1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/math/big/integer.v

1187 lines
29 KiB
V
Raw Normal View History

module big
import math.bits
import strings
import strconv
const digit_array = '0123456789abcdefghijklmnopqrstuvwxyz'.bytes()
// big.Integer
// -----------
// It has the following properties:
// 1. Every "digit" is an integer in the range [0, 2^32).
// 2. The signum can be one of three values: -1, 0, +1 for
// negative, zero, and positive values, respectively.
// 3. There should be no leading zeros in the digit array.
// 4. The digits are stored in little endian format, that is,
// the digits with a lower positional value (towards the right
// when represented as a string) have a lower index, and vice versa.
pub struct Integer {
digits []u32
pub:
signum int
is_const bool
}
[unsafe]
fn (mut x Integer) free() {
if x.is_const {
return
}
unsafe { x.digits.free() }
}
fn (x Integer) clone() Integer {
return Integer{
digits: x.digits.clone()
signum: x.signum
is_const: false
}
}
fn int_signum(value int) int {
if value == 0 {
return 0
}
return if value < 0 { -1 } else { 1 }
}
// integer_from_int creates a new `big.Integer` from the given int value.
pub fn integer_from_int(value int) Integer {
if value == 0 {
return zero_int
}
return Integer{
digits: [u32(iabs(value))]
signum: int_signum(value)
}
}
// integer_from_u32 creates a new `big.Integer` from the given u32 value.
pub fn integer_from_u32(value u32) Integer {
if value == 0 {
return zero_int
}
return Integer{
digits: [value]
signum: 1
}
}
// integer_from_i64 creates a new `big.Integer` from the given i64 value.
pub fn integer_from_i64(value i64) Integer {
if value == 0 {
return zero_int
}
signum_value := if value < 0 { -1 } else { 1 }
abs_value := u64(value * signum_value)
lower := u32(abs_value)
upper := u32(abs_value >> 32)
if upper == 0 {
return Integer{
digits: [lower]
signum: signum_value
}
} else {
return Integer{
digits: [lower, upper]
signum: signum_value
}
}
}
// integer_from_u64 creates a new `big.Integer` from the given u64 value.
pub fn integer_from_u64(value u64) Integer {
if value == 0 {
return zero_int
}
lower := u32(value & 0x00000000ffffffff)
upper := u32((value & 0xffffffff00000000) >> 32)
if upper == 0 {
return Integer{
digits: [lower]
signum: 1
}
} else {
return Integer{
digits: [lower, upper]
signum: 1
}
}
}
[params]
pub struct IntegerConfig {
signum int = 1
}
// integer_from_bytes creates a new `big.Integer` from the given byte array.
// By default, positive integers are assumed.
// If you want a negative integer, use in the following manner:
// `value := big.integer_from_bytes(bytes, signum: -1)`
[direct_array_access]
2022-04-15 15:35:35 +03:00
pub fn integer_from_bytes(input []u8, config IntegerConfig) Integer {
// Thank you to Miccah (@mcastorina) for this implementation and relevant unit tests.
if input.len == 0 {
return integer_from_int(0)
}
// pad input
mut padded_input := []u8{len: ((input.len + 3) & ~0x3) - input.len, cap: (input.len + 3) & ~0x3}
padded_input << input
mut digits := []u32{len: padded_input.len / 4}
// combine every 4 bytes into a u32 and insert into n.digits
for i := 0; i < padded_input.len; i += 4 {
x3 := u32(padded_input[i])
x2 := u32(padded_input[i + 1])
x1 := u32(padded_input[i + 2])
x0 := u32(padded_input[i + 3])
val := (x3 << 24) | (x2 << 16) | (x1 << 8) | x0
digits[(padded_input.len - i) / 4 - 1] = val
}
return Integer{
digits: digits
signum: config.signum
}
}
// integer_from_string creates a new `big.Integer` from the decimal digits specified in the given string.
// For other bases, use `big.integer_from_radix` instead.
pub fn integer_from_string(characters string) !Integer {
return integer_from_radix(characters, 10)
}
// integer_from_radix creates a new `big.Integer` from the given string and radix.
pub fn integer_from_radix(all_characters string, radix u32) !Integer {
if radix < 2 || radix > 36 {
return error('math.big: Radix must be between 2 and 36 (inclusive)')
}
characters := all_characters.to_lower()
validate_string(characters, radix)!
return match radix {
2 {
integer_from_special_string(characters, 1)
}
16 {
integer_from_special_string(characters, 4)
}
else {
integer_from_regular_string(characters, radix)
}
}
}
[direct_array_access]
fn validate_string(characters string, radix u32) ! {
sign_present := characters[0] == `+` || characters[0] == `-`
start_index := if sign_present { 1 } else { 0 }
for index := start_index; index < characters.len; index++ {
digit := characters[index]
value := big.digit_array.index(digit)
if value == -1 {
return error('math.big: Invalid character ${digit}')
}
if value >= radix {
return error('math.big: Invalid character ${digit} for base ${radix}')
}
}
}
[direct_array_access]
fn integer_from_special_string(characters string, chunk_size int) Integer {
sign_present := characters[0] == `+` || characters[0] == `-`
signum := if sign_present {
if characters[0] == `-` { -1 } else { 1 }
} else {
1
}
start_index := if sign_present { 1 } else { 0 }
mut big_digits := []u32{cap: ((characters.len * chunk_size) >> 5) + 1}
mut current := u32(0)
mut offset := 0
for index := characters.len - 1; index >= start_index; index-- {
digit := characters[index]
value := u32(big.digit_array.index(digit))
current |= value << offset
offset += chunk_size
if offset == 32 {
big_digits << current
current = u32(0)
offset = 0
}
}
// Store the accumulated value into the digit array
if current != 0 {
big_digits << current
}
shrink_tail_zeros(mut big_digits)
return Integer{
digits: big_digits
signum: if big_digits.len == 0 { 0 } else { signum }
}
}
[direct_array_access]
fn integer_from_regular_string(characters string, radix u32) Integer {
sign_present := characters[0] == `+` || characters[0] == `-`
signum := if sign_present {
if characters[0] == `-` { -1 } else { 1 }
} else {
1
}
start_index := if sign_present { 1 } else { 0 }
mut result := zero_int
radix_int := integer_from_u32(radix)
for index := start_index; index < characters.len; index++ {
digit := characters[index]
value := big.digit_array.index(digit)
result *= radix_int
result += integer_from_int(value)
}
return Integer{
digits: result.digits.clone()
signum: result.signum * signum
}
}
// abs returns the absolute value of the integer `a`.
pub fn (a Integer) abs() Integer {
return if a.signum == 0 {
zero_int
} else {
Integer{
digits: a.digits.clone()
signum: 1
}
}
}
// neg returns the result of negation of the integer `a`.
pub fn (a Integer) neg() Integer {
return if a.signum == 0 {
zero_int
} else {
Integer{
digits: a.digits.clone()
signum: -a.signum
}
}
}
// + returns the sum of the integers `augend` and `addend`.
pub fn (augend Integer) + (addend Integer) Integer {
// Quick exits
if augend.signum == 0 {
return addend.clone()
}
if addend.signum == 0 {
return augend.clone()
}
// Non-zero cases
return if augend.signum == addend.signum {
augend.add(addend)
} else { // Unequal signs
augend.subtract(addend)
}
}
// - returns the difference of the integers `minuend` and `subtrahend`
pub fn (minuend Integer) - (subtrahend Integer) Integer {
// Quick exits
if minuend.signum == 0 {
return subtrahend.neg()
}
if subtrahend.signum == 0 {
return minuend.clone()
}
// Non-zero cases
return if minuend.signum == subtrahend.signum {
minuend.subtract(subtrahend)
} else {
minuend.add(subtrahend)
}
}
fn (integer Integer) add(addend Integer) Integer {
a := integer.digits
b := addend.digits
mut storage := []u32{len: imax(a.len, b.len) + 1}
add_digit_array(a, b, mut storage)
return Integer{
signum: integer.signum
digits: storage
}
}
fn (integer Integer) subtract(subtrahend Integer) Integer {
cmp := integer.abs_cmp(subtrahend)
if cmp == 0 {
return zero_int
}
a, b := if cmp > 0 { integer, subtrahend } else { subtrahend, integer }
mut storage := []u32{len: a.digits.len}
subtract_digit_array(a.digits, b.digits, mut storage)
return Integer{
signum: cmp * a.signum
digits: storage
}
}
// * returns the product of the integers `multiplicand` and `multiplier`.
pub fn (multiplicand Integer) * (multiplier Integer) Integer {
// Quick exits
if multiplicand.signum == 0 || multiplier.signum == 0 {
return zero_int
}
if multiplicand == one_int {
return multiplier.clone()
}
if multiplier == one_int {
return multiplicand.clone()
}
// The final sign is the product of the signs
mut storage := []u32{len: multiplicand.digits.len + multiplier.digits.len}
multiply_digit_array(multiplicand.digits, multiplier.digits, mut storage)
return Integer{
signum: multiplicand.signum * multiplier.signum
digits: storage
}
}
// div_mod_internal is an entirely unchecked (in terms of division by zero) method for division.
// This should only be used for internal calculations involving a definitive non-zero
// divisor.
//
// DO NOT use this method if the divisor has any chance of being 0.
fn (dividend Integer) div_mod_internal(divisor Integer) (Integer, Integer) {
$if debug {
assert divisor.signum != 0
}
if dividend.signum == 0 {
return zero_int, zero_int
}
if divisor == one_int {
return dividend.clone(), zero_int
}
if divisor.signum == -1 {
q, r := dividend.div_mod_internal(divisor.neg())
return q.neg(), r
}
if dividend.signum == -1 {
q, r := dividend.neg().div_mod_internal(divisor)
if r.signum == 0 {
return q.neg(), zero_int
} else {
return q.neg() - one_int, divisor - r
}
}
// Division for positive integers
mut q := []u32{cap: dividend.digits.len - divisor.digits.len + 1}
mut r := []u32{cap: dividend.digits.len}
divide_digit_array(dividend.digits, divisor.digits, mut q, mut r)
quotient := Integer{
signum: if q.len == 0 { 0 } else { 1 }
digits: q
}
remainder := Integer{
signum: if r.len == 0 { 0 } else { 1 }
digits: r
}
return quotient, remainder
}
// div_mod returns the quotient and remainder from the division of the integers `dividend`
// divided by `divisor`.
//
// WARNING: this method will panic if `divisor == 0`. Refer to div_mod_checked for a safer version.
[inline]
pub fn (dividend Integer) div_mod(divisor Integer) (Integer, Integer) {
if _unlikely_(divisor.signum == 0) {
panic('math.big: Cannot divide by zero')
}
return dividend.div_mod_internal(divisor)
}
// div_mod_checked returns the quotient and remainder from the division of the integers `dividend`
// divided by `divisor`. An error is returned if `divisor == 0`.
[inline]
pub fn (dividend Integer) div_mod_checked(divisor Integer) !(Integer, Integer) {
if _unlikely_(divisor.signum == 0) {
return error('math.big: Cannot divide by zero')
}
return dividend.div_mod_internal(divisor)
}
// / returns the quotient of `dividend` divided by `divisor`.
//
// WARNING: this method will panic if `divisor == 0`. For a division method that returns a Result
// refer to `div_checked`.
[inline]
pub fn (dividend Integer) / (divisor Integer) Integer {
q, _ := dividend.div_mod(divisor)
return q
}
// % returns the remainder of `dividend` divided by `divisor`.
//
// WARNING: this method will panic if `divisor == 0`. For a modular division method that
// returns a Result refer to `mod_checked`.
[inline]
pub fn (dividend Integer) % (divisor Integer) Integer {
_, r := dividend.div_mod(divisor)
return r
}
// div_checked returns the quotient of `dividend` divided by `divisor`
// or an error if `divisor == 0`.
[inline]
pub fn (dividend Integer) div_checked(divisor Integer) !Integer {
q, _ := dividend.div_mod_checked(divisor)!
return q
}
// mod_checked returns the remainder of `dividend` divided by `divisor`
// or an error if `divisor == 0`.
[inline]
pub fn (dividend Integer) mod_checked(divisor Integer) !Integer {
_, r := dividend.div_mod_checked(divisor)!
return r
}
// mask_bits is the equivalent of `a % 2^n` (only when `a >= 0`), however doing a full division
// run for this would be a lot of work when we can simply "cut off" all bits to the left of
// the `n`th bit.
[direct_array_access]
fn (a Integer) mask_bits(n u32) Integer {
$if debug {
assert a.signum >= 0
}
if a.digits.len == 0 || n == 0 {
return zero_int
}
w := n / 32
b := n % 32
if w >= a.digits.len {
return a
}
return Integer{
digits: if b == 0 {
mut storage := []u32{len: int(w)}
for i := 0; i < storage.len; i++ {
storage[i] = a.digits[i]
}
storage
} else {
mut storage := []u32{len: int(w) + 1}
for i := 0; i < storage.len; i++ {
storage[i] = a.digits[i]
}
storage[w] &= ~(u32(-1) << b)
storage
}
signum: 1
}
}
// pow returns the integer `base` raised to the power of the u32 `exponent`.
pub fn (base Integer) pow(exponent u32) Integer {
if exponent == 0 {
return one_int
}
if exponent == 1 {
return base.clone()
}
mut n := exponent
mut x := base
mut y := one_int
for n > 1 {
if n & 1 == 1 {
y *= x
}
x *= x
n >>= 1
}
return x * y
}
// mod_pow returns the integer `base` raised to the power of the u32 `exponent` modulo the integer `modulus`.
pub fn (base Integer) mod_pow(exponent u32, modulus Integer) Integer {
if exponent == 0 {
return one_int
}
if exponent == 1 {
return base % modulus
}
mut n := exponent
mut x := base % modulus
mut y := one_int
for n > 1 {
if n & 1 == 1 {
y *= x % modulus
}
x *= x % modulus
n >>= 1
}
return x * y % modulus
}
// big_mod_pow returns the integer `base` raised to the power of the integer `exponent` modulo the integer `modulus`.
[direct_array_access]
pub fn (base Integer) big_mod_pow(exponent Integer, modulus Integer) !Integer {
if exponent.signum < 0 {
return error('math.big: Exponent needs to be non-negative.')
}
// this goes first as otherwise 1 could be returned incorrectly if base == 1
if modulus.bit_len() <= 1 {
return zero_int
}
// x^0 == 1 || 1^x == 1
if exponent.signum == 0 || base.bit_len() == 1 {
return one_int
}
// 0^x == 0 (x != 0 due to previous clause)
if base.signum == 0 {
return one_int
}
if exponent.bit_len() == 1 {
// x^1 without mod == x
if modulus.signum == 0 {
return base
}
// x^1 (mod m) === x % m
return base % modulus
}
// the amount of precomputation in windowed exponentiation (done in the montgomery and binary
// windowed exponentiation algorithms) is far too costly for small sized exponents, so
// we redirect the call to mod_pow
return if exponent.digits.len > 1 {
if modulus.is_odd() {
// modulus is odd, therefore we use the normal
// montgomery modular exponentiation algorithm
base.mont_odd(exponent, modulus)
} else if modulus.is_power_of_2() {
base.exp_binary(exponent, modulus)
} else {
base.mont_even(exponent, modulus)
}
} else {
base.mod_pow(exponent.digits[0], modulus)
}
}
// inc increments `a` by 1 in place.
pub fn (mut a Integer) inc() {
a = a + one_int
}
// dec decrements `a` by 1 in place.
pub fn (mut a Integer) dec() {
a = a - one_int
}
// == returns `true` if the integers `a` and `b` are equal in value and sign.
pub fn (a Integer) == (b Integer) bool {
return a.signum == b.signum && a.digits.len == b.digits.len && a.digits == b.digits
}
// abs_cmp returns the result of comparing the magnitudes of the integers `a` and `b`.
// It returns a negative int if `|a| < |b|`, 0 if `|a| == |b|`, and a positive int if `|a| > |b|`.
pub fn (a Integer) abs_cmp(b Integer) int {
return compare_digit_array(a.digits, b.digits)
}
// < returns `true` if the integer `a` is less than `b`.
pub fn (a Integer) < (b Integer) bool {
// Quick exits based on signum value:
if a.signum < b.signum {
return true
}
if a.signum > b.signum {
return false
}
// They have equal sign
signum := a.signum
if signum == 0 { // Are they both zero?
return false
}
// If they are negative, the one with the larger absolute value is smaller
cmp := a.abs_cmp(b)
return if signum < 0 { cmp > 0 } else { cmp < 0 }
}
// get_bit checks whether the bit at the given index is set.
[direct_array_access]
pub fn (a Integer) get_bit(i u32) bool {
target_index := i / 32
offset := i % 32
if target_index >= a.digits.len {
return false
}
return (a.digits[target_index] >> offset) & 1 != 0
}
// set_bit sets the bit at the given index to the given value.
pub fn (mut a Integer) set_bit(i u32, value bool) {
target_index := i / 32
offset := i % 32
if target_index >= a.digits.len {
if value {
a = one_int.left_shift(i).bitwise_or(a)
}
return
}
mut copy := a.digits.clone()
if value {
copy[target_index] |= 1 << offset
} else {
copy[target_index] &= ~(1 << offset)
}
a = Integer{
signum: a.signum
digits: copy
}
}
// bitwise_or returns the "bitwise or" of the integers `|a|` and `|b|`.
//
// Note: both operands are treated as absolute values.
pub fn (a Integer) bitwise_or(b Integer) Integer {
mut result := []u32{len: imax(a.digits.len, b.digits.len)}
bitwise_or_digit_array(a.digits, b.digits, mut result)
return Integer{
digits: result
signum: if result.len == 0 { 0 } else { 1 }
}
}
// bitwise_and returns the "bitwise and" of the integers `|a|` and `|b|`.
//
// Note: both operands are treated as absolute values.
pub fn (a Integer) bitwise_and(b Integer) Integer {
mut result := []u32{len: imax(a.digits.len, b.digits.len)}
bitwise_and_digit_array(a.digits, b.digits, mut result)
return Integer{
digits: result
signum: if result.len == 0 { 0 } else { 1 }
}
}
// bitwise_not returns the "bitwise not" of the integer `|a|`.
//
// Note: the integer is treated as an absolute value.
pub fn (a Integer) bitwise_not() Integer {
mut result := []u32{len: a.digits.len}
bitwise_not_digit_array(a.digits, mut result)
return Integer{
digits: result
signum: if result.len == 0 { 0 } else { 1 }
}
}
// bitwise_xor returns the "bitwise exclusive or" of the integers `|a|` and `|b|`.
//
// Note: both operands are treated as absolute values.
pub fn (a Integer) bitwise_xor(b Integer) Integer {
mut result := []u32{len: imax(a.digits.len, b.digits.len)}
bitwise_xor_digit_array(a.digits, b.digits, mut result)
return Integer{
digits: result
signum: if result.len == 0 { 0 } else { 1 }
}
}
// lshift returns the integer `a` shifted left by `amount` bits.
[deprecated: 'use a.Integer.left_shift(amount) instead']
pub fn (a Integer) lshift(amount u32) Integer {
return a.left_shift(amount)
}
// left_shift returns the integer `a` shifted left by `amount` bits.
[direct_array_access]
pub fn (a Integer) left_shift(amount u32) Integer {
if a.signum == 0 {
return a
}
if amount == 0 {
return a
}
normalised_amount := amount & 31
digit_offset := int(amount >> 5)
mut new_array := []u32{len: a.digits.len + digit_offset}
for index in 0 .. a.digits.len {
new_array[index + digit_offset] = a.digits[index]
}
if normalised_amount > 0 {
shift_digits_left(new_array, normalised_amount, mut new_array)
}
return Integer{
digits: new_array
signum: a.signum
}
}
// rshift returns the integer `a` shifted right by `amount` bits.
[deprecated: 'use a.Integer.right_shift(amount) instead']
pub fn (a Integer) rshift(amount u32) Integer {
return a.right_shift(amount)
}
// right_shift returns the integer `a` shifted right by `amount` bits.
[direct_array_access]
pub fn (a Integer) right_shift(amount u32) Integer {
if a.signum == 0 {
return a
}
if amount == 0 {
return a
}
normalised_amount := amount & 31
digit_offset := int(amount >> 5)
if digit_offset >= a.digits.len {
return zero_int
}
mut new_array := []u32{len: a.digits.len - digit_offset}
for index in 0 .. new_array.len {
new_array[index] = a.digits[index + digit_offset]
}
if normalised_amount > 0 {
shift_digits_right(new_array, normalised_amount, mut new_array)
}
return Integer{
digits: new_array
signum: a.signum
}
}
// binary_str returns the binary string representation of the integer `a`.
[deprecated: 'use integer.bin_str() instead']
pub fn (integer Integer) binary_str() string {
return integer.bin_str()
}
// bin_str returns the binary string representation of the integer `a`.
[direct_array_access]
pub fn (integer Integer) bin_str() string {
// We have the zero integer
if integer.signum == 0 {
return '0'
}
// Add the sign if present
sign_needed := integer.signum == -1
mut result_builder := strings.new_builder(integer.bit_len() + if sign_needed { 1 } else { 0 })
if sign_needed {
result_builder.write_string('-')
}
result_builder.write_string(u32_to_binary_without_lz(integer.digits[integer.digits.len - 1]))
for index := integer.digits.len - 2; index >= 0; index-- {
result_builder.write_string(u32_to_binary_with_lz(integer.digits[index]))
}
return result_builder.str()
}
// hex returns the hexadecimal string representation of the integer `a`.
[direct_array_access]
pub fn (integer Integer) hex() string {
// We have the zero integer
if integer.signum == 0 {
return '0'
}
// Add the sign if present
sign_needed := integer.signum == -1
mut result_builder := strings.new_builder(integer.digits.len * 8 +
if sign_needed { 1 } else { 0 })
if sign_needed {
result_builder.write_string('-')
}
result_builder.write_string(u32_to_hex_without_lz(integer.digits[integer.digits.len - 1]))
for index := integer.digits.len - 2; index >= 0; index-- {
result_builder.write_string(u32_to_hex_with_lz(integer.digits[index]))
}
return result_builder.str()
}
// radix_str returns the string representation of the integer `a` in the specified radix.
pub fn (integer Integer) radix_str(radix u32) string {
if integer.signum == 0 || radix == 0 {
return '0'
}
return match radix {
2 {
integer.bin_str()
}
16 {
integer.hex()
}
else {
integer.general_radix_str(radix)
}
}
}
fn (integer Integer) general_radix_str(radix u32) string {
$if debug {
assert radix != 0
}
divisor := integer_from_u32(radix)
mut current := integer.abs()
mut new_current := zero_int
mut digit := zero_int
mut rune_array := []rune{cap: current.digits.len * 4}
for current.signum > 0 {
new_current, digit = current.div_mod_internal(divisor)
rune_array << big.digit_array[digit.int()]
unsafe { digit.free() }
unsafe { current.free() }
current = new_current
}
if integer.signum == -1 {
rune_array << `-`
}
rune_array.reverse_in_place()
return rune_array.string()
}
// str returns the decimal string representation of the integer `a`.
pub fn (integer Integer) str() string {
return integer.radix_str(10)
}
fn u32_to_binary_without_lz(value u32) string {
return strconv.format_uint(value, 2)
}
fn u32_to_binary_with_lz(value u32) string {
mut result_builder := strings.new_builder(32)
binary_result := strconv.format_uint(value, 2)
result_builder.write_string(strings.repeat(`0`, 32 - binary_result.len))
result_builder.write_string(binary_result)
return result_builder.str()
}
fn u32_to_hex_without_lz(value u32) string {
return strconv.format_uint(value, 16)
}
fn u32_to_hex_with_lz(value u32) string {
mut result_builder := strings.new_builder(8)
hex_result := strconv.format_uint(value, 16)
result_builder.write_string(strings.repeat(`0`, 8 - hex_result.len))
result_builder.write_string(hex_result)
return result_builder.str()
}
// int returns the integer value of the integer `a`.
// NOTE: This may cause loss of precision.
pub fn (a Integer) int() int {
if a.signum == 0 {
return 0
}
// Check for minimum value int
if a.digits[0] == 2147483648 && a.signum == -1 {
return -2147483648
}
// Rest of the values should be fine
value := int(a.digits[0] & 0x7fffffff)
return value * a.signum
}
// bytes returns the a byte representation of the integer a, along with the signum int.
// NOTE: The byte array returned is in big endian order.
[direct_array_access]
2022-04-15 15:35:35 +03:00
pub fn (a Integer) bytes() ([]u8, int) {
if a.signum == 0 {
2022-04-15 15:35:35 +03:00
return []u8{len: 0}, 0
}
2022-04-15 15:35:35 +03:00
mut result := []u8{cap: a.digits.len * 4}
mut mask := u32(0xff000000)
mut offset := 24
mut non_zero_found := false
for index := a.digits.len - 1; index >= 0; {
2022-04-15 14:58:56 +03:00
value := u8((a.digits[index] & mask) >> offset)
non_zero_found = non_zero_found || value != 0
if non_zero_found {
result << value
}
mask >>= 8
offset -= 8
if offset < 0 {
mask = u32(0xff000000)
offset = 24
index--
}
}
return result, a.signum
}
// factorial returns the factorial of the integer `a`.
pub fn (a Integer) factorial() Integer {
if a.signum == 0 {
return one_int
}
mut product := one_int
mut current := a
for current.signum != 0 {
product *= current
current.dec()
}
return product
}
// isqrt returns the closest integer square root of the integer `a`.
//
// WARNING: this method will panic if `a < 0`. Refer to isqrt_checked for a safer version.
[inline]
pub fn (a Integer) isqrt() Integer {
return a.isqrt_checked() or { panic(err) }
}
// isqrt returns the closest integer square root of the integer `a`.
// An error is returned if `a < 0`.
pub fn (a Integer) isqrt_checked() !Integer {
if a.signum < 0 {
return error('math.big: Cannot calculate square root of negative integer')
}
if a.signum == 0 {
return a
}
if a.digits.len == 1 && a.digits.last() == 1 {
return a
}
mut shift := a.bit_len()
if shift & 1 == 1 {
shift += 1
}
mut result := zero_int
for shift >= 0 {
result = result.left_shift(1)
larger := result + one_int
if (larger * larger).abs_cmp(a.right_shift(u32(shift))) <= 0 {
result = larger
}
shift -= 2
}
return result
}
[inline]
fn bi_min(a Integer, b Integer) Integer {
return if a < b { a } else { b }
}
[inline]
fn bi_max(a Integer, b Integer) Integer {
return if a > b { a } else { b }
}
// gcd returns the greatest common divisor of the two integers `a` and `b`.
pub fn (a Integer) gcd(b Integer) Integer {
if a.signum == 0 {
return b.abs()
}
if b.signum == 0 {
return a.abs()
}
if a.abs_cmp(one_int) == 0 || b.abs_cmp(one_int) == 0 {
return one_int
}
return gcd_binary(a.abs(), b.abs())
}
// Inspired by the 2013-christmas-special by D. Lemire & R. Corderoy https://en.algorithmica.org/hpc/analyzing-performance/gcd/
// For more information, refer to the Wikipedia article: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
// Discussion and further information: https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/
fn gcd_binary(x Integer, y Integer) Integer {
mut a, az := x.rsh_to_set_bit()
mut b, bz := y.rsh_to_set_bit()
shift := umin(az, bz)
for a.signum != 0 {
diff := b - a
b = bi_min(a, b)
a, _ = diff.abs().rsh_to_set_bit()
}
return b.left_shift(shift)
}
// mod_inverse calculates the multiplicative inverse of the integer `a` in the ring `/n`.
// Therefore, the return value `x` satisfies `a * x == 1 (mod m)`.
// An error is returned if `a` and `n` are not relatively prime, i.e. `gcd(a, n) != 1` or
// if n <= 1
[inline]
pub fn (a Integer) mod_inverse(n Integer) !Integer {
return if n.bit_len() <= 1 {
error('math.big: Modulus `n` must be greater than 1')
} else if a.gcd(n) != one_int {
error('math.big: No multiplicative inverse')
} else {
a.mod_inv(n)
}
}
// this is an internal function, therefore we assume valid inputs,
// i.e. m > 1 and gcd(a, m) = 1
// see pub fn mod_inverse for details on the result
// -----
// the algorithm is based on the Extended Euclidean algorithm which computes `ax + by = d`
// in this case `b` is the input integer `a` and `a` is the input modulus `m`. The extended
// Euclidean algorithm calculates the greatest common divisor `d` and two coefficients `x` and `y`
// satisfying the above equality.
//
// For the sake of clarity, we refer to the input integer `a` as `b` and the integer `m` as `a`.
// If `gcd(a, b) = d = 1` then the coefficient `y` is known to be the multiplicative inverse of
// `b` in ring `Z/aZ`, since reducing `ax + by = 1` by `a` yields `by == 1 (mod a)`.
[direct_array_access]
fn (a Integer) mod_inv(m Integer) Integer {
mut n := Integer{
digits: m.digits.clone()
signum: 1
}
mut b := a
mut x := one_int
mut y := zero_int
if b.signum < 0 || b.abs_cmp(n) >= 0 {
b = b % n
}
mut sign := -1
for b != zero_int {
q, r := if n.bit_len() == b.bit_len() {
one_int, n - b
} else {
// safe because the loop terminates if b == 0
n.div_mod_internal(b)
}
n = b
b = r
// tmp := q * x + y
tmp := if q == one_int {
x
} else if q.digits.len == 1 && q.digits[0] & (q.digits[0] - 1) == 0 {
x.left_shift(u32(bits.trailing_zeros_32(q.digits[0])))
} else {
q * x
} + y
y = x
x = tmp
sign = -sign
}
if sign < 0 {
y = m - y
}
$if debug {
assert n == one_int
}
return if y.signum > 0 && y.abs_cmp(m) < 0 {
y
} else {
y % m
}
}
// rsh_to_set_bit returns the integer `x` shifted right until it is odd and an exponent satisfying
// `x = x1 * 2^n`
// we don't return `2^n`, because the caller may be able to use `n` without allocating an Integer
[direct_array_access; inline]
fn (x Integer) rsh_to_set_bit() (Integer, u32) {
if x.digits.len == 0 {
return zero_int, 0
}
mut n := u32(0)
for x.digits[n] == 0 {
n++
}
n = (n << 5) + u32(bits.trailing_zeros_32(x.digits[n]))
return x.right_shift(n), n
}
// is_odd returns true if the integer `x` is odd, therefore an integer of the form `2k + 1`.
// An input of 0 returns false.
[direct_array_access; inline]
pub fn (x Integer) is_odd() bool {
return x.digits.len != 0 && x.digits[0] & 1 == 1
}
// is_power_of_2 returns true when the integer `x` satisfies `2^n`, where `n >= 0`
[direct_array_access; inline]
pub fn (x Integer) is_power_of_2() bool {
if x.signum == 0 {
return false
}
// check if all but the most significant digit are 0
for i := 0; i < x.digits.len - 1; i++ {
if x.digits[i] != 0 {
return false
}
}
n := u32(x.digits.last())
return n & (n - u32(1)) == 0
}
// bit_len returns the number of bits required to represent the integer `a`.
[inline]
pub fn (x Integer) bit_len() int {
if x.signum == 0 {
return 0
}
if x.digits.len == 0 {
return 0
}
return x.digits.len * 32 - bits.leading_zeros_32(x.digits.last())
}