mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
368 lines
9.1 KiB
V
368 lines
9.1 KiB
V
|
/**********************************************************************
|
|||
|
*
|
|||
|
* f32 to string
|
|||
|
*
|
|||
|
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
|
|||
|
* Use of this source code is governed by an MIT license
|
|||
|
* that can be found in the LICENSE file.
|
|||
|
*
|
|||
|
* This file contains the f64 to string functions
|
|||
|
*
|
|||
|
* These functions are based on the work of:
|
|||
|
* Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
|
|||
|
* Conference on Programming Language Design and ImplementationJune 2018
|
|||
|
* Pages 270–282 https://doi.org/10.1145/3192366.3192369
|
|||
|
*
|
|||
|
* inspired by the Go version here:
|
|||
|
* https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
|
|||
|
*
|
|||
|
**********************************************************************/
|
|||
|
module ftoa
|
|||
|
|
|||
|
struct Uint128 {
|
|||
|
mut:
|
|||
|
lo u64 = u64(0)
|
|||
|
hi u64 = u64(0)
|
|||
|
}
|
|||
|
|
|||
|
// dec64 is a floating decimal type representing m * 10^e.
|
|||
|
struct Dec64 {
|
|||
|
mut:
|
|||
|
m u64 = u64(0)
|
|||
|
e int = 0
|
|||
|
}
|
|||
|
|
|||
|
// support union for convert f64 to u64
|
|||
|
union Uf64 {
|
|||
|
mut:
|
|||
|
f f64 = f64(0)
|
|||
|
u u64
|
|||
|
}
|
|||
|
|
|||
|
/******************************************************************************
|
|||
|
*
|
|||
|
* Conversion Functions
|
|||
|
*
|
|||
|
******************************************************************************/
|
|||
|
const(
|
|||
|
mantbits64 = u32(52)
|
|||
|
expbits64 = u32(11)
|
|||
|
bias64 = u32(1023) // f64 exponent bias
|
|||
|
maxexp64 = 2047
|
|||
|
)
|
|||
|
|
|||
|
fn (d Dec64) get_string_64(neg bool, n_digit int) string {
|
|||
|
mut out := d.m
|
|||
|
mut out_len := decimal_len_64(out)
|
|||
|
|
|||
|
mut buf := [byte(0)].repeat(out_len + 6 + 1 +1) // sign + mant_len + . + e + e_sign + exp_len(2) + \0
|
|||
|
mut i := 0
|
|||
|
|
|||
|
if n_digit > 0 && out_len > n_digit {
|
|||
|
out_len = n_digit+1
|
|||
|
}
|
|||
|
|
|||
|
if neg {
|
|||
|
buf[i]=`-`
|
|||
|
i++
|
|||
|
}
|
|||
|
|
|||
|
mut disp := 0
|
|||
|
if out_len <= 1 {
|
|||
|
disp = 1
|
|||
|
}
|
|||
|
|
|||
|
y := i + out_len
|
|||
|
mut x := 0
|
|||
|
for x < (out_len-disp-1) {
|
|||
|
buf[y - x] = `0` + byte(out%10)
|
|||
|
out /= 10
|
|||
|
i++
|
|||
|
x++
|
|||
|
}
|
|||
|
|
|||
|
if out_len >= 1 {
|
|||
|
buf[y - x] = `.`
|
|||
|
x++
|
|||
|
i++
|
|||
|
}
|
|||
|
|
|||
|
if y-x >= 0 {
|
|||
|
buf[y - x] = `0` + byte(out%10)
|
|||
|
i++
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
x=0
|
|||
|
for x<buf.len {
|
|||
|
C.printf("d:%c\n",buf[x])
|
|||
|
x++
|
|||
|
}
|
|||
|
C.printf("\n")
|
|||
|
*/
|
|||
|
|
|||
|
buf[i]=`e`
|
|||
|
i++
|
|||
|
|
|||
|
mut exp := d.e + out_len - 1
|
|||
|
if exp < 0 {
|
|||
|
buf[i]=`-`
|
|||
|
i++
|
|||
|
exp = -exp
|
|||
|
} else {
|
|||
|
buf[i]=`+`
|
|||
|
i++
|
|||
|
}
|
|||
|
|
|||
|
// Always print two digits to match strconv's formatting.
|
|||
|
/* d1 := exp % 10
|
|||
|
d0 := exp / 10
|
|||
|
buf[i]=`0` + byte(d0)
|
|||
|
i++
|
|||
|
buf[i]=`0` + byte(d1)
|
|||
|
i++
|
|||
|
buf[i]=0
|
|||
|
*/
|
|||
|
|
|||
|
// Always print at least two digits to match strconv's formatting.
|
|||
|
d2 := exp % 10
|
|||
|
exp /= 10
|
|||
|
d1 := exp % 10
|
|||
|
d0 := exp / 10
|
|||
|
if d0 > 0 {
|
|||
|
buf[i]=`0` + byte(d0)
|
|||
|
i++
|
|||
|
}
|
|||
|
buf[i]=`0` + byte(d1)
|
|||
|
i++
|
|||
|
buf[i]=`0` + byte(d2)
|
|||
|
i++
|
|||
|
buf[i]=0
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
x=0
|
|||
|
for x<buf.len {
|
|||
|
C.printf("d:%c\n",buf[x])
|
|||
|
x++
|
|||
|
}
|
|||
|
*/
|
|||
|
return tos(byteptr(&buf[0]), i)
|
|||
|
}
|
|||
|
|
|||
|
fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
|
|||
|
mut d := Dec64{}
|
|||
|
e := exp - bias64
|
|||
|
if e > mantbits64 {
|
|||
|
return d, false
|
|||
|
}
|
|||
|
shift := mantbits64 - e
|
|||
|
mant := i_mant | 0x0010_0000_0000_0000 // implicit 1
|
|||
|
//mant := i_mant | (1 << mantbits64) // implicit 1
|
|||
|
d.m = mant >> shift
|
|||
|
if (d.m << shift) != mant {
|
|||
|
return d, false
|
|||
|
}
|
|||
|
|
|||
|
for (d.m % 10) == 0 {
|
|||
|
d.m /= 10
|
|||
|
d.e++
|
|||
|
}
|
|||
|
return d, true
|
|||
|
}
|
|||
|
|
|||
|
fn f64_to_decimal(mant u64, exp u64) Dec64 {
|
|||
|
mut e2 := 0
|
|||
|
mut m2 := u64(0)
|
|||
|
if exp == 0 {
|
|||
|
// We subtract 2 so that the bounds computation has
|
|||
|
// 2 additional bits.
|
|||
|
e2 = 1 - bias64 - mantbits64 - 2
|
|||
|
m2 = mant
|
|||
|
} else {
|
|||
|
e2 = int(exp) - bias64 - mantbits64 - 2
|
|||
|
m2 = (u64(1)<<mantbits64) | mant
|
|||
|
}
|
|||
|
even := (m2 & 1) == 0
|
|||
|
accept_bounds := even
|
|||
|
|
|||
|
// Step 2: Determine the interval of valid decimal representations.
|
|||
|
mv := u64(4 * m2)
|
|||
|
mm_shift := bool_to_u64(mant != 0 || exp <= 1)
|
|||
|
|
|||
|
// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
|
|||
|
mut vr := u64(0)
|
|||
|
mut vp := u64(0)
|
|||
|
mut vm := u64(0)
|
|||
|
mut e10 := 0
|
|||
|
mut vm_is_trailing_zeros := false
|
|||
|
mut vr_is_trailing_zeros := false
|
|||
|
|
|||
|
if e2 >= 0 {
|
|||
|
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
|
|||
|
q := log10_pow2(e2) - bool_to_u32(e2 > 3)
|
|||
|
e10 = int(q)
|
|||
|
k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1
|
|||
|
i := -e2 + int(q) + k
|
|||
|
|
|||
|
mul := pow5_inv_split_64[q]
|
|||
|
vr = mul_shift_64(u64(4) * m2 , mul, i)
|
|||
|
vp = mul_shift_64(u64(4) * m2 + u64(2) , mul, i)
|
|||
|
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i)
|
|||
|
if q <= 21 {
|
|||
|
// This should use q <= 22, but I think 21 is also safe.
|
|||
|
// Smaller values may still be safe, but it's more
|
|||
|
// difficult to reason about them. Only one of mp, mv,
|
|||
|
// and mm can be a multiple of 5, if any.
|
|||
|
if mv%5 == 0 {
|
|||
|
vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q)
|
|||
|
} else if accept_bounds {
|
|||
|
// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
|
|||
|
// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
|
|||
|
// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
|
|||
|
vm_is_trailing_zeros = multiple_of_power_of_five_64(mv-1-mm_shift, q)
|
|||
|
} else if multiple_of_power_of_five_64(mv+2, q) {
|
|||
|
vp--
|
|||
|
}
|
|||
|
}
|
|||
|
} else {
|
|||
|
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
|
|||
|
q := log10_pow5(-e2) - bool_to_u32(-e2 > 1)
|
|||
|
e10 = int(q) + e2
|
|||
|
i := -e2 - int(q)
|
|||
|
k := pow5_bits(i) - pow5_num_bits_64
|
|||
|
mut j := int(q) - k
|
|||
|
mul := pow5_split_64[i]
|
|||
|
vr = mul_shift_64(u64(4) * m2 , mul, j)
|
|||
|
vp = mul_shift_64(u64(4) * m2 + u64(2) , mul, j)
|
|||
|
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j)
|
|||
|
if q <= 1 {
|
|||
|
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
|
|||
|
// mv = 4 * m2, so it always has at least two trailing 0 bits.
|
|||
|
vr_is_trailing_zeros = true
|
|||
|
if accept_bounds {
|
|||
|
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
|
|||
|
vm_is_trailing_zeros = (mm_shift == 1)
|
|||
|
} else {
|
|||
|
// mp = mv + 2, so it always has at least one trailing 0 bit.
|
|||
|
vp--
|
|||
|
}
|
|||
|
} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
|
|||
|
// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
|
|||
|
// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
|
|||
|
// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
|
|||
|
// <=> (mv & ((1 << (q - 1)) - 1)) == 0
|
|||
|
// We also need to make sure that the left shift does not overflow.
|
|||
|
vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1)
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Step 4: Find the shortest decimal representation
|
|||
|
// in the interval of valid representations.
|
|||
|
mut removed := 0
|
|||
|
mut last_removed_digit := byte(0)
|
|||
|
mut out := u64(0)
|
|||
|
// On average, we remove ~2 digits.
|
|||
|
if vm_is_trailing_zeros || vr_is_trailing_zeros {
|
|||
|
// General case, which happens rarely (~0.7%).
|
|||
|
for {
|
|||
|
vp_div_10 := vp / 10
|
|||
|
vm_div_10 := vm / 10
|
|||
|
if vp_div_10 <= vm_div_10 {
|
|||
|
break
|
|||
|
}
|
|||
|
vm_mod_10 := vm % 10
|
|||
|
vr_div_10 := vr / 10
|
|||
|
vr_mod_10 := vr % 10
|
|||
|
vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0
|
|||
|
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
|
|||
|
last_removed_digit = byte(vr_mod_10)
|
|||
|
vr = vr_div_10
|
|||
|
vp = vp_div_10
|
|||
|
vm = vm_div_10
|
|||
|
removed++
|
|||
|
}
|
|||
|
if vm_is_trailing_zeros {
|
|||
|
for {
|
|||
|
vm_div_10 := vm / 10
|
|||
|
vm_mod_10 := vm % 10
|
|||
|
if vm_mod_10 != 0 {
|
|||
|
break
|
|||
|
}
|
|||
|
vp_div_10 := vp / 10
|
|||
|
vr_div_10 := vr / 10
|
|||
|
vr_mod_10 := vr % 10
|
|||
|
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
|
|||
|
last_removed_digit = byte(vr_mod_10)
|
|||
|
vr = vr_div_10
|
|||
|
vp = vp_div_10
|
|||
|
vm = vm_div_10
|
|||
|
removed++
|
|||
|
}
|
|||
|
}
|
|||
|
if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 {
|
|||
|
// Round even if the exact number is .....50..0.
|
|||
|
last_removed_digit = 4
|
|||
|
}
|
|||
|
out = vr
|
|||
|
// We need to take vr + 1 if vr is outside bounds
|
|||
|
// or we need to round up.
|
|||
|
if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
|
|||
|
out++
|
|||
|
}
|
|||
|
} else {
|
|||
|
// Specialized for the common case (~99.3%).
|
|||
|
// Percentages below are relative to this.
|
|||
|
mut round_up := false
|
|||
|
for vp / 100 > vm / 100 {
|
|||
|
// Optimization: remove two digits at a time (~86.2%).
|
|||
|
round_up = (vr % 100) >= 50
|
|||
|
vr /= 100
|
|||
|
vp /= 100
|
|||
|
vm /= 100
|
|||
|
removed += 2
|
|||
|
}
|
|||
|
// Loop iterations below (approximately), without optimization above:
|
|||
|
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
|
|||
|
// Loop iterations below (approximately), with optimization above:
|
|||
|
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
|
|||
|
for vp / 10 > vm / 10 {
|
|||
|
round_up = (vr % 10) >= 5
|
|||
|
vr /= 10
|
|||
|
vp /= 10
|
|||
|
vm /= 10
|
|||
|
removed++
|
|||
|
}
|
|||
|
// We need to take vr + 1 if vr is outside bounds
|
|||
|
// or we need to round up.
|
|||
|
out = vr + bool_to_u64(vr == vm || round_up)
|
|||
|
}
|
|||
|
|
|||
|
return Dec64{m: out, e: e10 + removed}
|
|||
|
}
|
|||
|
|
|||
|
// f64_to_str return a string in scientific notation with max n_digit after the dot
|
|||
|
pub fn f64_to_str(f f64, n_digit int) string {
|
|||
|
mut u1 := Uf64{}
|
|||
|
u1.f = f
|
|||
|
u := u1.u
|
|||
|
|
|||
|
neg := (u>>(mantbits64+expbits64)) != 0
|
|||
|
mant := u & ((u64(1)<<mantbits64) - u64(1))
|
|||
|
exp := (u >> mantbits64) & ((u64(1)<<expbits64) - u64(1))
|
|||
|
//println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
|
|||
|
|
|||
|
// Exit early for easy cases.
|
|||
|
if (exp == maxexp64) || (exp == 0 && mant == 0) {
|
|||
|
return get_string_special(neg, exp == 0, mant == 0)
|
|||
|
}
|
|||
|
|
|||
|
mut d, ok := f64_to_decimal_exact_int(mant, exp)
|
|||
|
if !ok {
|
|||
|
//println("to_decimal")
|
|||
|
d = f64_to_decimal(mant, exp)
|
|||
|
}
|
|||
|
//println("${d.m} ${d.e}")
|
|||
|
return d.get_string_64(neg, n_digit)
|
|||
|
}
|