1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/compiler/fn.v

849 lines
22 KiB
Go
Raw Normal View History

2019-06-22 21:20:28 +03:00
module main
const (
MaxLocalVars = 50
)
struct Fn {
// addr int
mut:
pkg string
local_vars []Var
var_idx int
args []Var
is_interface bool
// called_fns []string
// idx int
scope_level int
typ string // return type
name string
is_c bool
receiver_typ string
is_private bool
is_method bool
returns_error bool
is_decl bool // type myfn fn(int, int)
defer string
}
fn (f &Fn) find_var(name string) Var {
for i in 0 .. f.var_idx {
if f.local_vars[i].name == name {
return f.local_vars[i]
}
}
return Var{}
}
fn (f mut Fn) open_scope() {
f.scope_level++
}
fn (f mut Fn) close_scope() {
// println('close_scope level=$f.scope_level var_idx=$f.var_idx')
// Move back `var_idx` (pointer to the end of the array) till we reach the previous scope level.
// This effectivly deletes (closes) current scope.
mut i := f.var_idx - 1
for; i >= 0; i-- {
v := f.local_vars[i]
if v.scope_level != f.scope_level {
// println('breaking. "$v.name" v.scope_level=$v.scope_level')
break
}
}
f.var_idx = i + 1
// println('close_scope new var_idx=$f.var_idx\n')
f.scope_level--
}
fn (f &Fn) mark_var_used(v Var) {
for i, vv in f.local_vars {
if vv.name == v.name {
mut ptr := &f.local_vars[i]
ptr.is_used = true
// / f.local_vars[i].is_used = true
// return
}
}
}
fn (f &Fn) known_var(name string) bool {
v := f.find_var(name)
return v.name.len > 0
}
fn (f mut Fn) register_var(v Var) {
new_var := {v | scope_level: f.scope_level}
// Expand the array
if f.var_idx >= f.local_vars.len {
f.local_vars << new_var
}
else {
f.local_vars[f.var_idx] = new_var
f.var_idx++
}
}
// vlib header file?
fn (p mut Parser) is_sig() bool {
return (p.build_mode == DEFAULT_MODE || p.build_mode == BUILD) &&
(p.file_path.contains(TmpPath))
}
fn new_fn(pkg string) *Fn {
mut f := &Fn {
pkg: pkg
local_vars: [Var{}
; MaxLocalVars]
}
return f
}
// Function signatures are added to the top of the .c file in the first run.
fn (p mut Parser) fn_decl() {
p.fgen('fn ')
is_pub := p.tok == PUB
if is_pub {
p.next()
}
p.returns = false
p.next()
mut f := new_fn(p.pkg)
// Method receiver
mut receiver_typ := ''
if p.tok == LPAR {
f.is_method = true
p.check(LPAR)
receiver_name := p.check_name()
is_mut := p.tok == MUT
is_amp := p.tok == AMP
if is_mut || is_amp {
p.next()
}
receiver_typ = p.get_type()
T := p.table.find_type(receiver_typ)
if T.is_interface {
p.error('invalid receiver type `$receiver_typ` (`$receiver_typ` is an interface)')
}
// Don't allow modifying types from a different module
if !p.first_run() && !p.builtin_pkg && T.pkg != p.pkg {
println('T.pkg=$T.pkg')
println('pkg=$p.pkg')
p.error('cannot define new methods on non-local type `$receiver_typ`')
}
// (a *Foo) instead of (a mut Foo) is a common mistake
if !p.builtin_pkg && receiver_typ.contains('*') {
t := receiver_typ.replace('*', '')
p.error('use `($receiver_name mut $t)` instead of `($receiver_name *$t)`')
}
f.receiver_typ = receiver_typ
if is_mut || is_amp {
receiver_typ += '*'
}
p.check(RPAR)
receiver := Var {
name: receiver_name
is_arg: true
typ: receiver_typ
is_mut: is_mut
ref: is_amp
ptr: is_mut
line_nr: p.scanner.line_nr
}
f.args << receiver
f.register_var(receiver)
}
if p.tok == PLUS || p.tok == MINUS || p.tok == MUL {
f.name = p.tok.str()
println('!!! $f.name')
p.next()
}
else {
f.name = p.check_name()
}
// C function header def? (fn C.NSMakeRect(int,int,int,int))
is_c := f.name == 'C' && p.tok == DOT
// Just fn signature? only builtin.v + default build mode
// is_sig := p.builtin_pkg && p.build_mode == DEFAULT_MODE
// is_sig := p.build_mode == DEFAULT_MODE && (p.builtin_pkg || p.file.contains(LANG_TMP))
is_sig := p.is_sig()
// println('\n\nfn decl !!is_sig=$is_sig name=$f.name $p.builtin_pkg')
if is_c {
p.check(DOT)
f.name = p.check_name()
f.is_c = true
}
else if !p.translated && !p.file_path.contains('view.v') {
if contains_capital(f.name) {
p.error('function names cannot contain uppercase letters, use snake_case instead')
}
if f.name.contains('__') {
p.error('function names cannot contain double underscores ("__"), use single underscores instead')
}
}
// simple_name := f.name
// println('!SIMPLE=$simple_name')
// user.register() => User_register()
has_receiver := receiver_typ.len > 0
if receiver_typ != '' {
// f.name = '${receiver_typ}_${f.name}'
}
// full pkg function name
// os.exit ==> os__exit()
if !is_c && !p.builtin_pkg && p.pkg != 'main' && receiver_typ.len == 0 {
f.name = p.prepend_pkg(f.name)
}
if p.first_run() && p.table.known_fn(f.name) && receiver_typ.len == 0 {
existing_fn := p.table.find_fn(f.name)
// This existing function could be defined as C decl before (no body), then we don't need to throw an erro
if !existing_fn.is_decl {
p.error('redefinition of `$f.name`')
}
}
// Generic?
mut is_generic := false
if p.tok == LT {
p.next()
gen_type := p.check_name()
if gen_type != 'T' {
p.error('only `T` is allowed as a generic type for now')
}
p.check(GT)
is_generic = true
}
// Args (...)
p.fn_args(mut f)
// Returns an error?
if p.tok == NOT {
p.next()
f.returns_error = true
}
// Returns a type?
mut typ := 'void'
if p.tok == NAME || p.tok == MUL || p.tok == AMP || p.tok == LSBR ||
p.tok == QUESTION {
p.fgen(' ')
// TODO In
// if p.tok in [ NAME, MUL, AMP, LSBR ] {
typ = p.get_type()
}
// Translated C code can have empty functions (just definitions)
is_fn_header := !is_c && !is_sig && (p.translated || p.is_test) &&
(p.tok != LCBR)// || (p.tok == NAME && p.peek() != LCBR))
if is_fn_header {
f.is_decl = true
// println('GOT fn header $f.name')
}
// { required only in normal function declarations
if !is_c && !is_sig && !is_fn_header {
p.fgen(' ')
p.check(LCBR)
}
// Register option ? type
if typ.starts_with('Option_') {
p.cgen.typedefs << 'typedef Option $typ;'
}
// Register function
f.typ = typ
mut str_args := f.str_args(p.table)
// println('FN DECL $f.name typ=$f.typ str_args="$str_args"')
// Special case for main() args
if f.name == 'main' && !has_receiver {
if str_args != '' {
p.error('fn main must have no arguments and no return values')
}
typ = 'int'
str_args = 'int argc, char** argv'
}
// Only in C code generate User_register() instead of register()
// Internally it's still stored as "register" in type User
// mut fn_name_cgen := f.name
// if receiver_typ != '' {
// fn_name_cgen = '${receiver_typ}_$f.name'
// fn_name_cgen = fn_name_cgen.replace(' ', '')
// fn_name_cgen = fn_name_cgen.replace('*', '')
// }
mut fn_name_cgen := p.table.cgen_name(f)
// Start generation of the function body
is_live := p.is_live && f.name != 'main' && f.name != 'reload_so'
skip_main_in_test := f.name == 'main' && p.is_test
if !is_c && !is_live && !is_sig && !is_fn_header && !skip_main_in_test {
if p.obfuscate {
p.genln('; // ${f.name}')
}
p.genln('$typ $fn_name_cgen($str_args) {')
// if f.name == 'WinMain' {
// typ = 'int'
// }
}
if is_fn_header {
p.genln('$typ $fn_name_cgen($str_args);')
p.fgenln('')
}
if is_c {
p.fgenln('\n')
}
p.cur_fn = f
// Register the method
if receiver_typ != '' {
mut receiver_T := p.table.find_type(receiver_typ)
// No such type yet? It could be defined later. Create a new type.
// struct declaration later will modify it instead of creating a new one.
if p.first_run() && receiver_T.name == '' {
// println('fn decl !!!!!!! REG PH $receiver_typ')
ttyp := Type {
name: receiver_typ.replace('*', '')
pkg: p.pkg
is_placeholder: true
}
p.table.register_type2(ttyp)
}
// f.idx = p.table.fn_cnt
receiver_T.add_method(f)
}
else {
// println('register_fn typ=$typ isg=$is_generic')
p.table.register_fn(f)
}
if is_sig || p.first_run() || is_live || is_fn_header || skip_main_in_test {
// First pass? Skip the body for now [BIG]
if !is_sig && !is_fn_header {
for {
p.next()
if p.tok.is_decl() {
break
}
}
}
// Live code reloading? Load all fns from .so
if is_live && p.first_run() {
// p.cgen.consts_init.push('$fn_name_cgen = dlsym(lib, "$fn_name_cgen");')
p.cgen.so_fns << fn_name_cgen
fn_name_cgen = '(* $fn_name_cgen )'
}
// Actual fn declaration!
mut fn_decl := '$typ $fn_name_cgen($str_args)'
if p.obfuscate {
fn_decl += '; // ${f.name}'
}
// Add function definition to the top
if !is_c && f.name != 'main' && p.first_run() {
// TODO hack to make Volt compile without -embed_vlib
if f.name == 'darwin__nsstring' && p.build_mode == DEFAULT_MODE {
return
}
p.cgen.fns << fn_decl + ';'
}
p.fgenln('\n')// TODO defer this instead of copy pasting
return
}
if f.name == 'main' || f.name == 'WinMain' {
p.genln('init_consts();')
if p.table.imports.contains('os') {
if f.name == 'main' {
p.genln('os__init_os_args(argc, argv);')
}
else if f.name == 'WinMain' {
p.genln('os__parse_windows_cmd_line(pCmdLine);')
}
}
// We are in live code reload mode, call the .so loader in bg
if p.is_live {
p.genln('
load_so("bounce.so");
pthread_t _thread_so;
pthread_create(&_thread_so , NULL, &reload_so, NULL); ')
}
if p.is_test && !p.scanner.file_path.contains('/volt') {
p.error('tests cannot have function `main`')
}
}
// println('is_c=$is_c name=$f.name')
if is_c || is_sig || is_fn_header {
// println('IS SIG RETURNING tok=${p.strtok()}')
p.fgenln('\n')
return
}
// We are in profile mode? Start counting at the beginning of the function (save current time).
if p.is_prof && f.name != 'main' && f.name != 'time__ticks' {
p.genln('double _PROF_START = time__ticks();//$f.name')
cgen_name := p.table.cgen_name(f)
f.defer = ' ${cgen_name}_time += time__ticks() - _PROF_START;'
}
p.statements_no_curly_end()
// Print counting result after all statements in main
if p.is_prof && f.name == 'main' {
p.genln(p.print_prof_counters())
}
// Counting or not, always need to add defer before the end
p.genln(f.defer)
if typ != 'void' && !p.returns && f.name != 'main' && f.name != 'WinMain' {
p.error('$f.name must return "$typ"')
}
// {} closed correctly? scope_level should be 0
if p.pkg == 'main' {
// println(p.cur_fn.scope_level)
}
if p.cur_fn.scope_level > 2 {
// p.error('unclosed {')
}
// Make sure all vars in this function are used (only in main for now)
// if p.builtin_pkg || p.pkg == 'os' ||p.pkg=='http'{
if p.pkg != 'main' {
p.genln('}')
p.fgenln('\n')
return
}
for var in f.local_vars {
if var.name == '' {
break
}
if !var.is_used && !var.is_arg && !p.translated && var.name != '_' {
p.scanner.line_nr = var.line_nr - 1
p.error('`$var.name` declared and not used')
}
// Very basic automatic memory management at the end of the function.
// This is inserted right before the final `}`, so if the object is being returned,
// the free method will not be called.
if p.is_test && var.typ.contains('array_') {
// p.genln('v_${var.typ}_free($var.name); // !!!! XAXA')
// p.genln('free(${var.name}.data); // !!!! XAXA')
}
}
// println('end of func decl')
// p.print_tok()
p.cur_fn = EmptyFn
p.fgenln('\n')
p.genln('}')
}
// Important function with 5 args.
// user.say_hi() => "User_say_hi(user)"
// method_ph - where to insert "user_say_hi("
// receiver_var - "user" (needed for pthreads)
// receiver_type - "User"
fn (p mut Parser) async_fn_call(f Fn, method_ph int, receiver_var, receiver_type string) {
// println('\nfn_call $f.name is_method=$f.is_method receiver_type=$f.receiver_type')
// p.print_tok()
mut thread_name := ''
// Normal function => just its name, method => TYPE_FNNAME
mut fn_name := f.name
if f.is_method {
receiver_type = receiver_type.replace('*', '')
fn_name = '${receiver_type}_${f.name}'
}
// Generate tmp struct with args
arg_struct_name := 'thread_arg_$fn_name'
tmp_struct := p.get_tmp()
p.genln('$arg_struct_name * $tmp_struct = malloc(sizeof($arg_struct_name));')
mut arg_struct := 'typedef struct $arg_struct_name { '
p.next()
p.check(LPAR)
// str_args contains the args for the wrapper function:
// wrapper(arg_struct * arg) { fn("arg->a, arg->b"); }
mut str_args := ''
for i, arg in f.args {
arg_struct += '$arg.typ $arg.name ;'// Add another field (arg) to the tmp struct definition
str_args += 'arg->$arg.name'
if i == 0 && f.is_method {
p.genln('$tmp_struct -> $arg.name = $receiver_var ;')
if i < f.args.len - 1 {
str_args += ','
}
continue
}
// Set the struct values (args)
p.genln('$tmp_struct -> $arg.name = ')
p.expression()
p.genln(';')
if i < f.args.len - 1 {
p.check(COMMA)
str_args += ','
}
}
arg_struct += '} $arg_struct_name ;'
// Also register the wrapper, so we can use the original function without modifying it
fn_name = p.table.cgen_name(f)
wrapper_name := '${fn_name}_thread_wrapper'
wrapper_text := 'void* $wrapper_name($arg_struct_name * arg) {$fn_name( /*f*/$str_args ); }'
p.cgen.register_thread_fn(wrapper_name, wrapper_text, arg_struct)
// Create thread object
tmp_nr := p.get_tmp_counter()
thread_name = '_thread$tmp_nr'
if p.os != WINDOWS {
p.genln('pthread_t $thread_name;')
}
tmp2 := p.get_tmp()
mut parg := 'NULL'
if f.args.len > 0 {
parg = ' $tmp_struct'
}
// Call the wrapper
if p.os == WINDOWS {
p.genln(' CreateThread(0,0, $wrapper_name, $parg, 0,0);')
}
else {
p.genln('int $tmp2 = pthread_create(& $thread_name, NULL, $wrapper_name, $parg);')
}
p.check(RPAR)
}
fn (p mut Parser) fn_call(f Fn, method_ph int, receiver_var, receiver_type string) {
p.calling_c = f.is_c
is_print := p.is_prod &&// Hide prints only in prod
!p.is_test &&
!p.builtin_pkg &&// Allow prints in builtin pkgs
(f.name == 'println' || (f.is_c && f.name == 'printf'))
if !p.cgen.nogen {
p.cgen.nogen = is_print
}
cgen_name := p.table.cgen_name(f)
// if p.is_prof {
// p.cur_fn.called_fns << cgen_name
// }
// Normal function call
if !f.is_method {
p.gen(cgen_name)
p.gen('(')
// p.fgen(f.name)
}
// If we have a method placeholder,
// we need to preappend "method(receiver, ...)"
else {
// C only knows about functions "array_get", "array_set" etc
// TODO I don't need this?
// mut cgen_typ := receiver_type.replace('*', '')
// if cgen_typ.starts_with('array_') {
// cgen_typ = 'array'
// }
// println('METHOD fn_call name=$cgen_name')
// mut method_call := '${cgen_typ}_${cgen_name}('
mut method_call := '${cgen_name}('
// println('GGGG $f.name')
receiver := f.args.first()
if receiver.is_mut && !p.expr_var.is_mut {
println('$method_call recv=$receiver.name recv_mut=$receiver.is_mut')
p.error('`$p.expr_var.name` is immutable')
}
// if receiver is mutable or a ref (&), generate & for the first arg
if receiver.ref || (receiver.is_mut && !receiver_type.contains('*')) {
method_call += '& /* ? */'
}
// generate deref (TODO copy pasta later in fn_call_args)
if !receiver.is_mut && receiver_type.contains('*') {
method_call += '*'
}
mut cast = ''
// Method returns (void*) => cast it to int, string, user etc
// number := *(int*)numbers.first()
if f.typ == 'void*' {
// array_int => int
cast = receiver_type.all_after('_')
cast = '*($cast*) '
}
p.cgen.set_placeholder(method_ph, '$cast $method_call')
}
p.next()
// p.check(LPAR)
p.fn_call_args(f)
p.gen(')')
// p.check(RPAR)
p.calling_c = false
if is_print {
p.cgen.nogen = false
}
// println('end of fn call typ=$f.typ')
}
// for declaration
// return an updated Fn object with args[] field set
fn (p mut Parser) fn_args(f mut Fn) {
p.check(LPAR)
// TODO defer p.check(RPAR)
if f.is_interface {
int_arg := Var {
typ: f.receiver_typ
}
f.args << int_arg
}
// Just register fn arg types
types_only := p.tok == MUL || (p.peek() == COMMA && p.table.known_type(p.lit)) || p.peek() == RPAR// (int, string)
if types_only {
for p.tok != RPAR {
typ := p.get_type()
v := Var {
typ: typ
is_arg: true
// is_mut: is_mut
line_nr: p.scanner.line_nr
}
// f.register_var(v)
f.args << v
if p.tok == COMMA {
p.next()
}
}
}
// (a int, b,c string) syntax
for p.tok != RPAR {
mut names := [
p.check_name()
]
// a,b,c int syntax
for p.tok == COMMA {
p.check(COMMA)
p.fspace()
names << p.check_name()
}
p.fspace()
is_mut := p.tok == MUT
if is_mut {
p.next()
}
mut typ2 := p.get_type()
for name in names {
if !p.first_run() && !p.table.known_type(typ2) {
p.error('fn_args: unknown type $typ2')
}
if is_mut {
// && !typ2.starts_with('array_') {
typ2 += '*'
}
v := Var {
name: name
typ: typ2
is_arg: true
is_mut: is_mut
ptr: is_mut
line_nr: p.scanner.line_nr
}
f.register_var(v)
f.args << v
}
if p.tok == COMMA {
p.next()
}
if p.tok == DOTDOT {
f.args << Var {
name: '..'
}
p.next()
}
}
p.check(RPAR)
}
fn (p mut Parser) fn_call_args(f *Fn) *Fn {
// p.gen('(')
// println('fn_call_args() name=$f.name args.len=$f.args.len')
// C func. # of args is not known
// if f.name.starts_with('c_') {
p.check(LPAR)
if f.is_c {
for p.tok != RPAR {
// debug("LEX before EXP", p.tok)
p.bool_expression()
// debug("LEX AFTER EXP", p.tok)
if p.tok == COMMA {
p.gen(', ')
p.check(COMMA)
// debug("UUUUU C FUNC" + fnName)
// p.g.Gen("C FN " + fnName)
}
}
p.check(RPAR)
// p.gen(')')
return f
}
// Receiver - first arg
for i, arg in f.args {
// println('$i) arg=$arg.name')
// Skip receiver, because it was already generated in the expression
if i == 0 && f.is_method {
if f.args.len > 1 {
p.gen(',')
}
continue
}
// Reached the final vararg? Quit
if i == f.args.len - 1 && arg.name == '..' {
break
}
amp_ph := p.cgen.add_placeholder()
// ) here means not enough args were supplied
if p.tok == RPAR {
str_args := f.str_args(p.table)// TODO this is C args
p.error('not enough arguments in call to `$f.name ($str_args)`')
}
// If `arg` is mutable, the caller needs to provide MUT:
// `arr := [1,2,3]; reverse(mut arr);`
if arg.is_mut {
if p.tok != MUT {
p.error('`$arg.name` is a mutable argument, you need to provide `mut`: `$f.name(...mut a...)`')
}
if p.peek() != NAME {
p.error('`$arg.name` is a mutable argument, you need to provide a variable to modify: `$f.name(... mut a...)`')
}
p.check(MUT)
}
typ := p.bool_expression()
// TODO temporary hack to allow println(777)
if i == 0 && f.name == 'println' && typ != 'string'
&& typ != 'void' {
// If we dont check for void, then V will compile "println(procedure())"
if !p.is_prod {
T := p.table.find_type(typ)
if typ == 'u8' {
p.cgen.set_placeholder(amp_ph, 'u8_str(')
}
else if T.parent == 'int' {
p.cgen.set_placeholder(amp_ph, 'int_str(')
}
else if typ.ends_with('*') {
p.cgen.set_placeholder(amp_ph, 'ptr_str(')
}
else {
// Make sure this type has a `str()` method
if !T.has_method('str') {
p.error('`$typ` needs to have method `str() string` to be printable')
}
p.cgen.set_placeholder(amp_ph, '${typ}_str(')
}
p.gen(')')
}
continue
}
got := typ
expected := arg.typ
// println('fn arg got="$got" exp="$expected"')
if !p.check_types_no_throw(got, expected) {
mut err := 'Fn "$f.name" wrong arg #${i+1}. '
err += 'Expected "$arg.typ" ($arg.name) but got "$typ"'
p.error(err)
}
is_interface := p.table.is_interface(arg.typ)
// Add & or * before arg?
if !is_interface {
// Dereference
if got.contains('*') && !expected.contains('*') {
p.cgen.set_placeholder(amp_ph, '*')
}
// Reference
// TODO ptr hacks. DOOM hacks, fix please.
if !got.contains('*') && expected.contains('*') && got != 'voidptr' {
// println('\ne:"$expected" got:"$got"')
if ! (expected == 'void*' && got == 'int') &&
! (expected == 'byte*' && got.contains(']byte')) &&
! (expected == 'byte*' && got == 'string') {
p.cgen.set_placeholder(amp_ph, '& /*11 EXP:"$expected" GOT:"$got" */')
}
}
}
// interface?
if is_interface {
if !got.contains('*') {
p.cgen.set_placeholder(amp_ph, '&')
}
// Pass all interface methods
interface_type := p.table.find_type(arg.typ)
for method in interface_type.methods {
p.gen(', ${typ}_${method.name} ')
}
}
// Check for commas
if i < f.args.len - 1 {
// Handle 0 args passed to varargs
is_vararg := i == f.args.len - 2 && f.args[i + 1].name == '..'
if p.tok != COMMA && !is_vararg {
p.error('wrong number of arguments for $i,$arg.name fn `$f.name`: expected $f.args.len, but got less')
}
if p.tok == COMMA {
p.fgen(', ')
}
if !is_vararg {
p.next()
p.gen(',')
}
}
}
// varargs
if f.args.len > 0 {
last_arg := f.args.last()
if last_arg.name == '..' {
println('GOT VAR ARGS AFTER')
for p.tok != RPAR {
if p.tok == COMMA {
p.gen(',')
p.check(COMMA)
}
p.bool_expression()
}
}
}
if p.tok == COMMA {
p.error('wrong number of arguments for fn `$f.name`: expected $f.args.len, but got more')
}
p.check(RPAR)
// p.gen(')')
}
fn contains_capital(s string) bool {
// for c in s {
for i := 0; i < s.len; i++ {
c := s[i]
if c >= `A` && c <= `Z` {
return true
}
}
return false
}
// "fn (int, string) int"
fn (f Fn) typ_str() string {
mut sb := new_string_builder(50)
sb.write('fn (')
for i, arg in f.args {
sb.write(arg.typ)
if i < f.args.len - 1 {
sb.write(',')
}
}
sb.write(')')
if f.typ != 'void' {
sb.write(' $f.typ')
}
return sb.str()
}
// f.args => "int a, string b"
fn (f &Fn) str_args(table *Table) string {
mut s := ''
for i, arg in f.args {
// Interfaces are a special case. We need to pass the object + pointers
// to all methods:
// fn handle(r Runner) { =>
// void handle(void *r, void (*Runner_run)(void*)) {
if table.is_interface(arg.typ) {
// First the object (same name as the interface argument)
s += ' void* $arg.name'
// Now all methods
interface_type := table.find_type(arg.typ)
for method in interface_type.methods {
s += ', $method.typ (*${arg.typ}_${method.name})(void*) '
}
}
else if arg.name == '..' {
s += '...'
}
else {
// s += '$arg.typ $arg.name'
s += table.cgen_name_type_pair(arg.name, arg.typ)// '$arg.typ $arg.name'
}
if i < f.args.len - 1 {
s += ', '
}
}
return s
}