1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
This commit is contained in:
penguindark 2020-02-25 11:12:37 +01:00 committed by GitHub
parent b17e49ad25
commit 200f25a38f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 1913 additions and 0 deletions

View File

@ -0,0 +1,168 @@
/**********************************************************************
*
* Float to string Test
*
**********************************************************************/
module ftoa
import math
union Ufloat32 {
mut:
f f32 = f32(0)
b u32
}
union Ufloat64 {
mut:
f f64 = f64(0)
b u64
}
fn f64_from_bits1(b u64) f64 {
mut x := Ufloat64{}
x.b = b
//C.printf("bin: %016llx\n",x.f)
return x.f
}
fn f32_from_bits1(b u32) f32 {
mut x := Ufloat32{}
x.b = b
//C.printf("bin: %08x\n",x.f)
return x.f
}
const(
test_cases_f32 = [
f32_from_bits1(0x0000_0000), // +0
f32_from_bits1(0x8000_0000), // -0
f32_from_bits1(0xFFC0_0001), // sNan
f32_from_bits1(0xFF80_0001), // qNan
f32_from_bits1(0x7F80_0000), // +inf
f32_from_bits1(0xFF80_0000), // -inf
1,
-1,
10,
-10,
0.3,
-0.3,
1000000,
123456.7,
123e35,
-123.45,
1e23,
f32_from_bits1(0x0080_0000), // smallest float32
math.max_f32,
383260575764816448,
]
exp_result_f32 = [
"0e+00",
"-0e+00",
"NaN",
"NaN",
"+inf",
"-inf",
"1.e+00",
"-1.e+00",
"1.e+01",
"-1.e+01",
"3.e-01",
"-3.e-01",
"1.e+06",
"1.234567e+05",
"1.23e+37",
"-1.2345e+02",
"1.e+23",
"1.1754944e-38", // aprox from 1.1754943508 × 1038,
"3.4028235e+38",
"3.8326058e+17",
]
test_cases_f64 = [
f64_from_bits1(0x0000_0000_0000_0000), // +0
f64_from_bits1(0x8000_0000_0000_0000), // -0
f64_from_bits1(0x7FF0_0000_0000_0001), // sNan
f64_from_bits1(0x7FF8_0000_0000_0001), // qNan
f64_from_bits1(0x7FF0_0000_0000_0000), // +inf
f64_from_bits1(0xFFF0_0000_0000_0000), // -inf
1,
-1,
10,
-10,
0.3,
-0.3,
1000000,
123456.7,
123e45,
-123.45,
1e23,
f64_from_bits1(0x0010_0000_0000_0000), // smallest float64
math.max_f32,
383260575764816448,
383260575764816448,
// C failing cases
123e300,
123e-300,
5.e-324,
-5.e-324,
]
exp_result_f64 = [
"0e+00",
"-0e+00",
"NaN",
"NaN",
"+inf",
"-inf",
"1.e+00",
"-1.e+00",
"1.e+01",
"-1.e+01",
"3.e-01",
"-3.e-01",
"1.e+06",
"1.234567e+05",
"1.23e+47",
"-1.2345e+02",
"1.e+23",
"2.2250738585072014e-308",
"3.4028234663852886e+38",
"3.8326057576481645e+17",
"3.8326057576481645e+17",
"1.23e+302", // this test is failed from C sprintf!!
"1.23e-298",
"5.e-324",
"-5.e-324",
]
)
fn test_float_to_str(){
// test f32
for c,x in test_cases_f32 {
s := ftoa.f32_to_str(x,8)
s1 := exp_result_f32[c]
//println("$s1 $s")
assert s == s1
}
// test f64
for c,x in test_cases_f64 {
s := ftoa.f64_to_str(x,17)
s1 := exp_result_f64[c]
//println("$s1 $s")
assert s == s1
}
// test long format
for exp := 1 ; exp < 120 ; exp++ {
a :=ftoa.f64_to_str_l(("1e"+exp.str()).f64())
//println(a)
assert a.len == exp + 1
b :=ftoa.f64_to_str_l(("1e-"+exp.str()).f64())
//println(b)
assert b.len == exp + 2
}
}

322
vlib/strconv/ftoa/f32_str.v Normal file
View File

@ -0,0 +1,322 @@
/**********************************************************************
*
* f32 to string
*
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* This file contains the f32 to string functions
*
* These functions are based on the work of:
* Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
* Conference on Programming Language Design and ImplementationJune 2018
* Pages 270282 https://doi.org/10.1145/3192366.3192369
*
* inspired by the Go version here:
* https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
*
**********************************************************************/
module ftoa
// dec32 is a floating decimal type representing m * 10^e.
struct Dec32 {
mut:
m u32 = u32(0)
e int = 0
}
// support union for convert f32 to u32
union Uf32 {
mut:
f f32 = f32(0)
u u32
}
/******************************************************************************
*
* Conversion Functions
*
******************************************************************************/
const(
mantbits32 = u32(23)
expbits32 = u32(8)
bias32 = u32(127) // f32 exponent bias
maxexp32 = 255
)
// max 46 char
// -3.40282346638528859811704183484516925440e+38
fn (d Dec32) get_string_32(neg bool, n_digit int) string {
mut out := d.m
mut out_len := decimal_len_32(out)
mut buf := [byte(0)].repeat(out_len + 5 + 1 +1) // sign + mant_len + . + e + e_sign + exp_len(2) + \0
mut i := 0
if n_digit > 0 && out_len > n_digit {
out_len = n_digit+1
}
if neg {
buf[i]=`-`
i++
}
mut disp := 0
if out_len <= 1 {
disp = 1
}
y := i + out_len
mut x := 0
for x < (out_len-disp-1) {
buf[y - x] = `0` + byte(out%10)
out /= 10
i++
x++
}
if out_len >= 1 {
buf[y - x] = `.`
x++
i++
}
if y-x >= 0 {
buf[y - x] = `0` + byte(out%10)
i++
}
/*
x=0
for x<buf.len {
C.printf("d:%c\n",buf[x])
x++
}
C.printf("\n")
*/
buf[i]=`e`
i++
mut exp := d.e + out_len - 1
if exp < 0 {
buf[i]=`-`
i++
exp = -exp
} else {
buf[i]=`+`
i++
}
// Always print two digits to match strconv's formatting.
d1 := exp % 10
d0 := exp / 10
buf[i]=`0` + byte(d0)
i++
buf[i]=`0` + byte(d1)
i++
buf[i]=0
/*
x=0
for x<buf.len {
C.printf("d:%c\n",buf[x])
x++
}
*/
return tos(byteptr(&buf[0]), i)
}
fn f32_to_decimal_exact_int(i_mant u32, exp u32) (Dec32,bool) {
mut d := Dec32{}
e := exp - bias32
if e > mantbits32 {
return d, false
}
shift := mantbits32 - e
mant := i_mant | 0x0080_0000 // implicit 1
//mant := i_mant | (1 << mantbits32) // implicit 1
d.m = mant >> shift
if (d.m << shift) != mant {
return d, false
}
for (d.m % 10) == 0 {
d.m /= 10
d.e++
}
return d, true
}
pub fn f32_to_decimal(mant u32, exp u32) Dec32 {
mut e2 := 0
mut m2 := u32(0)
if exp == 0 {
// We subtract 2 so that the bounds computation has
// 2 additional bits.
e2 = 1 - bias32 - mantbits32 - 2
m2 = mant
} else {
e2 = int(exp) - bias32 - mantbits32 - 2
m2 = (u32(1) << mantbits32) | mant
}
even := (m2 & 1) == 0
accept_bounds := even
// Step 2: Determine the interval of valid decimal representations.
mv := u32(4 * m2)
mp := u32(4 * m2 + 2)
mm_shift := bool_to_u32(mant != 0 || exp <= 1)
mm := u32(4 * m2 - 1 - mm_shift)
mut vr := u32(0)
mut vp := u32(0)
mut vm := u32(0)
mut e10 := 0
mut vm_is_trailing_zeros := false
mut vr_is_trailing_zeros := false
mut last_removed_digit := byte(0)
if e2 >= 0 {
q := log10_pow2(e2)
e10 = int(q)
k := pow5_inv_num_bits_32 + pow5_bits(int(q)) - 1
i := -e2 + int(q) + k
vr = mul_pow5_invdiv_pow2(mv, q, i)
vp = mul_pow5_invdiv_pow2(mp, q, i)
vm = mul_pow5_invdiv_pow2(mm, q, i)
if q != 0 && (vp-1)/10 <= vm/10 {
// We need to know one removed digit even if we are not
// going to loop below. We could use q = X - 1 above,
// except that would require 33 bits for the result, and
// we've found that 32-bit arithmetic is faster even on
// 64-bit machines.
l := pow5_inv_num_bits_32 + pow5_bits(int(q - 1)) - 1
last_removed_digit = byte(mul_pow5_invdiv_pow2(mv, q - 1, -e2 + int(q - 1) + l) % 10)
}
if q <= 9 {
// The largest power of 5 that fits in 24 bits is 5^10,
// but q <= 9 seems to be safe as well. Only one of mp,
// mv, and mm can be a multiple of 5, if any.
if mv%5 == 0 {
vr_is_trailing_zeros = multiple_of_power_of_five_32(mv, q)
} else if accept_bounds {
vm_is_trailing_zeros = multiple_of_power_of_five_32(mm, q)
} else if multiple_of_power_of_five_32(mp, q) {
vp--
}
}
} else {
q := log10_pow5(-e2)
e10 = int(q) + e2
i := -e2 - int(q)
k := pow5_bits(i) - pow5_num_bits_32
mut j := int(q) - k
vr = mul_pow5_div_pow2(mv, u32(i), j)
vp = mul_pow5_div_pow2(mp, u32(i), j)
vm = mul_pow5_div_pow2(mm, u32(i), j)
if q != 0 && ((vp-1)/10) <= vm/10 {
j = int(q) - 1 - (pow5_bits(i + 1) - pow5_num_bits_32)
last_removed_digit = byte(mul_pow5_div_pow2(mv, u32(i + 1), j) % 10)
}
if q <= 1 {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at
// least q trailing 0 bits. mv = 4 * m2, so it always
// has at least two trailing 0 bits.
vr_is_trailing_zeros = true
if accept_bounds {
// mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit
// if mm_shift == 1.
vm_is_trailing_zeros = mm_shift == 1
} else {
// mp = mv + 2, so it always has at least one
// trailing 0 bit.
vp--
}
} else if q < 31 {
vr_is_trailing_zeros = multiple_of_power_of_two_32(mv, q - 1)
}
}
// Step 4: Find the shortest decimal representation
// in the interval of valid representations.
mut removed := 0
mut out := u32(0)
if vm_is_trailing_zeros || vr_is_trailing_zeros {
// General case, which happens rarely (~4.0%).
for vp/10 > vm/10 {
vm_is_trailing_zeros = vm_is_trailing_zeros && (vm % 10) == 0
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
last_removed_digit = byte(vr % 10)
vr /= 10
vp /= 10
vm /= 10
removed++
}
if vm_is_trailing_zeros {
for vm%10 == 0 {
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
last_removed_digit = byte(vr % 10)
vr /= 10
vp /= 10
vm /= 10
removed++
}
}
if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 {
// Round even if the exact number is .....50..0.
last_removed_digit = 4
}
out = vr
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
out++
}
} else {
// Specialized for the common case (~96.0%). Percentages below
// are relative to this. Loop iterations below (approximately):
// 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
for vp/10 > vm/10 {
last_removed_digit = byte(vr % 10)
vr /= 10
vp /= 10
vm /= 10
removed++
}
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
out = vr + bool_to_u32(vr == vm || last_removed_digit >= 5)
}
return Dec32{m: out, e: e10 + removed}
}
// f32_to_str return a string in scientific notation with max n_digit after the dot
pub fn f32_to_str(f f32, n_digit int) string {
mut u1 := Uf32{}
u1.f = f
u := u1.u
neg := (u>>(mantbits32+expbits32)) != 0
mant := u & ((u32(1)<<mantbits32) - u32(1))
exp := (u >> mantbits32) & ((u32(1)<<expbits32) - u32(1))
//println("${neg} ${mant} e ${exp-bias32}")
// Exit early for easy cases.
if (exp == maxexp32) || (exp == 0 && mant == 0) {
return get_string_special(neg, exp == 0, mant == 0)
}
mut d, ok := f32_to_decimal_exact_int(mant, exp)
if !ok {
//println("with exp form")
d = f32_to_decimal(mant, exp)
}
//println("${d.m} ${d.e}")
return d.get_string_32(neg, n_digit)
}

367
vlib/strconv/ftoa/f64_str.v Normal file
View File

@ -0,0 +1,367 @@
/**********************************************************************
*
* f32 to string
*
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* This file contains the f64 to string functions
*
* These functions are based on the work of:
* Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
* Conference on Programming Language Design and ImplementationJune 2018
* Pages 270282 https://doi.org/10.1145/3192366.3192369
*
* inspired by the Go version here:
* https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
*
**********************************************************************/
module ftoa
struct Uint128 {
mut:
lo u64 = u64(0)
hi u64 = u64(0)
}
// dec64 is a floating decimal type representing m * 10^e.
struct Dec64 {
mut:
m u64 = u64(0)
e int = 0
}
// support union for convert f64 to u64
union Uf64 {
mut:
f f64 = f64(0)
u u64
}
/******************************************************************************
*
* Conversion Functions
*
******************************************************************************/
const(
mantbits64 = u32(52)
expbits64 = u32(11)
bias64 = u32(1023) // f64 exponent bias
maxexp64 = 2047
)
fn (d Dec64) get_string_64(neg bool, n_digit int) string {
mut out := d.m
mut out_len := decimal_len_64(out)
mut buf := [byte(0)].repeat(out_len + 6 + 1 +1) // sign + mant_len + . + e + e_sign + exp_len(2) + \0
mut i := 0
if n_digit > 0 && out_len > n_digit {
out_len = n_digit+1
}
if neg {
buf[i]=`-`
i++
}
mut disp := 0
if out_len <= 1 {
disp = 1
}
y := i + out_len
mut x := 0
for x < (out_len-disp-1) {
buf[y - x] = `0` + byte(out%10)
out /= 10
i++
x++
}
if out_len >= 1 {
buf[y - x] = `.`
x++
i++
}
if y-x >= 0 {
buf[y - x] = `0` + byte(out%10)
i++
}
/*
x=0
for x<buf.len {
C.printf("d:%c\n",buf[x])
x++
}
C.printf("\n")
*/
buf[i]=`e`
i++
mut exp := d.e + out_len - 1
if exp < 0 {
buf[i]=`-`
i++
exp = -exp
} else {
buf[i]=`+`
i++
}
// Always print two digits to match strconv's formatting.
/* d1 := exp % 10
d0 := exp / 10
buf[i]=`0` + byte(d0)
i++
buf[i]=`0` + byte(d1)
i++
buf[i]=0
*/
// Always print at least two digits to match strconv's formatting.
d2 := exp % 10
exp /= 10
d1 := exp % 10
d0 := exp / 10
if d0 > 0 {
buf[i]=`0` + byte(d0)
i++
}
buf[i]=`0` + byte(d1)
i++
buf[i]=`0` + byte(d2)
i++
buf[i]=0
/*
x=0
for x<buf.len {
C.printf("d:%c\n",buf[x])
x++
}
*/
return tos(byteptr(&buf[0]), i)
}
fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
mut d := Dec64{}
e := exp - bias64
if e > mantbits64 {
return d, false
}
shift := mantbits64 - e
mant := i_mant | 0x0010_0000_0000_0000 // implicit 1
//mant := i_mant | (1 << mantbits64) // implicit 1
d.m = mant >> shift
if (d.m << shift) != mant {
return d, false
}
for (d.m % 10) == 0 {
d.m /= 10
d.e++
}
return d, true
}
fn f64_to_decimal(mant u64, exp u64) Dec64 {
mut e2 := 0
mut m2 := u64(0)
if exp == 0 {
// We subtract 2 so that the bounds computation has
// 2 additional bits.
e2 = 1 - bias64 - mantbits64 - 2
m2 = mant
} else {
e2 = int(exp) - bias64 - mantbits64 - 2
m2 = (u64(1)<<mantbits64) | mant
}
even := (m2 & 1) == 0
accept_bounds := even
// Step 2: Determine the interval of valid decimal representations.
mv := u64(4 * m2)
mm_shift := bool_to_u64(mant != 0 || exp <= 1)
// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
mut vr := u64(0)
mut vp := u64(0)
mut vm := u64(0)
mut e10 := 0
mut vm_is_trailing_zeros := false
mut vr_is_trailing_zeros := false
if e2 >= 0 {
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
q := log10_pow2(e2) - bool_to_u32(e2 > 3)
e10 = int(q)
k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1
i := -e2 + int(q) + k
mul := pow5_inv_split_64[q]
vr = mul_shift_64(u64(4) * m2 , mul, i)
vp = mul_shift_64(u64(4) * m2 + u64(2) , mul, i)
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i)
if q <= 21 {
// This should use q <= 22, but I think 21 is also safe.
// Smaller values may still be safe, but it's more
// difficult to reason about them. Only one of mp, mv,
// and mm can be a multiple of 5, if any.
if mv%5 == 0 {
vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q)
} else if accept_bounds {
// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
vm_is_trailing_zeros = multiple_of_power_of_five_64(mv-1-mm_shift, q)
} else if multiple_of_power_of_five_64(mv+2, q) {
vp--
}
}
} else {
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
q := log10_pow5(-e2) - bool_to_u32(-e2 > 1)
e10 = int(q) + e2
i := -e2 - int(q)
k := pow5_bits(i) - pow5_num_bits_64
mut j := int(q) - k
mul := pow5_split_64[i]
vr = mul_shift_64(u64(4) * m2 , mul, j)
vp = mul_shift_64(u64(4) * m2 + u64(2) , mul, j)
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j)
if q <= 1 {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
// mv = 4 * m2, so it always has at least two trailing 0 bits.
vr_is_trailing_zeros = true
if accept_bounds {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
vm_is_trailing_zeros = (mm_shift == 1)
} else {
// mp = mv + 2, so it always has at least one trailing 0 bit.
vp--
}
} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
// <=> (mv & ((1 << (q - 1)) - 1)) == 0
// We also need to make sure that the left shift does not overflow.
vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1)
}
}
// Step 4: Find the shortest decimal representation
// in the interval of valid representations.
mut removed := 0
mut last_removed_digit := byte(0)
mut out := u64(0)
// On average, we remove ~2 digits.
if vm_is_trailing_zeros || vr_is_trailing_zeros {
// General case, which happens rarely (~0.7%).
for {
vp_div_10 := vp / 10
vm_div_10 := vm / 10
if vp_div_10 <= vm_div_10 {
break
}
vm_mod_10 := vm % 10
vr_div_10 := vr / 10
vr_mod_10 := vr % 10
vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
last_removed_digit = byte(vr_mod_10)
vr = vr_div_10
vp = vp_div_10
vm = vm_div_10
removed++
}
if vm_is_trailing_zeros {
for {
vm_div_10 := vm / 10
vm_mod_10 := vm % 10
if vm_mod_10 != 0 {
break
}
vp_div_10 := vp / 10
vr_div_10 := vr / 10
vr_mod_10 := vr % 10
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
last_removed_digit = byte(vr_mod_10)
vr = vr_div_10
vp = vp_div_10
vm = vm_div_10
removed++
}
}
if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 {
// Round even if the exact number is .....50..0.
last_removed_digit = 4
}
out = vr
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
out++
}
} else {
// Specialized for the common case (~99.3%).
// Percentages below are relative to this.
mut round_up := false
for vp / 100 > vm / 100 {
// Optimization: remove two digits at a time (~86.2%).
round_up = (vr % 100) >= 50
vr /= 100
vp /= 100
vm /= 100
removed += 2
}
// Loop iterations below (approximately), without optimization above:
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
// Loop iterations below (approximately), with optimization above:
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
for vp / 10 > vm / 10 {
round_up = (vr % 10) >= 5
vr /= 10
vp /= 10
vm /= 10
removed++
}
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
out = vr + bool_to_u64(vr == vm || round_up)
}
return Dec64{m: out, e: e10 + removed}
}
// f64_to_str return a string in scientific notation with max n_digit after the dot
pub fn f64_to_str(f f64, n_digit int) string {
mut u1 := Uf64{}
u1.f = f
u := u1.u
neg := (u>>(mantbits64+expbits64)) != 0
mant := u & ((u64(1)<<mantbits64) - u64(1))
exp := (u >> mantbits64) & ((u64(1)<<expbits64) - u64(1))
//println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
// Exit early for easy cases.
if (exp == maxexp64) || (exp == 0 && mant == 0) {
return get_string_special(neg, exp == 0, mant == 0)
}
mut d, ok := f64_to_decimal_exact_int(mant, exp)
if !ok {
//println("to_decimal")
d = f64_to_decimal(mant, exp)
}
//println("${d.m} ${d.e}")
return d.get_string_64(neg, n_digit)
}

40
vlib/strconv/ftoa/ftoa.v Normal file
View File

@ -0,0 +1,40 @@
/**********************************************************************
*
* f32/f64 ftoa functions
*
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* This file contains the f32/f64 ftoa functions
*
* These functions are based on the work of:
* Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
* Conference on Programming Language Design and ImplementationJune 2018
* Pages 270282 https://doi.org/10.1145/3192366.3192369
*
* inspired by the Go version here:
* https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
*
**********************************************************************/
module ftoa
[inline]
pub fn ftoa_64(f f64) string {
return f64_to_str(f,17)
}
[inline]
pub fn ftoa_long_64(f f64) string {
return f64_to_str_l(f)
}
[inline]
pub fn ftoa_32(f f32) string {
return f32_to_str(f,8)
}
[inline]
pub fn ftoa_long_32(f f32) string {
return f32_to_str_l(f)
}

680
vlib/strconv/ftoa/tables.v Normal file
View File

@ -0,0 +1,680 @@
module ftoa
const(
pow5_num_bits_32 = 61
pow5_inv_num_bits_32 = 59
pow5_num_bits_64 = 121
pow5_inv_num_bits_64 = 122
powers_of_10 = [
u64(1e0),
u64(1e1),
u64(1e2),
u64(1e3),
u64(1e4),
u64(1e5),
u64(1e6),
u64(1e7),
u64(1e8),
u64(1e9),
u64(1e10),
u64(1e11),
u64(1e12),
u64(1e13),
u64(1e14),
u64(1e15),
u64(1e16),
u64(1e17)
// We only need to find the length of at most 17 digit numbers.
]
pow5_split_32 = [
1152921504606846976, 1441151880758558720, 1801439850948198400, 2251799813685248000,
1407374883553280000, 1759218604441600000, 2199023255552000000, 1374389534720000000,
1717986918400000000, 2147483648000000000, 1342177280000000000, 1677721600000000000,
2097152000000000000, 1310720000000000000, 1638400000000000000, 2048000000000000000,
1280000000000000000, 1600000000000000000, 2000000000000000000, 1250000000000000000,
1562500000000000000, 1953125000000000000, 1220703125000000000, 1525878906250000000,
1907348632812500000, 1192092895507812500, 1490116119384765625, 1862645149230957031,
1164153218269348144, 1455191522836685180, 1818989403545856475, 2273736754432320594,
1421085471520200371, 1776356839400250464, 2220446049250313080, 1387778780781445675,
1734723475976807094, 2168404344971008868, 1355252715606880542, 1694065894508600678,
2117582368135750847, 1323488980084844279, 1654361225106055349, 2067951531382569187,
1292469707114105741, 1615587133892632177, 2019483917365790221
]
pow5_inv_split_32 = [
576460752303423489, 461168601842738791, 368934881474191033, 295147905179352826,
472236648286964522, 377789318629571618, 302231454903657294, 483570327845851670,
386856262276681336, 309485009821345069, 495176015714152110, 396140812571321688,
316912650057057351, 507060240091291761, 405648192073033409, 324518553658426727,
519229685853482763, 415383748682786211, 332306998946228969, 531691198313966350,
425352958651173080, 340282366920938464, 544451787073501542, 435561429658801234,
348449143727040987, 557518629963265579, 446014903970612463, 356811923176489971,
570899077082383953, 456719261665907162, 365375409332725730
]
pow5_split_64 =[
Uint128{u64(0), 72057594037927936},
Uint128{u64(0), 90071992547409920},
Uint128{u64(0), 112589990684262400},
Uint128{u64(0), 140737488355328000},
Uint128{u64(0), 87960930222080000},
Uint128{u64(0), 109951162777600000},
Uint128{u64(0), 137438953472000000},
Uint128{u64(0), 85899345920000000},
Uint128{u64(0), 107374182400000000},
Uint128{u64(0), 134217728000000000},
Uint128{u64(0), 83886080000000000},
Uint128{u64(0), 104857600000000000},
Uint128{u64(0), 131072000000000000},
Uint128{u64(0), 81920000000000000},
Uint128{u64(0), 102400000000000000},
Uint128{u64(0), 128000000000000000},
Uint128{u64(0), 80000000000000000},
Uint128{u64(0), 100000000000000000},
Uint128{u64(0), 125000000000000000},
Uint128{u64(0), 78125000000000000},
Uint128{u64(0), 97656250000000000},
Uint128{u64(0), 122070312500000000},
Uint128{u64(0), 76293945312500000},
Uint128{u64(0), 95367431640625000},
Uint128{u64(0), 119209289550781250},
Uint128{4611686018427387904, 74505805969238281},
Uint128{10376293541461622784, 93132257461547851},
Uint128{8358680908399640576, 116415321826934814},
Uint128{612489549322387456, 72759576141834259},
Uint128{14600669991935148032, 90949470177292823},
Uint128{13639151471491547136, 113686837721616029},
Uint128{3213881284082270208, 142108547152020037},
Uint128{4314518811765112832, 88817841970012523},
Uint128{781462496279003136, 111022302462515654},
Uint128{10200200157203529728, 138777878078144567},
Uint128{13292654125893287936, 86736173798840354},
Uint128{7392445620511834112, 108420217248550443},
Uint128{4628871007212404736, 135525271560688054},
Uint128{16728102434789916672, 84703294725430033},
Uint128{7075069988205232128, 105879118406787542},
Uint128{18067209522111315968, 132348898008484427},
Uint128{8986162942105878528, 82718061255302767},
Uint128{6621017659204960256, 103397576569128459},
Uint128{3664586055578812416, 129246970711410574},
Uint128{16125424340018921472, 80779356694631608},
Uint128{1710036351314100224, 100974195868289511},
Uint128{15972603494424788992, 126217744835361888},
Uint128{9982877184015493120, 78886090522101180},
Uint128{12478596480019366400, 98607613152626475},
Uint128{10986559581596820096, 123259516440783094},
Uint128{2254913720070624656, 77037197775489434},
Uint128{12042014186943056628, 96296497219361792},
Uint128{15052517733678820785, 120370621524202240},
Uint128{9407823583549262990, 75231638452626400},
Uint128{11759779479436578738, 94039548065783000},
Uint128{14699724349295723422, 117549435082228750},
Uint128{4575641699882439235, 73468396926392969},
Uint128{10331238143280436948, 91835496157991211},
Uint128{8302361660673158281, 114794370197489014},
Uint128{1154580038986672043, 143492962746861268},
Uint128{9944984561221445835, 89683101716788292},
Uint128{12431230701526807293, 112103877145985365},
Uint128{1703980321626345405, 140129846432481707},
Uint128{17205888765512323542, 87581154020301066},
Uint128{12283988920035628619, 109476442525376333},
Uint128{1519928094762372062, 136845553156720417},
Uint128{12479170105294952299, 85528470722950260},
Uint128{15598962631618690374, 106910588403687825},
Uint128{5663645234241199255, 133638235504609782},
Uint128{17374836326682913246, 83523897190381113},
Uint128{7883487353071477846, 104404871487976392},
Uint128{9854359191339347308, 130506089359970490},
Uint128{10770660513014479971, 81566305849981556},
Uint128{13463325641268099964, 101957882312476945},
Uint128{2994098996302961243, 127447352890596182},
Uint128{15706369927971514489, 79654595556622613},
Uint128{5797904354682229399, 99568244445778267},
Uint128{2635694424925398845, 124460305557222834},
Uint128{6258995034005762182, 77787690973264271},
Uint128{3212057774079814824, 97234613716580339},
Uint128{17850130272881932242, 121543267145725423},
Uint128{18073860448192289507, 75964541966078389},
Uint128{8757267504958198172, 94955677457597987},
Uint128{6334898362770359811, 118694596821997484},
Uint128{13182683513586250689, 74184123013748427},
Uint128{11866668373555425458, 92730153767185534},
Uint128{5609963430089506015, 115912692208981918},
Uint128{17341285199088104971, 72445432630613698},
Uint128{12453234462005355406, 90556790788267123},
Uint128{10954857059079306353, 113195988485333904},
Uint128{13693571323849132942, 141494985606667380},
Uint128{17781854114260483896, 88434366004167112},
Uint128{3780573569116053255, 110542957505208891},
Uint128{114030942967678664, 138178696881511114},
Uint128{4682955357782187069, 86361685550944446},
Uint128{15077066234082509644, 107952106938680557},
Uint128{5011274737320973344, 134940133673350697},
Uint128{14661261756894078100, 84337583545844185},
Uint128{4491519140835433913, 105421979432305232},
Uint128{5614398926044292391, 131777474290381540},
Uint128{12732371365632458552, 82360921431488462},
Uint128{6692092170185797382, 102951151789360578},
Uint128{17588487249587022536, 128688939736700722},
Uint128{15604490549419276989, 80430587335437951},
Uint128{14893927168346708332, 100538234169297439},
Uint128{14005722942005997511, 125672792711621799},
Uint128{15671105866394830300, 78545495444763624},
Uint128{1142138259283986260, 98181869305954531},
Uint128{15262730879387146537, 122727336632443163},
Uint128{7233363790403272633, 76704585395276977},
Uint128{13653390756431478696, 95880731744096221},
Uint128{3231680390257184658, 119850914680120277},
Uint128{4325643253124434363, 74906821675075173},
Uint128{10018740084832930858, 93633527093843966},
Uint128{3300053069186387764, 117041908867304958},
Uint128{15897591223523656064, 73151193042065598},
Uint128{10648616992549794273, 91438991302581998},
Uint128{4087399203832467033, 114298739128227498},
Uint128{14332621041645359599, 142873423910284372},
Uint128{18181260187883125557, 89295889943927732},
Uint128{4279831161144355331, 111619862429909666},
Uint128{14573160988285219972, 139524828037387082},
Uint128{13719911636105650386, 87203017523366926},
Uint128{7926517508277287175, 109003771904208658},
Uint128{684774848491833161, 136254714880260823},
Uint128{7345513307948477581, 85159196800163014},
Uint128{18405263671790372785, 106448996000203767},
Uint128{18394893571310578077, 133061245000254709},
Uint128{13802651491282805250, 83163278125159193},
Uint128{3418256308821342851, 103954097656448992},
Uint128{4272820386026678563, 129942622070561240},
Uint128{2670512741266674102, 81214138794100775},
Uint128{17173198981865506339, 101517673492625968},
Uint128{3019754653622331308, 126897091865782461},
Uint128{4193189667727651020, 79310682416114038},
Uint128{14464859121514339583, 99138353020142547},
Uint128{13469387883465536574, 123922941275178184},
Uint128{8418367427165960359, 77451838296986365},
Uint128{15134645302384838353, 96814797871232956},
Uint128{471562554271496325, 121018497339041196},
Uint128{9518098633274461011, 75636560836900747},
Uint128{7285937273165688360, 94545701046125934},
Uint128{18330793628311886258, 118182126307657417},
Uint128{4539216990053847055, 73863828942285886},
Uint128{14897393274422084627, 92329786177857357},
Uint128{4786683537745442072, 115412232722321697},
Uint128{14520892257159371055, 72132645451451060},
Uint128{18151115321449213818, 90165806814313825},
Uint128{8853836096529353561, 112707258517892282},
Uint128{1843923083806916143, 140884073147365353},
Uint128{12681666973447792349, 88052545717103345},
Uint128{2017025661527576725, 110065682146379182},
Uint128{11744654113764246714, 137582102682973977},
Uint128{422879793461572340, 85988814176858736},
Uint128{528599741826965425, 107486017721073420},
Uint128{660749677283706782, 134357522151341775},
Uint128{7330497575943398595, 83973451344588609},
Uint128{13774807988356636147, 104966814180735761},
Uint128{3383451930163631472, 131208517725919702},
Uint128{15949715511634433382, 82005323578699813},
Uint128{6102086334260878016, 102506654473374767},
Uint128{3015921899398709616, 128133318091718459},
Uint128{18025852251620051174, 80083323807324036},
Uint128{4085571240815512351, 100104154759155046},
Uint128{14330336087874166247, 125130193448943807},
Uint128{15873989082562435760, 78206370905589879},
Uint128{15230800334775656796, 97757963631987349},
Uint128{5203442363187407284, 122197454539984187},
Uint128{946308467778435600, 76373409087490117},
Uint128{5794571603150432404, 95466761359362646},
Uint128{16466586540792816313, 119333451699203307},
Uint128{7985773578781816244, 74583407312002067},
Uint128{5370530955049882401, 93229259140002584},
Uint128{6713163693812353001, 116536573925003230},
Uint128{18030785363914884337, 72835358703127018},
Uint128{13315109668038829614, 91044198378908773},
Uint128{2808829029766373305, 113805247973635967},
Uint128{17346094342490130344, 142256559967044958},
Uint128{6229622945628943561, 88910349979403099},
Uint128{3175342663608791547, 111137937474253874},
Uint128{13192550366365765242, 138922421842817342},
Uint128{3633657960551215372, 86826513651760839},
Uint128{18377130505971182927, 108533142064701048},
Uint128{4524669058754427043, 135666427580876311},
Uint128{9745447189362598758, 84791517238047694},
Uint128{2958436949848472639, 105989396547559618},
Uint128{12921418224165366607, 132486745684449522},
Uint128{12687572408530742033, 82804216052780951},
Uint128{11247779492236039638, 103505270065976189},
Uint128{224666310012885835, 129381587582470237},
Uint128{2446259452971747599, 80863492239043898},
Uint128{12281196353069460307, 101079365298804872},
Uint128{15351495441336825384, 126349206623506090},
Uint128{14206370669262903769, 78968254139691306},
Uint128{8534591299723853903, 98710317674614133},
Uint128{15279925143082205283, 123387897093267666},
Uint128{14161639232853766206, 77117435683292291},
Uint128{13090363022639819853, 96396794604115364},
Uint128{16362953778299774816, 120495993255144205},
Uint128{12532689120651053212, 75309995784465128},
Uint128{15665861400813816515, 94137494730581410},
Uint128{10358954714162494836, 117671868413226763},
Uint128{4168503687137865320, 73544917758266727},
Uint128{598943590494943747, 91931147197833409},
Uint128{5360365506546067587, 114913933997291761},
Uint128{11312142901609972388, 143642417496614701},
Uint128{9375932322719926695, 89776510935384188},
Uint128{11719915403399908368, 112220638669230235},
Uint128{10038208235822497557, 140275798336537794},
Uint128{10885566165816448877, 87672373960336121},
Uint128{18218643725697949000, 109590467450420151},
Uint128{18161618638695048346, 136988084313025189},
Uint128{13656854658398099168, 85617552695640743},
Uint128{12459382304570236056, 107021940869550929},
Uint128{1739169825430631358, 133777426086938662},
Uint128{14922039196176308311, 83610891304336663},
Uint128{14040862976792997485, 104513614130420829},
Uint128{3716020665709083144, 130642017663026037},
Uint128{4628355925281870917, 81651261039391273},
Uint128{10397130925029726550, 102064076299239091},
Uint128{8384727637859770284, 127580095374048864},
Uint128{5240454773662356427, 79737559608780540},
Uint128{6550568467077945534, 99671949510975675},
Uint128{3576524565420044014, 124589936888719594},
Uint128{6847013871814915412, 77868710555449746},
Uint128{17782139376623420074, 97335888194312182},
Uint128{13004302183924499284, 121669860242890228},
Uint128{17351060901807587860, 76043662651806392},
Uint128{3242082053549933210, 95054578314757991},
Uint128{17887660622219580224, 118818222893447488},
Uint128{11179787888887237640, 74261389308404680},
Uint128{13974734861109047050, 92826736635505850},
Uint128{8245046539531533005, 116033420794382313},
Uint128{16682369133275677888, 72520887996488945},
Uint128{7017903361312433648, 90651109995611182},
Uint128{17995751238495317868, 113313887494513977},
Uint128{8659630992836983623, 141642359368142472},
Uint128{5412269370523114764, 88526474605089045},
Uint128{11377022731581281359, 110658093256361306},
Uint128{4997906377621825891, 138322616570451633},
Uint128{14652906532082110942, 86451635356532270},
Uint128{9092761128247862869, 108064544195665338},
Uint128{2142579373455052779, 135080680244581673},
Uint128{12868327154477877747, 84425425152863545},
Uint128{2250350887815183471, 105531781441079432},
Uint128{2812938609768979339, 131914726801349290},
Uint128{6369772649532999991, 82446704250843306},
Uint128{17185587848771025797, 103058380313554132},
Uint128{3035240737254230630, 128822975391942666},
Uint128{6508711479211282048, 80514359619964166},
Uint128{17359261385868878368, 100642949524955207},
Uint128{17087390713908710056, 125803686906194009},
Uint128{3762090168551861929, 78627304316371256},
Uint128{4702612710689827411, 98284130395464070},
Uint128{15101637925217060072, 122855162994330087},
Uint128{16356052730901744401, 76784476871456304},
Uint128{1998321839917628885, 95980596089320381},
Uint128{7109588318324424010, 119975745111650476},
Uint128{13666864735807540814, 74984840694781547},
Uint128{12471894901332038114, 93731050868476934},
Uint128{6366496589810271835, 117163813585596168},
Uint128{3979060368631419896, 73227383490997605},
Uint128{9585511479216662775, 91534229363747006},
Uint128{2758517312166052660, 114417786704683758},
Uint128{12671518677062341634, 143022233380854697},
Uint128{1002170145522881665, 89388895863034186},
Uint128{10476084718758377889, 111736119828792732},
Uint128{13095105898447972362, 139670149785990915},
Uint128{5878598177316288774, 87293843616244322},
Uint128{16571619758500136775, 109117304520305402},
Uint128{11491152661270395161, 136396630650381753},
Uint128{264441385652915120, 85247894156488596},
Uint128{330551732066143900, 106559867695610745},
Uint128{5024875683510067779, 133199834619513431},
Uint128{10058076329834874218, 83249896637195894},
Uint128{3349223375438816964, 104062370796494868},
Uint128{4186529219298521205, 130077963495618585},
Uint128{14145795808130045513, 81298727184761615},
Uint128{13070558741735168987, 101623408980952019},
Uint128{11726512408741573330, 127029261226190024},
Uint128{7329070255463483331, 79393288266368765},
Uint128{13773023837756742068, 99241610332960956},
Uint128{17216279797195927585, 124052012916201195},
Uint128{8454331864033760789, 77532508072625747},
Uint128{5956228811614813082, 96915635090782184},
Uint128{7445286014518516353, 121144543863477730},
Uint128{9264989777501460624, 75715339914673581},
Uint128{16192923240304213684, 94644174893341976},
Uint128{1794409976670715490, 118305218616677471},
Uint128{8039035263060279037, 73940761635423419},
Uint128{5437108060397960892, 92425952044279274},
Uint128{16019757112352226923, 115532440055349092},
Uint128{788976158365366019, 72207775034593183},
Uint128{14821278253238871236, 90259718793241478},
Uint128{9303225779693813237, 112824648491551848},
Uint128{11629032224617266546, 141030810614439810},
Uint128{11879831158813179495, 88144256634024881},
Uint128{1014730893234310657, 110180320792531102},
Uint128{10491785653397664129, 137725400990663877},
Uint128{8863209042587234033, 86078375619164923},
Uint128{6467325284806654637, 107597969523956154},
Uint128{17307528642863094104, 134497461904945192},
Uint128{10817205401789433815, 84060913690590745},
Uint128{18133192770664180173, 105076142113238431},
Uint128{18054804944902837312, 131345177641548039},
Uint128{18201782118205355176, 82090736025967524},
Uint128{4305483574047142354, 102613420032459406},
Uint128{14605226504413703751, 128266775040574257},
Uint128{2210737537617482988, 80166734400358911},
Uint128{16598479977304017447, 100208418000448638},
Uint128{11524727934775246001, 125260522500560798},
Uint128{2591268940807140847, 78287826562850499},
Uint128{17074144231291089770, 97859783203563123},
Uint128{16730994270686474309, 122324729004453904},
Uint128{10456871419179046443, 76452955627783690},
Uint128{3847717237119032246, 95566194534729613},
Uint128{9421332564826178211, 119457743168412016},
Uint128{5888332853016361382, 74661089480257510},
Uint128{16583788103125227536, 93326361850321887},
Uint128{16118049110479146516, 116657952312902359},
Uint128{16991309721690548428, 72911220195563974},
Uint128{12015765115258409727, 91139025244454968},
Uint128{15019706394073012159, 113923781555568710},
Uint128{9551260955736489391, 142404726944460888},
Uint128{5969538097335305869, 89002954340288055},
Uint128{2850236603241744433, 111253692925360069}
]
pow5_inv_split_64 = [
Uint128{u64(1), 288230376151711744},
Uint128{3689348814741910324, 230584300921369395},
Uint128{2951479051793528259, 184467440737095516},
Uint128{17118578500402463900, 147573952589676412},
Uint128{12632330341676300947, 236118324143482260},
Uint128{10105864273341040758, 188894659314785808},
Uint128{15463389048156653253, 151115727451828646},
Uint128{17362724847566824558, 241785163922925834},
Uint128{17579528692795369969, 193428131138340667},
Uint128{6684925324752475329, 154742504910672534},
Uint128{18074578149087781173, 247588007857076054},
Uint128{18149011334012135262, 198070406285660843},
Uint128{3451162622983977240, 158456325028528675},
Uint128{5521860196774363583, 253530120045645880},
Uint128{4417488157419490867, 202824096036516704},
Uint128{7223339340677503017, 162259276829213363},
Uint128{7867994130342094503, 259614842926741381},
Uint128{2605046489531765280, 207691874341393105},
Uint128{2084037191625412224, 166153499473114484},
Uint128{10713157136084480204, 265845599156983174},
Uint128{12259874523609494487, 212676479325586539},
Uint128{13497248433629505913, 170141183460469231},
Uint128{14216899864323388813, 272225893536750770},
Uint128{11373519891458711051, 217780714829400616},
Uint128{5409467098425058518, 174224571863520493},
Uint128{4965798542738183305, 278759314981632789},
Uint128{7661987648932456967, 223007451985306231},
Uint128{2440241304404055250, 178405961588244985},
Uint128{3904386087046488400, 285449538541191976},
Uint128{17880904128604832013, 228359630832953580},
Uint128{14304723302883865611, 182687704666362864},
Uint128{15133127457049002812, 146150163733090291},
Uint128{16834306301794583852, 233840261972944466},
Uint128{9778096226693756759, 187072209578355573},
Uint128{15201174610838826053, 149657767662684458},
Uint128{2185786488890659746, 239452428260295134},
Uint128{5437978005854438120, 191561942608236107},
Uint128{15418428848909281466, 153249554086588885},
Uint128{6222742084545298729, 245199286538542217},
Uint128{16046240111861969953, 196159429230833773},
Uint128{1768945645263844993, 156927543384667019},
Uint128{10209010661905972635, 251084069415467230},
Uint128{8167208529524778108, 200867255532373784},
Uint128{10223115638361732810, 160693804425899027},
Uint128{1599589762411131202, 257110087081438444},
Uint128{4969020624670815285, 205688069665150755},
Uint128{3975216499736652228, 164550455732120604},
Uint128{13739044029062464211, 263280729171392966},
Uint128{7301886408508061046, 210624583337114373},
Uint128{13220206756290269483, 168499666669691498},
Uint128{17462981995322520850, 269599466671506397},
Uint128{6591687966774196033, 215679573337205118},
Uint128{12652048002903177473, 172543658669764094},
Uint128{9175230360419352987, 276069853871622551},
Uint128{3650835473593572067, 220855883097298041},
Uint128{17678063637842498946, 176684706477838432},
Uint128{13527506561580357021, 282695530364541492},
Uint128{3443307619780464970, 226156424291633194},
Uint128{6443994910566282300, 180925139433306555},
Uint128{5155195928453025840, 144740111546645244},
Uint128{15627011115008661990, 231584178474632390},
Uint128{12501608892006929592, 185267342779705912},
Uint128{2622589484121723027, 148213874223764730},
Uint128{4196143174594756843, 237142198758023568},
Uint128{10735612169159626121, 189713759006418854},
Uint128{12277838550069611220, 151771007205135083},
Uint128{15955192865369467629, 242833611528216133},
Uint128{1696107848069843133, 194266889222572907},
Uint128{12424932722681605476, 155413511378058325},
Uint128{1433148282581017146, 248661618204893321},
Uint128{15903913885032455010, 198929294563914656},
Uint128{9033782293284053685, 159143435651131725},
Uint128{14454051669254485895, 254629497041810760},
Uint128{11563241335403588716, 203703597633448608},
Uint128{16629290697806691620, 162962878106758886},
Uint128{781423413297334329, 260740604970814219},
Uint128{4314487545379777786, 208592483976651375},
Uint128{3451590036303822229, 166873987181321100},
Uint128{5522544058086115566, 266998379490113760},
Uint128{4418035246468892453, 213598703592091008},
Uint128{10913125826658934609, 170878962873672806},
Uint128{10082303693170474728, 273406340597876490},
Uint128{8065842954536379782, 218725072478301192},
Uint128{17520720807854834795, 174980057982640953},
Uint128{5897060404116273733, 279968092772225526},
Uint128{1028299508551108663, 223974474217780421},
Uint128{15580034865808528224, 179179579374224336},
Uint128{17549358155809824511, 286687326998758938},
Uint128{2971440080422128639, 229349861599007151},
Uint128{17134547323305344204, 183479889279205720},
Uint128{13707637858644275364, 146783911423364576},
Uint128{14553522944347019935, 234854258277383322},
Uint128{4264120725993795302, 187883406621906658},
Uint128{10789994210278856888, 150306725297525326},
Uint128{9885293106962350374, 240490760476040522},
Uint128{529536856086059653, 192392608380832418},
Uint128{7802327114352668369, 153914086704665934},
Uint128{1415676938738538420, 246262538727465495},
Uint128{1132541550990830736, 197010030981972396},
Uint128{15663428499760305882, 157608024785577916},
Uint128{17682787970132668764, 252172839656924666},
Uint128{10456881561364224688, 201738271725539733},
Uint128{15744202878575200397, 161390617380431786},
Uint128{17812026976236499989, 258224987808690858},
Uint128{3181575136763469022, 206579990246952687},
Uint128{13613306553636506187, 165263992197562149},
Uint128{10713244041592678929, 264422387516099439},
Uint128{12259944048016053467, 211537910012879551},
Uint128{6118606423670932450, 169230328010303641},
Uint128{2411072648389671274, 270768524816485826},
Uint128{16686253377679378312, 216614819853188660},
Uint128{13349002702143502650, 173291855882550928},
Uint128{17669055508687693916, 277266969412081485},
Uint128{14135244406950155133, 221813575529665188},
Uint128{240149081334393137, 177450860423732151},
Uint128{11452284974360759988, 283921376677971441},
Uint128{5472479164746697667, 227137101342377153},
Uint128{11756680961281178780, 181709681073901722},
Uint128{2026647139541122378, 145367744859121378},
Uint128{18000030682233437097, 232588391774594204},
Uint128{18089373360528660001, 186070713419675363},
Uint128{3403452244197197031, 148856570735740291},
Uint128{16513570034941246220, 238170513177184465},
Uint128{13210856027952996976, 190536410541747572},
Uint128{3189987192878576934, 152429128433398058},
Uint128{1414630693863812771, 243886605493436893},
Uint128{8510402184574870864, 195109284394749514},
Uint128{10497670562401807014, 156087427515799611},
Uint128{9417575270359070576, 249739884025279378},
Uint128{14912757845771077107, 199791907220223502},
Uint128{4551508647133041040, 159833525776178802},
Uint128{10971762650154775986, 255733641241886083},
Uint128{16156107749607641435, 204586912993508866},
Uint128{9235537384944202825, 163669530394807093},
Uint128{11087511001168814197, 261871248631691349},
Uint128{12559357615676961681, 209496998905353079},
Uint128{13736834907283479668, 167597599124282463},
Uint128{18289587036911657145, 268156158598851941},
Uint128{10942320814787415393, 214524926879081553},
Uint128{16132554281313752961, 171619941503265242},
Uint128{11054691591134363444, 274591906405224388},
Uint128{16222450902391311402, 219673525124179510},
Uint128{12977960721913049122, 175738820099343608},
Uint128{17075388340318968271, 281182112158949773},
Uint128{2592264228029443648, 224945689727159819},
Uint128{5763160197165465241, 179956551781727855},
Uint128{9221056315464744386, 287930482850764568},
Uint128{14755542681855616155, 230344386280611654},
Uint128{15493782960226403247, 184275509024489323},
Uint128{1326979923955391628, 147420407219591459},
Uint128{9501865507812447252, 235872651551346334},
Uint128{11290841220991868125, 188698121241077067},
Uint128{1653975347309673853, 150958496992861654},
Uint128{10025058185179298811, 241533595188578646},
Uint128{4330697733401528726, 193226876150862917},
Uint128{14532604630946953951, 154581500920690333},
Uint128{1116074521063664381, 247330401473104534},
Uint128{4582208431592841828, 197864321178483627},
Uint128{14733813189500004432, 158291456942786901},
Uint128{16195403473716186445, 253266331108459042},
Uint128{5577625149489128510, 202613064886767234},
Uint128{8151448934333213131, 162090451909413787},
Uint128{16731667109675051333, 259344723055062059},
Uint128{17074682502481951390, 207475778444049647},
Uint128{6281048372501740465, 165980622755239718},
Uint128{6360328581260874421, 265568996408383549},
Uint128{8777611679750609860, 212455197126706839},
Uint128{10711438158542398211, 169964157701365471},
Uint128{9759603424184016492, 271942652322184754},
Uint128{11497031554089123517, 217554121857747803},
Uint128{16576322872755119460, 174043297486198242},
Uint128{11764721337440549842, 278469275977917188},
Uint128{16790474699436260520, 222775420782333750},
Uint128{13432379759549008416, 178220336625867000},
Uint128{3045063541568861850, 285152538601387201},
Uint128{17193446092222730773, 228122030881109760},
Uint128{13754756873778184618, 182497624704887808},
Uint128{18382503128506368341, 145998099763910246},
Uint128{3586563302416817083, 233596959622256395},
Uint128{2869250641933453667, 186877567697805116},
Uint128{17052795772514404226, 149502054158244092},
Uint128{12527077977055405469, 239203286653190548},
Uint128{17400360011128145022, 191362629322552438},
Uint128{2852241564676785048, 153090103458041951},
Uint128{15631632947708587046, 244944165532867121},
Uint128{8815957543424959314, 195955332426293697},
Uint128{18120812478965698421, 156764265941034957},
Uint128{14235904707377476180, 250822825505655932},
Uint128{4010026136418160298, 200658260404524746},
Uint128{17965416168102169531, 160526608323619796},
Uint128{2919224165770098987, 256842573317791675},
Uint128{2335379332616079190, 205474058654233340},
Uint128{1868303466092863352, 164379246923386672},
Uint128{6678634360490491686, 263006795077418675},
Uint128{5342907488392393349, 210405436061934940},
Uint128{4274325990713914679, 168324348849547952},
Uint128{10528270399884173809, 269318958159276723},
Uint128{15801313949391159694, 215455166527421378},
Uint128{1573004715287196786, 172364133221937103},
Uint128{17274202803427156150, 275782613155099364},
Uint128{17508711057483635243, 220626090524079491},
Uint128{10317620031244997871, 176500872419263593},
Uint128{12818843235250086271, 282401395870821749},
Uint128{13944423402941979340, 225921116696657399},
Uint128{14844887537095493795, 180736893357325919},
Uint128{15565258844418305359, 144589514685860735},
Uint128{6457670077359736959, 231343223497377177},
Uint128{16234182506113520537, 185074578797901741},
Uint128{9297997190148906106, 148059663038321393},
Uint128{11187446689496339446, 236895460861314229},
Uint128{12639306166338981880, 189516368689051383},
Uint128{17490142562555006151, 151613094951241106},
Uint128{2158786396894637579, 242580951921985771},
Uint128{16484424376483351356, 194064761537588616},
Uint128{9498190686444770762, 155251809230070893},
Uint128{11507756283569722895, 248402894768113429},
Uint128{12895553841597688639, 198722315814490743},
Uint128{17695140702761971558, 158977852651592594},
Uint128{17244178680193423523, 254364564242548151},
Uint128{10105994129412828495, 203491651394038521},
Uint128{4395446488788352473, 162793321115230817},
Uint128{10722063196803274280, 260469313784369307},
Uint128{1198952927958798777, 208375451027495446},
Uint128{15716557601334680315, 166700360821996356},
Uint128{17767794532651667857, 266720577315194170},
Uint128{14214235626121334286, 213376461852155336},
Uint128{7682039686155157106, 170701169481724269},
Uint128{1223217053622520399, 273121871170758831},
Uint128{15735968901865657612, 218497496936607064},
Uint128{16278123936234436413, 174797997549285651},
Uint128{219556594781725998, 279676796078857043},
Uint128{7554342905309201445, 223741436863085634},
Uint128{9732823138989271479, 178993149490468507},
Uint128{815121763415193074, 286389039184749612},
Uint128{11720143854957885429, 229111231347799689},
Uint128{13065463898708218666, 183288985078239751},
Uint128{6763022304224664610, 146631188062591801},
Uint128{3442138057275642729, 234609900900146882},
Uint128{13821756890046245153, 187687920720117505},
Uint128{11057405512036996122, 150150336576094004},
Uint128{6623802375033462826, 240240538521750407},
Uint128{16367088344252501231, 192192430817400325},
Uint128{13093670675402000985, 153753944653920260},
Uint128{2503129006933649959, 246006311446272417},
Uint128{13070549649772650937, 196805049157017933},
Uint128{17835137349301941396, 157444039325614346},
Uint128{2710778055689733971, 251910462920982955},
Uint128{2168622444551787177, 201528370336786364},
Uint128{5424246770383340065, 161222696269429091},
Uint128{1300097203129523457, 257956314031086546},
Uint128{15797473021471260058, 206365051224869236},
Uint128{8948629602435097724, 165092040979895389},
Uint128{3249760919670425388, 264147265567832623},
Uint128{9978506365220160957, 211317812454266098},
Uint128{15361502721659949412, 169054249963412878},
Uint128{2442311466204457120, 270486799941460606},
Uint128{16711244431931206989, 216389439953168484},
Uint128{17058344360286875914, 173111551962534787},
Uint128{12535955717491360170, 276978483140055660},
Uint128{10028764573993088136, 221582786512044528},
Uint128{15401709288678291155, 177266229209635622},
Uint128{9885339602917624555, 283625966735416996},
Uint128{4218922867592189321, 226900773388333597},
Uint128{14443184738299482427, 181520618710666877},
Uint128{4175850161155765295, 145216494968533502},
Uint128{10370709072591134795, 232346391949653603},
Uint128{15675264887556728482, 185877113559722882},
Uint128{5161514280561562140, 148701690847778306},
Uint128{879725219414678777, 237922705356445290},
Uint128{703780175531743021, 190338164285156232},
Uint128{11631070584651125387, 152270531428124985},
Uint128{162968861732249003, 243632850284999977},
Uint128{11198421533611530172, 194906280227999981},
Uint128{5269388412147313814, 155925024182399985},
Uint128{8431021459435702103, 249480038691839976},
Uint128{3055468352806651359, 199584030953471981},
Uint128{17201769941212962380, 159667224762777584},
Uint128{16454785461715008838, 255467559620444135},
Uint128{13163828369372007071, 204374047696355308},
Uint128{17909760324981426303, 163499238157084246},
Uint128{2830174816776909822, 261598781051334795},
Uint128{2264139853421527858, 209279024841067836},
Uint128{16568707141704863579, 167423219872854268},
Uint128{4373838538276319787, 267877151796566830},
Uint128{3499070830621055830, 214301721437253464},
Uint128{6488605479238754987, 171441377149802771},
Uint128{3003071137298187333, 274306203439684434},
Uint128{6091805724580460189, 219444962751747547},
Uint128{15941491023890099121, 175555970201398037},
Uint128{10748990379256517301, 280889552322236860},
Uint128{8599192303405213841, 224711641857789488},
Uint128{14258051472207991719, 179769313486231590}
]
)

View File

@ -0,0 +1,336 @@
/**********************************************************************
*
* f32/f64 to string utilities
*
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* This file contains the f32/f64 to string utilities functions
*
* These functions are based on the work of:
* Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
* Conference on Programming Language Design and ImplementationJune 2018
* Pages 270282 https://doi.org/10.1145/3192366.3192369
*
* inspired by the Go version here:
* https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
*
**********************************************************************/
module ftoa
import math
import math.bits
/******************************************************************************
*
* General Utilities
*
******************************************************************************/
fn assert1(t bool, msg string) {
if !t {
panic(msg)
}
}
[inline]
fn bool_to_int(b bool) int {
if b {
return 1
}
return 0
}
[inline]
fn bool_to_u32(b bool) u32 {
if b {
return u32(1)
}
return u32(0)
}
[inline]
fn bool_to_u64(b bool) u64 {
if b {
return u64(1)
}
return u64(0)
}
fn get_string_special(neg bool, expZero bool, mantZero bool) string {
if !mantZero {
return "NaN"
}
if !expZero {
if neg {
return "-inf"
} else {
return "+inf"
}
}
if neg {
return "-0e+00"
}
return "0e+00"
}
/******************************************************************************
*
* 32 bit functions
*
******************************************************************************/
fn decimal_len_32(u u32) int {
// Function precondition: u is not a 10-digit number.
// (9 digits are sufficient for round-tripping.)
// This benchmarked faster than the log2 approach used for u64.
assert1(u < 1000000000, "too big")
if u >= 100000000 { return 9 }
else if u >= 10000000 { return 8 }
else if u >= 1000000 { return 7 }
else if u >= 100000 { return 6 }
else if u >= 10000 { return 5 }
else if u >= 1000 { return 4 }
else if u >= 100 { return 3 }
else if u >= 10 { return 2 }
return 1
}
fn mul_shift_32(m u32, mul u64, ishift int) u32 {
assert ishift > 32
hi, lo := bits.mul_64(u64(m), mul)
shifted_sum := (lo >> u64(ishift)) + (hi << u64(64-ishift))
assert1(shifted_sum <= math.max_u32, "shiftedSum <= math.max_u32")
return u32(shifted_sum)
}
fn mul_pow5_invdiv_pow2(m u32, q u32, j int) u32 {
return mul_shift_32(m, pow5_inv_split_32[q], j)
}
fn mul_pow5_div_pow2(m u32, i u32, j int) u32 {
return mul_shift_32(m, pow5_split_32[i], j)
}
fn pow5_factor_32(i_v u32) u32 {
mut v := i_v
for n := u32(0); ; n++ {
q := v/5
r := v%5
if r != 0 {
return n
}
v = q
}
return v
}
// multiple_of_power_of_five_32 reports whether v is divisible by 5^p.
fn multiple_of_power_of_five_32(v u32, p u32) bool {
return pow5_factor_32(v) >= p
}
// multiple_of_power_of_two_32 reports whether v is divisible by 2^p.
fn multiple_of_power_of_two_32(v u32, p u32) bool {
return bits.trailing_zeros_32(v) >= p
}
// log10_pow2 returns floor(log_10(2^e)).
fn log10_pow2(e int) u32 {
// The first value this approximation fails for is 2^1651
// which is just greater than 10^297.
assert1(e >= 0, "e >= 0")
assert1(e <= 1650, "e <= 1650")
return (u32(e) * 78913) >> 18
}
// log10_pow5 returns floor(log_10(5^e)).
fn log10_pow5(e int) u32 {
// The first value this approximation fails for is 5^2621
// which is just greater than 10^1832.
assert1(e >= 0, "e >= 0")
assert1(e <= 2620, "e <= 2620")
return (u32(e) * 732923) >> 20
}
// pow5_bits returns ceil(log_2(5^e)), or else 1 if e==0.
fn pow5_bits(e int) int {
// This approximation works up to the point that the multiplication
// overflows at e = 3529. If the multiplication were done in 64 bits,
// it would fail at 5^4004 which is just greater than 2^9297.
assert1(e >= 0, "e >= 0")
assert1(e <= 3528, "e <= 3528")
return int( ((u32(e)*1217359)>>19) + 1)
}
/******************************************************************************
*
* 64 bit functions
*
******************************************************************************/
fn decimal_len_64(u u64) int {
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
log2 := 64 - bits.leading_zeros_64(u) - 1
t := (log2 + 1) * 1233 >> 12
return t - bool_to_int(u < powers_of_10[t]) + 1
}
fn shift_right_128(v Uint128, shift int) u64 {
// The shift value is always modulo 64.
// In the current implementation of the 64-bit version
// of Ryu, the shift value is always < 64.
// (It is in the range [2, 59].)
// Check this here in case a future change requires larger shift
// values. In this case this function needs to be adjusted.
assert1(shift < 64, "shift < 64")
return (v.hi << u64(64 - shift)) | (v.lo >> u32(shift))
}
fn mul_shift_64(m u64, mul Uint128, shift int) u64 {
hihi, hilo := bits.mul_64(m, mul.hi)
lohi, _ := bits.mul_64(m, mul.lo)
mut sum := Uint128{hi: hihi, lo: lohi + hilo}
if sum.lo < lohi {
sum.hi++ // overflow
}
return shift_right_128(sum, shift-64)
}
fn pow5_factor_64(v_i u64) u32 {
mut v := v_i
for n := u32(0); ; n++ {
q := v/5
r := v%5
if r != 0 {
return n
}
v = q
}
return u32(0)
}
fn multiple_of_power_of_five_64(v u64, p u32) bool {
return pow5_factor_64(v) >= p
}
fn multiple_of_power_of_two_64(v u64, p u32) bool {
return u32(bits.trailing_zeros_64(v)) >= p
}
/******************************************************************************
*
* f64 to string with string format
*
******************************************************************************/
// f32_to_str_l return a string with the f32 converted in a strign in decimal notation
pub fn f32_to_str_l(f f64) string {
return f64_to_str_l(f32(f))
}
// f64_to_str_l return a string with the f64 converted in a strign in decimal notation
pub fn f64_to_str_l(f f64) string {
s := ftoa.f64_to_str(f,18)
// check for +inf -inf Nan
if s.len > 2 && (s[0] == `N` || s[1] == `i`) {
return s
}
m_sgn_flag := false
mut sgn := 1
mut b := [32]byte
mut d_pos := 1
mut i := 0
mut i1 := 0
mut exp := 0
mut exp_sgn := 1
// get sign and deciaml parts
for c in s {
if c == `-` {
sgn = -1
i++
} else if c == `+` {
sgn = 1
i++
}
else if c >= `0` && c <= `9` {
b[i1++] = c
i++
} else if c == `.` {
if sgn > 0 {
d_pos = i
} else {
d_pos = i-1
}
i++
} else if c == `e` {
i++
break
} else {
return "Float conversion error!!"
}
}
b[i1] = 0
// get exponent
if s[i] == `-` {
exp_sgn = -1
i++
} else if s[i] == `+` {
exp_sgn = 1
i++
}
for c in s[i..] {
exp = exp * 10 + int(c-`0`)
}
// allocate exp+32 chars for the return string
mut res := [`0`].repeat(exp+32) // TODO: Slow!! is there other possibilities to allocate this?
mut r_i := 0 // result string buffer index
//println("s:${sgn} b:${b[0]} es:${exp_sgn} exp:${exp}")
if sgn == 1 {
if m_sgn_flag {
res[r_i++] = `+`
}
} else {
res[r_i++] = `-`
}
i = 0
if exp_sgn >= 0 {
for b[i] != 0 {
res[r_i++] = b[i]
i++
if i >= d_pos && exp >= 0 {
if exp == 0 {
res[r_i++] = `.`
}
exp--
}
}
for exp >= 0 {
res[r_i++] = `0`
exp--
}
} else {
mut dot_p := true
for exp > 0 {
res[r_i++] = `0`
exp--
if dot_p {
res[r_i++] = `.`
dot_p = false
}
}
for b[i] != 0 {
res[r_i++] = b[i]
i++
}
}
res[r_i] = 0
return tos(&res[0],r_i)
}