self._issuer_name, name, self._public_key,
self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def public_key(self, key):
"""
Sets the requestor's public key (as found in the signing request).
"""
if not isinstance(key, (dsa.DSAPublicKey, rsa.RSAPublicKey,
ec.EllipticCurvePublicKey,
ed25519.Ed25519PublicKey,
ed448.Ed448PublicKey)):
raise TypeError('Expecting one of DSAPublicKey, RSAPublicKey,'
' EllipticCurvePublicKey, Ed25519PublicKey or'
' Ed448PublicKey.')
if self._public_key is not None:
raise ValueError('The public key may only be set once.')
return CertificateBuilder(
self._issuer_name, self._subject_name, key,
self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def serial_number(self, number):
"""
Sets the certificate serial number.
"""
if not isinstance(number, six.integer_types):
raise TypeError('Serial number must be of integral type.')
if self._serial_number is not None:
raise ValueError('The serial number may only be set once.')
if number <= 0:
raise ValueError('The serial number should be positive.')
# ASN.1 integers are always signed, so most significant bit must be
# zero.
if number.bit_length() >= 160: # As defined in RFC 5280
raise ValueError('The serial number should not be more than 159 '
'bits.')
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, number, self._not_valid_before,
self._not_valid_after, self._extensions
)
def not_valid_before(self, time):
"""
Sets the certificate activation time.
"""
if not isinstance(time, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._not_valid_before is not None:
raise ValueError('The not valid before may only be set once.')
time = _convert_to_naive_utc_time(time)
if time < _EARLIEST_UTC_TIME:
raise ValueError('The not valid before date must be on or after'
' 1950 January 1).')
if self._not_valid_after is not None and time > self._not_valid_after:
raise ValueError(
'The not valid before date must be before the not valid after '
'date.'
)
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, self._serial_number, time,
self._not_valid_after, self._extensions
)
def not_valid_after(self, time):
"""
Sets the certificate expiration time.
"""
if not isinstance(time, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._not_valid_after is not None:
raise ValueError('The not valid after may only be set once.')
time = _convert_to_naive_utc_time(time)
if time < _EARLIEST_UTC_TIME:
raise ValueError('The not valid after date must be on or after'
' 1950 January 1.')
if (self._not_valid_before is not None and
time < self._not_valid_before):
raise ValueError(
'The not valid after date must be after the not valid before '
'date.'
)
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, self._serial_number, self._not_valid_before,
time, self._extensions
)
def add_extension(self, extension, critical):
"""
Adds an X.509 extension to the certificate.
"""
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
_reject_duplicate_extension(extension, self._extensions)
return CertificateBuilder(
self._issuer_name, self._subject_name,
self._public_key, self._serial_number, self._not_valid_before,
self._not_valid_after, self._extensions + [extension]
)
def sign(self, private_key, algorithm, backend):
"""
Signs the certificate using the CA's private key.
"""
if self._subject_name is None:
raise ValueError("A certificate must have a subject name")
if self._issuer_name is None:
raise ValueError("A certificate must have an issuer name")
if self._serial_number is None:
raise ValueError("A certificate must have a serial number")
if self._not_valid_before is None:
raise ValueError("A certificate must have a not valid before time")
if self._not_valid_after is None:
raise ValueError("A certificate must have a not valid after time")
if self._public_key is None:
raise ValueError("A certificate must have a public key")
return backend.create_x509_certificate(self, private_key, algorithm)
class CertificateRevocationListBuilder(object):
def __init__(self, issuer_name=None, last_update=None, next_update=None,
extensions=[], revoked_certificates=[]):
self._issuer_name = issuer_name
self._last_update = last_update
self._next_update = next_update
self._extensions = extensions
self._revoked_certificates = revoked_certificates
def issuer_name(self, issuer_name):
if not isinstance(issuer_name, Name):
raise TypeError('Expecting x509.Name object.')
if self._issuer_name is not None:
raise ValueError('The issuer name may only be set once.')
return CertificateRevocationListBuilder(
issuer_name, self._last_update, self._next_update,
self._extensions, self._revoked_certificates
)
def last_update(self, last_update):
if not isinstance(last_update, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._last_update is not None:
raise ValueError('Last update may only be set once.')
last_update = _convert_to_naive_utc_time(last_update)
if last_update < _EARLIEST_UTC_TIME:
raise ValueError('The last update date must be on or after'
' 1950 January 1.')
if self._next_update is not None and last_update > self._next_update:
raise ValueError(
'The last update date must be before the next update date.'
)
return CertificateRevocationListBuilder(
self._issuer_name, last_update, self._next_update,
self._extensions, self._revoked_certificates
)
def next_update(self, next_update):
if not isinstance(next_update, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._next_update is not None:
raise ValueError('Last update may only be set once.')
next_update = _convert_to_naive_utc_time(next_update)
if next_update < _EARLIEST_UTC_TIME:
raise ValueError('The last update date must be on or after'
' 1950 January 1.')
if self._last_update is not None and next_update < self._last_update:
raise ValueError(
'The next update date must be after the last update date.'
)
return CertificateRevocationListBuilder(
self._issuer_name, self._last_update, next_update,
self._extensions, self._revoked_certificates
)
def add_extension(self, extension, critical):
"""
Adds an X.509 extension to the certificate revocation list.
"""
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
_reject_duplicate_extension(extension, self._extensions)
return CertificateRevocationListBuilder(
self._issuer_name, self._last_update, self._next_update,
self._extensions + [extension], self._revoked_certificates
)
def add_revoked_certificate(self, revoked_certificate):
"""
Adds a revoked certificate to the CRL.
"""
if not isinstance(revoked_certificate, RevokedCertificate):
raise TypeError("Must be an instance of RevokedCertificate")
return CertificateRevocationListBuilder(
self._issuer_name, self._last_update,
self._next_update, self._extensions,
self._revoked_certificates + [revoked_certificate]
)
def sign(self, private_key, algorithm, backend):
if self._issuer_name is None:
raise ValueError("A CRL must have an issuer name")
if self._last_update is None:
raise ValueError("A CRL must have a last update time")
if self._next_update is None:
raise ValueError("A CRL must have a next update time")
return backend.create_x509_crl(self, private_key, algorithm)
class RevokedCertificateBuilder(object):
def __init__(self, serial_number=None, revocation_date=None,
extensions=[]):
self._serial_number = serial_number
self._revocation_date = revocation_date
self._extensions = extensions
def serial_number(self, number):
if not isinstance(number, six.integer_types):
raise TypeError('Serial number must be of integral type.')
if self._serial_number is not None:
raise ValueError('The serial number may only be set once.')
if number <= 0:
raise ValueError('The serial number should be positive')
# ASN.1 integers are always signed, so most significant bit must be
# zero.
if number.bit_length() >= 160: # As defined in RFC 5280
raise ValueError('The serial number should not be more than 159 '
'bits.')
return RevokedCertificateBuilder(
number, self._revocation_date, self._extensions
)
def revocation_date(self, time):
if not isinstance(time, datetime.datetime):
raise TypeError('Expecting datetime object.')
if self._revocation_date is not None:
raise ValueError('The revocation date may only be set once.')
time = _convert_to_naive_utc_time(time)
if time < _EARLIEST_UTC_TIME:
raise ValueError('The revocation date must be on or after'
' 1950 January 1.')
return RevokedCertificateBuilder(
self._serial_number, time, self._extensions
)
def add_extension(self, extension, critical):
if not isinstance(extension, ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = Extension(extension.oid, critical, extension)
_reject_duplicate_extension(extension, self._extensions)
return RevokedCertificateBuilder(
self._serial_number, self._revocation_date,
self._extensions + [extension]
)
def build(self, backend):
if self._serial_number is None:
raise ValueError("A revoked certificate must have a serial number")
if self._revocation_date is None:
raise ValueError(
"A revoked certificate must have a revocation date"
)
return backend.create_x509_revoked_certificate(self)
def random_serial_number():
return utils.int_from_bytes(os.urandom(20), "big") >> 1

View File

@ -0,0 +1,46 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
from enum import Enum
import six
class LogEntryType(Enum):
X509_CERTIFICATE = 0
PRE_CERTIFICATE = 1
class Version(Enum):
v1 = 0
@six.add_metaclass(abc.ABCMeta)
class SignedCertificateTimestamp(object):
@abc.abstractproperty
def version(self):
"""
Returns the SCT version.
"""
@abc.abstractproperty
def log_id(self):
"""
Returns an identifier indicating which log this SCT is for.
"""
@abc.abstractproperty
def timestamp(self):
"""
Returns the timestamp for this SCT.
"""
@abc.abstractproperty
def entry_type(self):
"""
Returns whether this is an SCT for a certificate or pre-certificate.
"""

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,360 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import ipaddress
import warnings
from email.utils import parseaddr
import six
from six.moves import urllib_parse
from cryptography import utils
from cryptography.x509.name import Name
from cryptography.x509.oid import ObjectIdentifier
_GENERAL_NAMES = {
0: "otherName",
1: "rfc822Name",
2: "dNSName",
3: "x400Address",
4: "directoryName",
5: "ediPartyName",
6: "uniformResourceIdentifier",
7: "iPAddress",
8: "registeredID",
}
def _lazy_import_idna():
# Import idna lazily becase it allocates a decent amount of memory, and
# we're only using it in deprecated paths.
try:
import idna
return idna
except ImportError:
raise ImportError(
"idna is not installed, but a deprecated feature that requires it"
" was used. See: https://cryptography.io/en/latest/faq/#importe"
"rror-idna-is-not-installed"
)
class UnsupportedGeneralNameType(Exception):
def __init__(self, msg, type):
super(UnsupportedGeneralNameType, self).__init__(msg)
self.type = type
@six.add_metaclass(abc.ABCMeta)
class GeneralName(object):
@abc.abstractproperty
def value(self):
"""
Return the value of the object
"""
@utils.register_interface(GeneralName)
class RFC822Name(object):
def __init__(self, value):
if isinstance(value, six.text_type):
try:
value.encode("ascii")
except UnicodeEncodeError:
value = self._idna_encode(value)
warnings.warn(
"RFC822Name values should be passed as an A-label string. "
"This means unicode characters should be encoded via "
"idna. Support for passing unicode strings (aka U-label) "
"will be removed in a future version.",
utils.PersistentlyDeprecated2017,
stacklevel=2,
)
else:
raise TypeError("value must be string")
name, address = parseaddr(value)
if name or not address:
# parseaddr has found a name (e.g. Name <email>) or the entire
# value is an empty string.
raise ValueError("Invalid rfc822name value")
self._value = value
value = utils.read_only_property("_value")
@classmethod
def _init_without_validation(cls, value):
instance = cls.__new__(cls)
instance._value = value
return instance
def _idna_encode(self, value):
idna = _lazy_import_idna()
_, address = parseaddr(value)
parts = address.split(u"@")
return parts[0] + "@" + idna.encode(parts[1]).decode("ascii")
def __repr__(self):
return "<RFC822Name(value={0!r})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, RFC822Name):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
def _idna_encode(value):
idna = _lazy_import_idna()
# Retain prefixes '*.' for common/alt names and '.' for name constraints
for prefix in ['*.', '.']:
if value.startswith(prefix):
value = value[len(prefix):]
return prefix + idna.encode(value).decode("ascii")
return idna.encode(value).decode("ascii")
@utils.register_interface(GeneralName)
class DNSName(object):
def __init__(self, value):
if isinstance(value, six.text_type):
try:
value.encode("ascii")
except UnicodeEncodeError:
value = _idna_encode(value)
warnings.warn(
"DNSName values should be passed as an A-label string. "
"This means unicode characters should be encoded via "
"idna. Support for passing unicode strings (aka U-label) "
"will be removed in a future version.",
utils.PersistentlyDeprecated2017,
stacklevel=2,
)
else:
raise TypeError("value must be string")
self._value = value
value = utils.read_only_property("_value")
@classmethod
def _init_without_validation(cls, value):
instance = cls.__new__(cls)
instance._value = value
return instance
def __repr__(self):
return "<DNSName(value={0!r})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, DNSName):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
@utils.register_interface(GeneralName)
class UniformResourceIdentifier(object):
def __init__(self, value):
if isinstance(value, six.text_type):
try:
value.encode("ascii")
except UnicodeEncodeError:
value = self._idna_encode(value)
warnings.warn(
"URI values should be passed as an A-label string. "
"This means unicode characters should be encoded via "
"idna. Support for passing unicode strings (aka U-label) "
" will be removed in a future version.",
utils.PersistentlyDeprecated2017,
stacklevel=2,
)
else:
raise TypeError("value must be string")
self._value = value
value = utils.read_only_property("_value")
@classmethod
def _init_without_validation(cls, value):
instance = cls.__new__(cls)
instance._value = value
return instance
def _idna_encode(self, value):
idna = _lazy_import_idna()
parsed = urllib_parse.urlparse(value)
if parsed.port:
netloc = (
idna.encode(parsed.hostname) +
":{}".format(parsed.port).encode("ascii")
).decode("ascii")
else:
netloc = idna.encode(parsed.hostname).decode("ascii")
# Note that building a URL in this fashion means it should be
# semantically indistinguishable from the original but is not
# guaranteed to be exactly the same.
return urllib_parse.urlunparse((
parsed.scheme,
netloc,
parsed.path,
parsed.params,
parsed.query,
parsed.fragment
))
def __repr__(self):
return "<UniformResourceIdentifier(value={0!r})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, UniformResourceIdentifier):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
@utils.register_interface(GeneralName)
class DirectoryName(object):
def __init__(self, value):
if not isinstance(value, Name):
raise TypeError("value must be a Name")
self._value = value
value = utils.read_only_property("_value")
def __repr__(self):
return "<DirectoryName(value={})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, DirectoryName):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
@utils.register_interface(GeneralName)
class RegisteredID(object):
def __init__(self, value):
if not isinstance(value, ObjectIdentifier):
raise TypeError("value must be an ObjectIdentifier")
self._value = value
value = utils.read_only_property("_value")
def __repr__(self):
return "<RegisteredID(value={})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, RegisteredID):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
@utils.register_interface(GeneralName)
class IPAddress(object):
def __init__(self, value):
if not isinstance(
value,
(
ipaddress.IPv4Address,
ipaddress.IPv6Address,
ipaddress.IPv4Network,
ipaddress.IPv6Network
)
):
raise TypeError(
"value must be an instance of ipaddress.IPv4Address, "
"ipaddress.IPv6Address, ipaddress.IPv4Network, or "
"ipaddress.IPv6Network"
)
self._value = value
value = utils.read_only_property("_value")
def __repr__(self):
return "<IPAddress(value={})>".format(self.value)
def __eq__(self, other):
if not isinstance(other, IPAddress):
return NotImplemented
return self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self.value)
@utils.register_interface(GeneralName)
class OtherName(object):
def __init__(self, type_id, value):
if not isinstance(type_id, ObjectIdentifier):
raise TypeError("type_id must be an ObjectIdentifier")
if not isinstance(value, bytes):
raise TypeError("value must be a binary string")
self._type_id = type_id
self._value = value
type_id = utils.read_only_property("_type_id")
value = utils.read_only_property("_value")
def __repr__(self):
return "<OtherName(type_id={}, value={!r})>".format(
self.type_id, self.value)
def __eq__(self, other):
if not isinstance(other, OtherName):
return NotImplemented
return self.type_id == other.type_id and self.value == other.value
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.type_id, self.value))

View File

@ -0,0 +1,259 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from enum import Enum
import six
from cryptography import utils
from cryptography.x509.oid import NameOID, ObjectIdentifier
class _ASN1Type(Enum):
UTF8String = 12
NumericString = 18
PrintableString = 19
T61String = 20
IA5String = 22
UTCTime = 23
GeneralizedTime = 24
VisibleString = 26
UniversalString = 28
BMPString = 30
_ASN1_TYPE_TO_ENUM = dict((i.value, i) for i in _ASN1Type)
_SENTINEL = object()
_NAMEOID_DEFAULT_TYPE = {
NameOID.COUNTRY_NAME: _ASN1Type.PrintableString,
NameOID.JURISDICTION_COUNTRY_NAME: _ASN1Type.PrintableString,
NameOID.SERIAL_NUMBER: _ASN1Type.PrintableString,
NameOID.DN_QUALIFIER: _ASN1Type.PrintableString,
NameOID.EMAIL_ADDRESS: _ASN1Type.IA5String,
NameOID.DOMAIN_COMPONENT: _ASN1Type.IA5String,
}
#: Short attribute names from RFC 4514:
#: https://tools.ietf.org/html/rfc4514#page-7
_NAMEOID_TO_NAME = {
NameOID.COMMON_NAME: 'CN',
NameOID.LOCALITY_NAME: 'L',
NameOID.STATE_OR_PROVINCE_NAME: 'ST',
NameOID.ORGANIZATION_NAME: 'O',
NameOID.ORGANIZATIONAL_UNIT_NAME: 'OU',
NameOID.COUNTRY_NAME: 'C',
NameOID.STREET_ADDRESS: 'STREET',
NameOID.DOMAIN_COMPONENT: 'DC',
NameOID.USER_ID: 'UID',
}
def _escape_dn_value(val):
"""Escape special characters in RFC4514 Distinguished Name value."""
# See https://tools.ietf.org/html/rfc4514#section-2.4
val = val.replace('\\', '\\\\')
val = val.replace('"', '\\"')
val = val.replace('+', '\\+')
val = val.replace(',', '\\,')
val = val.replace(';', '\\;')
val = val.replace('<', '\\<')
val = val.replace('>', '\\>')
val = val.replace('\0', '\\00')
if val[0] in ('#', ' '):
val = '\\' + val
if val[-1] == ' ':
val = val[:-1] + '\\ '
return val
class NameAttribute(object):
def __init__(self, oid, value, _type=_SENTINEL):
if not isinstance(oid, ObjectIdentifier):
raise TypeError(
"oid argument must be an ObjectIdentifier instance."
)
if not isinstance(value, six.text_type):
raise TypeError(
"value argument must be a text type."
)
if (
oid == NameOID.COUNTRY_NAME or
oid == NameOID.JURISDICTION_COUNTRY_NAME
):
if len(value.encode("utf8")) != 2:
raise ValueError(
"Country name must be a 2 character country code"
)
if len(value) == 0:
raise ValueError("Value cannot be an empty string")
# The appropriate ASN1 string type varies by OID and is defined across
# multiple RFCs including 2459, 3280, and 5280. In general UTF8String
# is preferred (2459), but 3280 and 5280 specify several OIDs with
# alternate types. This means when we see the sentinel value we need
# to look up whether the OID has a non-UTF8 type. If it does, set it
# to that. Otherwise, UTF8!
if _type == _SENTINEL:
_type = _NAMEOID_DEFAULT_TYPE.get(oid, _ASN1Type.UTF8String)
if not isinstance(_type, _ASN1Type):
raise TypeError("_type must be from the _ASN1Type enum")
self._oid = oid
self._value = value
self._type = _type
oid = utils.read_only_property("_oid")
value = utils.read_only_property("_value")
def rfc4514_string(self):
"""
Format as RFC4514 Distinguished Name string.
Use short attribute name if available, otherwise fall back to OID
dotted string.
"""
key = _NAMEOID_TO_NAME.get(self.oid, self.oid.dotted_string)
return '%s=%s' % (key, _escape_dn_value(self.value))
def __eq__(self, other):
if not isinstance(other, NameAttribute):
return NotImplemented
return (
self.oid == other.oid and
self.value == other.value
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.oid, self.value))
def __repr__(self):
return "<NameAttribute(oid={0.oid}, value={0.value!r})>".format(self)
class RelativeDistinguishedName(object):
def __init__(self, attributes):
attributes = list(attributes)
if not attributes:
raise ValueError("a relative distinguished name cannot be empty")
if not all(isinstance(x, NameAttribute) for x in attributes):
raise TypeError("attributes must be an iterable of NameAttribute")
# Keep list and frozenset to preserve attribute order where it matters
self._attributes = attributes
self._attribute_set = frozenset(attributes)
if len(self._attribute_set) != len(attributes):
raise ValueError("duplicate attributes are not allowed")
def get_attributes_for_oid(self, oid):
return [i for i in self if i.oid == oid]
def rfc4514_string(self):
"""
Format as RFC4514 Distinguished Name string.
Within each RDN, attributes are joined by '+', although that is rarely
used in certificates.
"""
return '+'.join(attr.rfc4514_string() for attr in self._attributes)
def __eq__(self, other):
if not isinstance(other, RelativeDistinguishedName):
return NotImplemented
return self._attribute_set == other._attribute_set
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self._attribute_set)
def __iter__(self):
return iter(self._attributes)
def __len__(self):
return len(self._attributes)
def __repr__(self):
return "<RelativeDistinguishedName({})>".format(self.rfc4514_string())
class Name(object):
def __init__(self, attributes):
attributes = list(attributes)
if all(isinstance(x, NameAttribute) for x in attributes):
self._attributes = [
RelativeDistinguishedName([x]) for x in attributes
]
elif all(isinstance(x, RelativeDistinguishedName) for x in attributes):
self._attributes = attributes
else:
raise TypeError(
"attributes must be a list of NameAttribute"
" or a list RelativeDistinguishedName"
)
def rfc4514_string(self):
"""
Format as RFC4514 Distinguished Name string.
For example 'CN=foobar.com,O=Foo Corp,C=US'
An X.509 name is a two-level structure: a list of sets of attributes.
Each list element is separated by ',' and within each list element, set
elements are separated by '+'. The latter is almost never used in
real world certificates.
"""
return ','.join(attr.rfc4514_string() for attr in self._attributes)
def get_attributes_for_oid(self, oid):
return [i for i in self if i.oid == oid]
@property
def rdns(self):
return self._attributes
def public_bytes(self, backend):
return backend.x509_name_bytes(self)
def __eq__(self, other):
if not isinstance(other, Name):
return NotImplemented
return self._attributes == other._attributes
def __ne__(self, other):
return not self == other
def __hash__(self):
# TODO: this is relatively expensive, if this looks like a bottleneck
# for you, consider optimizing!
return hash(tuple(self._attributes))
def __iter__(self):
for rdn in self._attributes:
for ava in rdn:
yield ava
def __len__(self):
return sum(len(rdn) for rdn in self._attributes)
def __repr__(self):
if six.PY2:
return "<Name({})>".format(self.rfc4514_string().encode('utf8'))
else:
return "<Name({})>".format(self.rfc4514_string())

View File

@ -0,0 +1,429 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import abc
import datetime
from enum import Enum
import six
from cryptography import x509
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ed25519, ed448
from cryptography.x509.base import (
_EARLIEST_UTC_TIME, _convert_to_naive_utc_time, _reject_duplicate_extension
)
_OIDS_TO_HASH = {
"1.3.14.3.2.26": hashes.SHA1(),
"2.16.840.1.101.3.4.2.4": hashes.SHA224(),
"2.16.840.1.101.3.4.2.1": hashes.SHA256(),
"2.16.840.1.101.3.4.2.2": hashes.SHA384(),
"2.16.840.1.101.3.4.2.3": hashes.SHA512(),
}
class OCSPResponderEncoding(Enum):
HASH = "By Hash"
NAME = "By Name"
class OCSPResponseStatus(Enum):
SUCCESSFUL = 0
MALFORMED_REQUEST = 1
INTERNAL_ERROR = 2
TRY_LATER = 3
SIG_REQUIRED = 5
UNAUTHORIZED = 6
_RESPONSE_STATUS_TO_ENUM = dict((x.value, x) for x in OCSPResponseStatus)
_ALLOWED_HASHES = (
hashes.SHA1, hashes.SHA224, hashes.SHA256,
hashes.SHA384, hashes.SHA512
)
def _verify_algorithm(algorithm):
if not isinstance(algorithm, _ALLOWED_HASHES):
raise ValueError(
"Algorithm must be SHA1, SHA224, SHA256, SHA384, or SHA512"
)
class OCSPCertStatus(Enum):
GOOD = 0
REVOKED = 1
UNKNOWN = 2
_CERT_STATUS_TO_ENUM = dict((x.value, x) for x in OCSPCertStatus)
def load_der_ocsp_request(data):
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_der_ocsp_request(data)
def load_der_ocsp_response(data):
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_der_ocsp_response(data)
class OCSPRequestBuilder(object):
def __init__(self, request=None, extensions=[]):
self._request = request
self._extensions = extensions
def add_certificate(self, cert, issuer, algorithm):
if self._request is not None:
raise ValueError("Only one certificate can be added to a request")
_verify_algorithm(algorithm)
if (
not isinstance(cert, x509.Certificate) or
not isinstance(issuer, x509.Certificate)
):
raise TypeError("cert and issuer must be a Certificate")
return OCSPRequestBuilder((cert, issuer, algorithm), self._extensions)
def add_extension(self, extension, critical):
if not isinstance(extension, x509.ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = x509.Extension(extension.oid, critical, extension)
_reject_duplicate_extension(extension, self._extensions)
return OCSPRequestBuilder(
self._request, self._extensions + [extension]
)
def build(self):
from cryptography.hazmat.backends.openssl.backend import backend
if self._request is None:
raise ValueError("You must add a certificate before building")
return backend.create_ocsp_request(self)
class _SingleResponse(object):
def __init__(self, cert, issuer, algorithm, cert_status, this_update,
next_update, revocation_time, revocation_reason):
if (
not isinstance(cert, x509.Certificate) or
not isinstance(issuer, x509.Certificate)
):
raise TypeError("cert and issuer must be a Certificate")
_verify_algorithm(algorithm)
if not isinstance(this_update, datetime.datetime):
raise TypeError("this_update must be a datetime object")
if (
next_update is not None and
not isinstance(next_update, datetime.datetime)
):
raise TypeError("next_update must be a datetime object or None")
self._cert = cert
self._issuer = issuer
self._algorithm = algorithm
self._this_update = this_update
self._next_update = next_update
if not isinstance(cert_status, OCSPCertStatus):
raise TypeError(
"cert_status must be an item from the OCSPCertStatus enum"
)
if cert_status is not OCSPCertStatus.REVOKED:
if revocation_time is not None:
raise ValueError(
"revocation_time can only be provided if the certificate "
"is revoked"
)
if revocation_reason is not None:
raise ValueError(
"revocation_reason can only be provided if the certificate"
" is revoked"
)
else:
if not isinstance(revocation_time, datetime.datetime):
raise TypeError("revocation_time must be a datetime object")
revocation_time = _convert_to_naive_utc_time(revocation_time)
if revocation_time < _EARLIEST_UTC_TIME:
raise ValueError('The revocation_time must be on or after'
' 1950 January 1.')
if (
revocation_reason is not None and
not isinstance(revocation_reason, x509.ReasonFlags)
):
raise TypeError(
"revocation_reason must be an item from the ReasonFlags "
"enum or None"
)
self._cert_status = cert_status
self._revocation_time = revocation_time
self._revocation_reason = revocation_reason
class OCSPResponseBuilder(object):
def __init__(self, response=None, responder_id=None, certs=None,
extensions=[]):
self._response = response
self._responder_id = responder_id
self._certs = certs
self._extensions = extensions
def add_response(self, cert, issuer, algorithm, cert_status, this_update,
next_update, revocation_time, revocation_reason):
if self._response is not None:
raise ValueError("Only one response per OCSPResponse.")
singleresp = _SingleResponse(
cert, issuer, algorithm, cert_status, this_update, next_update,
revocation_time, revocation_reason
)
return OCSPResponseBuilder(
singleresp, self._responder_id,
self._certs, self._extensions,
)
def responder_id(self, encoding, responder_cert):
if self._responder_id is not None:
raise ValueError("responder_id can only be set once")
if not isinstance(responder_cert, x509.Certificate):
raise TypeError("responder_cert must be a Certificate")
if not isinstance(encoding, OCSPResponderEncoding):
raise TypeError(
"encoding must be an element from OCSPResponderEncoding"
)
return OCSPResponseBuilder(
self._response, (responder_cert, encoding),
self._certs, self._extensions,
)
def certificates(self, certs):
if self._certs is not None:
raise ValueError("certificates may only be set once")
certs = list(certs)
if len(certs) == 0:
raise ValueError("certs must not be an empty list")
if not all(isinstance(x, x509.Certificate) for x in certs):
raise TypeError("certs must be a list of Certificates")
return OCSPResponseBuilder(
self._response, self._responder_id,
certs, self._extensions,
)
def add_extension(self, extension, critical):
if not isinstance(extension, x509.ExtensionType):
raise TypeError("extension must be an ExtensionType")
extension = x509.Extension(extension.oid, critical, extension)
_reject_duplicate_extension(extension, self._extensions)
return OCSPResponseBuilder(
self._response, self._responder_id,
self._certs, self._extensions + [extension],
)
def sign(self, private_key, algorithm):
from cryptography.hazmat.backends.openssl.backend import backend
if self._response is None:
raise ValueError("You must add a response before signing")
if self._responder_id is None:
raise ValueError("You must add a responder_id before signing")
if isinstance(private_key,
(ed25519.Ed25519PrivateKey, ed448.Ed448PrivateKey)):
if algorithm is not None:
raise ValueError(
"algorithm must be None when signing via ed25519 or ed448"
)
elif not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Algorithm must be a registered hash algorithm.")
return backend.create_ocsp_response(
OCSPResponseStatus.SUCCESSFUL, self, private_key, algorithm
)
@classmethod
def build_unsuccessful(cls, response_status):
from cryptography.hazmat.backends.openssl.backend import backend
if not isinstance(response_status, OCSPResponseStatus):
raise TypeError(
"response_status must be an item from OCSPResponseStatus"
)
if response_status is OCSPResponseStatus.SUCCESSFUL:
raise ValueError("response_status cannot be SUCCESSFUL")
return backend.create_ocsp_response(response_status, None, None, None)
@six.add_metaclass(abc.ABCMeta)
class OCSPRequest(object):
@abc.abstractproperty
def issuer_key_hash(self):
"""
The hash of the issuer public key
"""
@abc.abstractproperty
def issuer_name_hash(self):
"""
The hash of the issuer name
"""
@abc.abstractproperty
def hash_algorithm(self):
"""
The hash algorithm used in the issuer name and key hashes
"""
@abc.abstractproperty
def serial_number(self):
"""
The serial number of the cert whose status is being checked
"""
@abc.abstractmethod
def public_bytes(self, encoding):
"""
Serializes the request to DER
"""
@abc.abstractproperty
def extensions(self):
"""
The list of request extensions. Not single request extensions.
"""
@six.add_metaclass(abc.ABCMeta)
class OCSPResponse(object):
@abc.abstractproperty
def response_status(self):
"""
The status of the response. This is a value from the OCSPResponseStatus
enumeration
"""
@abc.abstractproperty
def signature_algorithm_oid(self):
"""
The ObjectIdentifier of the signature algorithm
"""
@abc.abstractproperty
def signature_hash_algorithm(self):
"""
Returns a HashAlgorithm corresponding to the type of the digest signed
"""
@abc.abstractproperty
def signature(self):
"""
The signature bytes
"""
@abc.abstractproperty
def tbs_response_bytes(self):
"""
The tbsResponseData bytes
"""
@abc.abstractproperty
def certificates(self):
"""
A list of certificates used to help build a chain to verify the OCSP
response. This situation occurs when the OCSP responder uses a delegate
certificate.
"""
@abc.abstractproperty
def responder_key_hash(self):
"""
The responder's key hash or None
"""
@abc.abstractproperty
def responder_name(self):
"""
The responder's Name or None
"""
@abc.abstractproperty
def produced_at(self):
"""
The time the response was produced
"""
@abc.abstractproperty
def certificate_status(self):
"""
The status of the certificate (an element from the OCSPCertStatus enum)
"""
@abc.abstractproperty
def revocation_time(self):
"""
The date of when the certificate was revoked or None if not
revoked.
"""
@abc.abstractproperty
def revocation_reason(self):
"""
The reason the certificate was revoked or None if not specified or
not revoked.
"""
@abc.abstractproperty
def this_update(self):
"""
The most recent time at which the status being indicated is known by
the responder to have been correct
"""
@abc.abstractproperty
def next_update(self):
"""
The time when newer information will be available
"""
@abc.abstractproperty
def issuer_key_hash(self):
"""
The hash of the issuer public key
"""
@abc.abstractproperty
def issuer_name_hash(self):
"""
The hash of the issuer name
"""
@abc.abstractproperty
def hash_algorithm(self):
"""
The hash algorithm used in the issuer name and key hashes
"""
@abc.abstractproperty
def serial_number(self):
"""
The serial number of the cert whose status is being checked
"""
@abc.abstractproperty
def extensions(self):
"""
The list of response extensions. Not single response extensions.
"""

View File

@ -0,0 +1,232 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography.hazmat._oid import ObjectIdentifier
from cryptography.hazmat.primitives import hashes
class ExtensionOID(object):
SUBJECT_DIRECTORY_ATTRIBUTES = ObjectIdentifier("2.5.29.9")
SUBJECT_KEY_IDENTIFIER = ObjectIdentifier("2.5.29.14")
KEY_USAGE = ObjectIdentifier("2.5.29.15")
SUBJECT_ALTERNATIVE_NAME = ObjectIdentifier("2.5.29.17")
ISSUER_ALTERNATIVE_NAME = ObjectIdentifier("2.5.29.18")
BASIC_CONSTRAINTS = ObjectIdentifier("2.5.29.19")
NAME_CONSTRAINTS = ObjectIdentifier("2.5.29.30")
CRL_DISTRIBUTION_POINTS = ObjectIdentifier("2.5.29.31")
CERTIFICATE_POLICIES = ObjectIdentifier("2.5.29.32")
POLICY_MAPPINGS = ObjectIdentifier("2.5.29.33")
AUTHORITY_KEY_IDENTIFIER = ObjectIdentifier("2.5.29.35")
POLICY_CONSTRAINTS = ObjectIdentifier("2.5.29.36")
EXTENDED_KEY_USAGE = ObjectIdentifier("2.5.29.37")
FRESHEST_CRL = ObjectIdentifier("2.5.29.46")
INHIBIT_ANY_POLICY = ObjectIdentifier("2.5.29.54")
ISSUING_DISTRIBUTION_POINT = ObjectIdentifier("2.5.29.28")
AUTHORITY_INFORMATION_ACCESS = ObjectIdentifier("1.3.6.1.5.5.7.1.1")
SUBJECT_INFORMATION_ACCESS = ObjectIdentifier("1.3.6.1.5.5.7.1.11")
OCSP_NO_CHECK = ObjectIdentifier("1.3.6.1.5.5.7.48.1.5")
TLS_FEATURE = ObjectIdentifier("1.3.6.1.5.5.7.1.24")
CRL_NUMBER = ObjectIdentifier("2.5.29.20")
DELTA_CRL_INDICATOR = ObjectIdentifier("2.5.29.27")
PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS = (
ObjectIdentifier("1.3.6.1.4.1.11129.2.4.2")
)
PRECERT_POISON = (
ObjectIdentifier("1.3.6.1.4.1.11129.2.4.3")
)
class OCSPExtensionOID(object):
NONCE = ObjectIdentifier("1.3.6.1.5.5.7.48.1.2")
class CRLEntryExtensionOID(object):
CERTIFICATE_ISSUER = ObjectIdentifier("2.5.29.29")
CRL_REASON = ObjectIdentifier("2.5.29.21")
INVALIDITY_DATE = ObjectIdentifier("2.5.29.24")
class NameOID(object):
COMMON_NAME = ObjectIdentifier("2.5.4.3")
COUNTRY_NAME = ObjectIdentifier("2.5.4.6")
LOCALITY_NAME = ObjectIdentifier("2.5.4.7")
STATE_OR_PROVINCE_NAME = ObjectIdentifier("2.5.4.8")
STREET_ADDRESS = ObjectIdentifier("2.5.4.9")
ORGANIZATION_NAME = ObjectIdentifier("2.5.4.10")
ORGANIZATIONAL_UNIT_NAME = ObjectIdentifier("2.5.4.11")
SERIAL_NUMBER = ObjectIdentifier("2.5.4.5")
SURNAME = ObjectIdentifier("2.5.4.4")
GIVEN_NAME = ObjectIdentifier("2.5.4.42")
TITLE = ObjectIdentifier("2.5.4.12")
GENERATION_QUALIFIER = ObjectIdentifier("2.5.4.44")
X500_UNIQUE_IDENTIFIER = ObjectIdentifier("2.5.4.45")
DN_QUALIFIER = ObjectIdentifier("2.5.4.46")
PSEUDONYM = ObjectIdentifier("2.5.4.65")
USER_ID = ObjectIdentifier("0.9.2342.19200300.100.1.1")
DOMAIN_COMPONENT = ObjectIdentifier("0.9.2342.19200300.100.1.25")
EMAIL_ADDRESS = ObjectIdentifier("1.2.840.113549.1.9.1")
JURISDICTION_COUNTRY_NAME = ObjectIdentifier("1.3.6.1.4.1.311.60.2.1.3")
JURISDICTION_LOCALITY_NAME = ObjectIdentifier("1.3.6.1.4.1.311.60.2.1.1")
JURISDICTION_STATE_OR_PROVINCE_NAME = ObjectIdentifier(
"1.3.6.1.4.1.311.60.2.1.2"
)
BUSINESS_CATEGORY = ObjectIdentifier("2.5.4.15")
POSTAL_ADDRESS = ObjectIdentifier("2.5.4.16")
POSTAL_CODE = ObjectIdentifier("2.5.4.17")
class SignatureAlgorithmOID(object):
RSA_WITH_MD5 = ObjectIdentifier("1.2.840.113549.1.1.4")
RSA_WITH_SHA1 = ObjectIdentifier("1.2.840.113549.1.1.5")
# This is an alternate OID for RSA with SHA1 that is occasionally seen
_RSA_WITH_SHA1 = ObjectIdentifier("1.3.14.3.2.29")
RSA_WITH_SHA224 = ObjectIdentifier("1.2.840.113549.1.1.14")
RSA_WITH_SHA256 = ObjectIdentifier("1.2.840.113549.1.1.11")
RSA_WITH_SHA384 = ObjectIdentifier("1.2.840.113549.1.1.12")
RSA_WITH_SHA512 = ObjectIdentifier("1.2.840.113549.1.1.13")
RSASSA_PSS = ObjectIdentifier("1.2.840.113549.1.1.10")
ECDSA_WITH_SHA1 = ObjectIdentifier("1.2.840.10045.4.1")
ECDSA_WITH_SHA224 = ObjectIdentifier("1.2.840.10045.4.3.1")
ECDSA_WITH_SHA256 = ObjectIdentifier("1.2.840.10045.4.3.2")
ECDSA_WITH_SHA384 = ObjectIdentifier("1.2.840.10045.4.3.3")
ECDSA_WITH_SHA512 = ObjectIdentifier("1.2.840.10045.4.3.4")
DSA_WITH_SHA1 = ObjectIdentifier("1.2.840.10040.4.3")
DSA_WITH_SHA224 = ObjectIdentifier("2.16.840.1.101.3.4.3.1")
DSA_WITH_SHA256 = ObjectIdentifier("2.16.840.1.101.3.4.3.2")
ED25519 = ObjectIdentifier("1.3.101.112")
ED448 = ObjectIdentifier("1.3.101.113")
_SIG_OIDS_TO_HASH = {
SignatureAlgorithmOID.RSA_WITH_MD5: hashes.MD5(),
SignatureAlgorithmOID.RSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID._RSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID.RSA_WITH_SHA224: hashes.SHA224(),
SignatureAlgorithmOID.RSA_WITH_SHA256: hashes.SHA256(),
SignatureAlgorithmOID.RSA_WITH_SHA384: hashes.SHA384(),
SignatureAlgorithmOID.RSA_WITH_SHA512: hashes.SHA512(),
SignatureAlgorithmOID.ECDSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID.ECDSA_WITH_SHA224: hashes.SHA224(),
SignatureAlgorithmOID.ECDSA_WITH_SHA256: hashes.SHA256(),
SignatureAlgorithmOID.ECDSA_WITH_SHA384: hashes.SHA384(),
SignatureAlgorithmOID.ECDSA_WITH_SHA512: hashes.SHA512(),
SignatureAlgorithmOID.DSA_WITH_SHA1: hashes.SHA1(),
SignatureAlgorithmOID.DSA_WITH_SHA224: hashes.SHA224(),
SignatureAlgorithmOID.DSA_WITH_SHA256: hashes.SHA256(),
SignatureAlgorithmOID.ED25519: None,
SignatureAlgorithmOID.ED448: None,
}
class ExtendedKeyUsageOID(object):
SERVER_AUTH = ObjectIdentifier("1.3.6.1.5.5.7.3.1")
CLIENT_AUTH = ObjectIdentifier("1.3.6.1.5.5.7.3.2")
CODE_SIGNING = ObjectIdentifier("1.3.6.1.5.5.7.3.3")
EMAIL_PROTECTION = ObjectIdentifier("1.3.6.1.5.5.7.3.4")
TIME_STAMPING = ObjectIdentifier("1.3.6.1.5.5.7.3.8")
OCSP_SIGNING = ObjectIdentifier("1.3.6.1.5.5.7.3.9")
ANY_EXTENDED_KEY_USAGE = ObjectIdentifier("2.5.29.37.0")
class AuthorityInformationAccessOID(object):
CA_ISSUERS = ObjectIdentifier("1.3.6.1.5.5.7.48.2")
OCSP = ObjectIdentifier("1.3.6.1.5.5.7.48.1")
class CertificatePoliciesOID(object):
CPS_QUALIFIER = ObjectIdentifier("1.3.6.1.5.5.7.2.1")
CPS_USER_NOTICE = ObjectIdentifier("1.3.6.1.5.5.7.2.2")
ANY_POLICY = ObjectIdentifier("2.5.29.32.0")
_OID_NAMES = {
NameOID.COMMON_NAME: "commonName",
NameOID.COUNTRY_NAME: "countryName",
NameOID.LOCALITY_NAME: "localityName",
NameOID.STATE_OR_PROVINCE_NAME: "stateOrProvinceName",
NameOID.STREET_ADDRESS: "streetAddress",
NameOID.ORGANIZATION_NAME: "organizationName",
NameOID.ORGANIZATIONAL_UNIT_NAME: "organizationalUnitName",
NameOID.SERIAL_NUMBER: "serialNumber",
NameOID.SURNAME: "surname",
NameOID.GIVEN_NAME: "givenName",
NameOID.TITLE: "title",
NameOID.GENERATION_QUALIFIER: "generationQualifier",
NameOID.X500_UNIQUE_IDENTIFIER: "x500UniqueIdentifier",
NameOID.DN_QUALIFIER: "dnQualifier",
NameOID.PSEUDONYM: "pseudonym",
NameOID.USER_ID: "userID",
NameOID.DOMAIN_COMPONENT: "domainComponent",
NameOID.EMAIL_ADDRESS: "emailAddress",
NameOID.JURISDICTION_COUNTRY_NAME: "jurisdictionCountryName",
NameOID.JURISDICTION_LOCALITY_NAME: "jurisdictionLocalityName",
NameOID.JURISDICTION_STATE_OR_PROVINCE_NAME: (
"jurisdictionStateOrProvinceName"
),
NameOID.BUSINESS_CATEGORY: "businessCategory",
NameOID.POSTAL_ADDRESS: "postalAddress",
NameOID.POSTAL_CODE: "postalCode",
SignatureAlgorithmOID.RSA_WITH_MD5: "md5WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA1: "sha1WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA224: "sha224WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA256: "sha256WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA384: "sha384WithRSAEncryption",
SignatureAlgorithmOID.RSA_WITH_SHA512: "sha512WithRSAEncryption",
SignatureAlgorithmOID.RSASSA_PSS: "RSASSA-PSS",
SignatureAlgorithmOID.ECDSA_WITH_SHA1: "ecdsa-with-SHA1",
SignatureAlgorithmOID.ECDSA_WITH_SHA224: "ecdsa-with-SHA224",
SignatureAlgorithmOID.ECDSA_WITH_SHA256: "ecdsa-with-SHA256",
SignatureAlgorithmOID.ECDSA_WITH_SHA384: "ecdsa-with-SHA384",
SignatureAlgorithmOID.ECDSA_WITH_SHA512: "ecdsa-with-SHA512",
SignatureAlgorithmOID.DSA_WITH_SHA1: "dsa-with-sha1",
SignatureAlgorithmOID.DSA_WITH_SHA224: "dsa-with-sha224",
SignatureAlgorithmOID.DSA_WITH_SHA256: "dsa-with-sha256",
SignatureAlgorithmOID.ED25519: "ed25519",
SignatureAlgorithmOID.ED448: "ed448",
ExtendedKeyUsageOID.SERVER_AUTH: "serverAuth",
ExtendedKeyUsageOID.CLIENT_AUTH: "clientAuth",
ExtendedKeyUsageOID.CODE_SIGNING: "codeSigning",
ExtendedKeyUsageOID.EMAIL_PROTECTION: "emailProtection",
ExtendedKeyUsageOID.TIME_STAMPING: "timeStamping",
ExtendedKeyUsageOID.OCSP_SIGNING: "OCSPSigning",
ExtensionOID.SUBJECT_DIRECTORY_ATTRIBUTES: "subjectDirectoryAttributes",
ExtensionOID.SUBJECT_KEY_IDENTIFIER: "subjectKeyIdentifier",
ExtensionOID.KEY_USAGE: "keyUsage",
ExtensionOID.SUBJECT_ALTERNATIVE_NAME: "subjectAltName",
ExtensionOID.ISSUER_ALTERNATIVE_NAME: "issuerAltName",
ExtensionOID.BASIC_CONSTRAINTS: "basicConstraints",
ExtensionOID.PRECERT_SIGNED_CERTIFICATE_TIMESTAMPS: (
"signedCertificateTimestampList"
),
ExtensionOID.PRECERT_POISON: "ctPoison",
CRLEntryExtensionOID.CRL_REASON: "cRLReason",
CRLEntryExtensionOID.INVALIDITY_DATE: "invalidityDate",
CRLEntryExtensionOID.CERTIFICATE_ISSUER: "certificateIssuer",
ExtensionOID.NAME_CONSTRAINTS: "nameConstraints",
ExtensionOID.CRL_DISTRIBUTION_POINTS: "cRLDistributionPoints",
ExtensionOID.CERTIFICATE_POLICIES: "certificatePolicies",
ExtensionOID.POLICY_MAPPINGS: "policyMappings",
ExtensionOID.AUTHORITY_KEY_IDENTIFIER: "authorityKeyIdentifier",
ExtensionOID.POLICY_CONSTRAINTS: "policyConstraints",
ExtensionOID.EXTENDED_KEY_USAGE: "extendedKeyUsage",
ExtensionOID.FRESHEST_CRL: "freshestCRL",
ExtensionOID.INHIBIT_ANY_POLICY: "inhibitAnyPolicy",
ExtensionOID.ISSUING_DISTRIBUTION_POINT: (
"issuingDistributionPoint"
),
ExtensionOID.AUTHORITY_INFORMATION_ACCESS: "authorityInfoAccess",
ExtensionOID.SUBJECT_INFORMATION_ACCESS: "subjectInfoAccess",
ExtensionOID.OCSP_NO_CHECK: "OCSPNoCheck",
ExtensionOID.CRL_NUMBER: "cRLNumber",
ExtensionOID.DELTA_CRL_INDICATOR: "deltaCRLIndicator",
ExtensionOID.TLS_FEATURE: "TLSFeature",
AuthorityInformationAccessOID.OCSP: "OCSP",
AuthorityInformationAccessOID.CA_ISSUERS: "caIssuers",
CertificatePoliciesOID.CPS_QUALIFIER: "id-qt-cps",
CertificatePoliciesOID.CPS_USER_NOTICE: "id-qt-unotice",
OCSPExtensionOID.NONCE: "OCSPNonce",
}