1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/gg/gg.c.v

1125 lines
28 KiB
V
Raw Normal View History

// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license that can be found in the LICENSE file.
module gg
import os
import gx
import sokol
import sokol.sapp
import sokol.sgl
import sokol.gfx
import math
pub struct Event {
pub mut:
frame_count u64
typ sapp.EventType
key_code KeyCode
char_code u32
key_repeat bool
modifiers u32
mouse_button MouseButton
mouse_x f32
mouse_y f32
mouse_dx f32
mouse_dy f32
scroll_x f32
scroll_y f32
num_touches int
touches [8]C.sapp_touchpoint
window_width int
window_height int
framebuffer_width int
framebuffer_height int
}
[heap]
pub struct Context {
mut:
render_text bool = true
// a cache with all images created by the user. used for sokol image init and to save space
// (so that the user can store image ids, not entire Image objects)
image_cache []Image
needs_refresh bool = true
ticks int // for ui mode only
pub:
native_rendering bool
pub mut:
scale f32 = 1.0
// will get set to 2.0 for retina, will remain 1.0 for normal
width int
height int
clear_pass C.sg_pass_action
window C.sapp_desc
timage_pip C.sgl_pipeline
config Config
user_data voidptr
ft &FT
font_inited bool
ui_mode bool // do not redraw everything 60 times/second, but only when the user requests
frame u64 // the current frame counted from the start of the application; always increasing
//
mbtn_mask byte
mouse_buttons MouseButtons // typed version of mbtn_mask; easier to use for user programs
mouse_pos_x int
mouse_pos_y int
mouse_dx int
mouse_dy int
scroll_x int
scroll_y int
//
key_modifiers Modifier // the current key modifiers
key_repeat bool // whether the pressed key was an autorepeated one
pressed_keys [key_code_max]bool // an array representing all currently pressed keys
pressed_keys_edge [key_code_max]bool // true when the previous state of pressed_keys,
// *before* the current event was different
}
fn gg_init_sokol_window(user_data voidptr) {
mut g := unsafe { &Context(user_data) }
desc := sapp.create_desc()
/*
desc := C.sg_desc{
mtl_device: sapp.metal_get_device()
mtl_renderpass_descriptor_cb: sapp.metal_get_renderpass_descriptor
mtl_drawable_cb: sapp.metal_get_drawable
d3d11_device: sapp.d3d11_get_device()
d3d11_device_context: sapp.d3d11_get_device_context()
d3d11_render_target_view_cb: sapp.d3d11_get_render_target_view
d3d11_depth_stencil_view_cb: sapp.d3d11_get_depth_stencil_view
}
*/
gfx.setup(&desc)
sgl_desc := C.sgl_desc_t{}
sgl.setup(&sgl_desc)
g.scale = dpi_scale()
// is_high_dpi := sapp.high_dpi()
// fb_w := sapp.width()
// fb_h := sapp.height()
// println('g.scale=$g.scale is_high_dpi=$is_high_dpi fb_w=$fb_w fb_h=$fb_h')
// if g.config.init_text {
// `os.is_file()` won't work on Android if the font file is embedded into the APK
exists := $if !android { os.is_file(g.config.font_path) } $else { true }
if g.config.font_path != '' && !exists {
g.render_text = false
} else if g.config.font_path != '' && exists {
// t := time.ticks()
g.ft = new_ft(
font_path: g.config.font_path
custom_bold_font_path: g.config.custom_bold_font_path
scale: dpi_scale()
) or { panic(err) }
// println('FT took ${time.ticks()-t} ms')
g.font_inited = true
} else {
if g.config.font_bytes_normal.len > 0 {
g.ft = new_ft(
bytes_normal: g.config.font_bytes_normal
bytes_bold: g.config.font_bytes_bold
bytes_mono: g.config.font_bytes_mono
bytes_italic: g.config.font_bytes_italic
scale: sapp.dpi_scale()
) or { panic(err) }
g.font_inited = true
} else {
sfont := system_font_path()
if g.config.font_path != '' {
eprintln('font file "$g.config.font_path" does not exist, the system font ($sfont) was used instead.')
}
g.ft = new_ft(
font_path: sfont
custom_bold_font_path: g.config.custom_bold_font_path
scale: sapp.dpi_scale()
) or { panic(err) }
g.font_inited = true
}
}
//
mut pipdesc := C.sg_pipeline_desc{
label: c'alpha_image'
}
unsafe { vmemset(&pipdesc, 0, int(sizeof(pipdesc))) }
color_state := C.sg_color_state{
blend: C.sg_blend_state{
enabled: true
src_factor_rgb: gfx.BlendFactor(C.SG_BLENDFACTOR_SRC_ALPHA)
dst_factor_rgb: gfx.BlendFactor(C.SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA)
}
}
pipdesc.colors[0] = color_state
g.timage_pip = sgl.make_pipeline(&pipdesc)
//
if g.config.init_fn != voidptr(0) {
g.config.init_fn(g.user_data)
}
// Create images now that we can do that after sg is inited
if g.native_rendering {
return
}
for i in 0 .. g.image_cache.len {
if g.image_cache[i].simg.id == 0 {
g.image_cache[i].init_sokol_image()
}
}
}
//
pub fn new_context(cfg Config) &Context {
mut g := &Context{
user_data: cfg.user_data
width: cfg.width
height: cfg.height
config: cfg
ft: 0
ui_mode: cfg.ui_mode
native_rendering: cfg.native_rendering
}
if isnil(cfg.user_data) {
g.user_data = g
}
g.set_bg_color(cfg.bg_color)
// C.printf('new_context() %p\n', cfg.user_data)
window := C.sapp_desc{
user_data: g
init_userdata_cb: gg_init_sokol_window
frame_userdata_cb: gg_frame_fn
event_userdata_cb: gg_event_fn
fail_userdata_cb: gg_fail_fn
cleanup_userdata_cb: gg_cleanup_fn
window_title: &char(cfg.window_title.str)
html5_canvas_name: &char(cfg.window_title.str)
width: cfg.width
height: cfg.height
sample_count: cfg.sample_count
high_dpi: true
fullscreen: cfg.fullscreen
__v_native_render: cfg.native_rendering
// drag&drop
enable_dragndrop: cfg.enable_dragndrop
max_dropped_files: cfg.max_dropped_files
max_dropped_file_path_length: cfg.max_dropped_file_path_length
swap_interval: cfg.swap_interval
}
g.window = window
return g
}
pub fn (ctx &Context) draw_circle_line(x f32, y f32, r int, segments int, c gx.Color) {
$if macos {
if ctx.native_rendering {
C.darwin_draw_circle(x - r + 1, ctx.height - (y + r + 3), r, c)
return
}
}
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
nx := x * ctx.scale
ny := y * ctx.scale
nr := r * ctx.scale
mut theta := f32(0)
mut xx := f32(0)
mut yy := f32(0)
sgl.begin_line_strip()
for i := 0; i < segments + 1; i++ {
theta = 2.0 * f32(math.pi) * f32(i) / f32(segments)
xx = nr * math.cosf(theta)
yy = nr * math.sinf(theta)
sgl.v2f(xx + nx, yy + ny)
}
sgl.end()
}
pub fn high_dpi() bool {
return C.sapp_high_dpi()
}
pub fn screen_size() Size {
$if macos {
return C.gg_get_screen_size()
}
// TODO windows, linux, etc
return Size{}
}
fn C.WaitMessage()
/*
pub fn wait_events() {
unsafe {
$if macos {
#NSEvent *event = [NSApp nextEventMatchingMask:NSEventMaskAny
#untilDate:[NSDate distantFuture]
#inMode:NSDefaultRunLoopMode
#dequeue:YES];
#[NSApp sendEvent:event];
}
$if windows {
C.WaitMessage()
}
}
}
*/
// TODO: Fix alpha
pub fn (ctx &Context) draw_rect(x f32, y f32, w f32, h f32, c gx.Color) {
$if macos {
if ctx.native_rendering {
C.darwin_draw_rect(x, ctx.height - (y + h), w, h, c)
return
}
}
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_quads()
sgl.v2f(x * ctx.scale, y * ctx.scale)
sgl.v2f((x + w) * ctx.scale, y * ctx.scale)
sgl.v2f((x + w) * ctx.scale, (y + h) * ctx.scale)
sgl.v2f(x * ctx.scale, (y + h) * ctx.scale)
sgl.end()
}
fn gg_frame_fn(user_data voidptr) {
mut ctx := unsafe { &Context(user_data) }
ctx.frame++
if ctx.config.frame_fn == voidptr(0) {
return
}
if ctx.native_rendering {
// return
}
ctx.record_frame()
if ctx.ui_mode && !ctx.needs_refresh {
// Draw 3 more frames after the "stop refresh" command
ctx.ticks++
if ctx.ticks > 3 {
return
}
}
ctx.config.frame_fn(ctx.user_data)
ctx.needs_refresh = false
}
pub fn (mut ctx Context) refresh_ui() {
ctx.needs_refresh = true
ctx.ticks = 0
}
fn gg_event_fn(ce voidptr, user_data voidptr) {
// e := unsafe { &sapp.Event(ce) }
mut e := unsafe { &Event(ce) }
mut g := unsafe { &Context(user_data) }
if g.ui_mode {
g.refresh_ui()
}
if e.typ == .mouse_down {
bitplace := int(e.mouse_button)
g.mbtn_mask |= byte(1 << bitplace)
g.mouse_buttons = MouseButtons(g.mbtn_mask)
}
if e.typ == .mouse_up {
bitplace := int(e.mouse_button)
g.mbtn_mask &= ~(byte(1 << bitplace))
g.mouse_buttons = MouseButtons(g.mbtn_mask)
}
if e.typ == .mouse_move && e.mouse_button == .invalid {
if g.mbtn_mask & 0x01 > 0 {
e.mouse_button = .left
}
if g.mbtn_mask & 0x02 > 0 {
e.mouse_button = .right
}
if g.mbtn_mask & 0x04 > 0 {
e.mouse_button = .middle
}
}
g.mouse_pos_x = int(e.mouse_x / g.scale)
g.mouse_pos_y = int(e.mouse_y / g.scale)
g.mouse_dx = int(e.mouse_dx / g.scale)
g.mouse_dy = int(e.mouse_dy / g.scale)
g.scroll_x = int(e.scroll_x / g.scale)
g.scroll_y = int(e.scroll_y / g.scale)
g.key_modifiers = Modifier(e.modifiers)
g.key_repeat = e.key_repeat
if e.typ in [.key_down, .key_up] {
key_idx := int(e.key_code) % key_code_max
prev := g.pressed_keys[key_idx]
next := e.typ == .key_down
g.pressed_keys[key_idx] = next
g.pressed_keys_edge[key_idx] = prev != next
}
if g.config.event_fn != voidptr(0) {
g.config.event_fn(e, g.config.user_data)
}
match e.typ {
.mouse_move {
if g.config.move_fn != voidptr(0) {
g.config.move_fn(e.mouse_x / g.scale, e.mouse_y / g.scale, g.config.user_data)
}
}
.mouse_down {
if g.config.click_fn != voidptr(0) {
g.config.click_fn(e.mouse_x / g.scale, e.mouse_y / g.scale, e.mouse_button,
g.config.user_data)
}
}
.mouse_up {
if g.config.unclick_fn != voidptr(0) {
g.config.unclick_fn(e.mouse_x / g.scale, e.mouse_y / g.scale, e.mouse_button,
g.config.user_data)
}
}
.mouse_leave {
if g.config.leave_fn != voidptr(0) {
g.config.leave_fn(e, g.config.user_data)
}
}
.mouse_enter {
if g.config.enter_fn != voidptr(0) {
g.config.enter_fn(e, g.config.user_data)
}
}
.mouse_scroll {
if g.config.scroll_fn != voidptr(0) {
g.config.scroll_fn(e, g.config.user_data)
}
}
.key_down {
if g.config.keydown_fn != voidptr(0) {
g.config.keydown_fn(e.key_code, Modifier(e.modifiers), g.config.user_data)
}
}
.key_up {
if g.config.keyup_fn != voidptr(0) {
g.config.keyup_fn(e.key_code, Modifier(e.modifiers), g.config.user_data)
}
}
.char {
if g.config.char_fn != voidptr(0) {
g.config.char_fn(e.char_code, g.config.user_data)
}
}
.resized {
if g.config.resized_fn != voidptr(0) {
g.config.resized_fn(e, g.config.user_data)
}
}
.quit_requested {
if g.config.quit_fn != voidptr(0) {
g.config.quit_fn(e, g.config.user_data)
}
}
else {
// dump(e)
}
}
}
fn gg_cleanup_fn(user_data voidptr) {
mut g := unsafe { &Context(user_data) }
if g.config.cleanup_fn != voidptr(0) {
g.config.cleanup_fn(g.config.user_data)
}
gfx.shutdown()
}
fn gg_fail_fn(msg &char, user_data voidptr) {
mut g := unsafe { &Context(user_data) }
vmsg := unsafe { tos3(msg) }
if g.config.fail_fn != voidptr(0) {
g.config.fail_fn(vmsg, g.config.user_data)
} else {
eprintln('gg error: $vmsg')
}
}
pub fn (ctx &Context) run() {
sapp.run(&ctx.window)
}
// Prepares the context for drawing
pub fn (gg &Context) begin() {
if gg.render_text && gg.font_inited {
gg.ft.flush()
}
sgl.defaults()
sgl.matrix_mode_projection()
sgl.ortho(0.0, f32(sapp.width()), f32(sapp.height()), 0.0, -1.0, 1.0)
}
// Finishes drawing for the context
pub fn (gg &Context) end() {
gfx.begin_default_pass(gg.clear_pass, sapp.width(), sapp.height())
sgl.draw()
gfx.end_pass()
gfx.commit()
/*
if gg.config.wait_events {
// println('gg: waiting')
wait_events()
}
*/
}
// quit closes the context window and exits the event loop for it
pub fn (ctx &Context) quit() {
sapp.request_quit() // does not require ctx right now, but sokol multi-window might in the future
}
pub fn (mut ctx Context) set_bg_color(c gx.Color) {
ctx.clear_pass = gfx.create_clear_pass(f32(c.r) / 255.0, f32(c.g) / 255.0, f32(c.b) / 255.0,
f32(c.a) / 255.0)
}
// Sets a pixel
[inline]
pub fn (ctx &Context) set_pixel(x f32, y f32, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_points()
sgl.v2f(x * ctx.scale, y * ctx.scale)
sgl.end()
}
// Sets pixels from an array of points [x, y, x2, y2, etc...]
[direct_array_access; inline]
pub fn (ctx &Context) set_pixels(points []f32, c gx.Color) {
assert points.len % 2 == 0
len := points.len / 2
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_points()
for i in 0 .. len {
x, y := points[i * 2], points[i * 2 + 1]
sgl.v2f(x * ctx.scale, y * ctx.scale)
}
sgl.end()
}
// Draws a filled triangle
pub fn (ctx &Context) draw_triangle(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_triangles()
sgl.v2f(x * ctx.scale, y * ctx.scale)
sgl.v2f(x2 * ctx.scale, y2 * ctx.scale)
sgl.v2f(x3 * ctx.scale, y3 * ctx.scale)
sgl.end()
}
// Draws the outline of a triangle
pub fn (ctx &Context) draw_empty_triangle(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
sgl.v2f(x * ctx.scale, y * ctx.scale)
sgl.v2f(x2 * ctx.scale, y2 * ctx.scale)
sgl.v2f(x3 * ctx.scale, y3 * ctx.scale)
sgl.v2f(x * ctx.scale, y * ctx.scale)
sgl.end()
}
// Draws a filled square
[inline]
pub fn (ctx &Context) draw_square(x f32, y f32, s f32, c gx.Color) {
ctx.draw_rect(x, y, s, s, c)
}
// Draws the outline of a square
[inline]
pub fn (ctx &Context) draw_empty_square(x f32, y f32, s f32, c gx.Color) {
ctx.draw_empty_rect(x, y, s, s, c)
}
// Draws the outline of a rectangle
pub fn (ctx &Context) draw_empty_rect(x f32, y f32, w f32, h f32, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
sgl.v2f(x * ctx.scale, y * ctx.scale)
sgl.v2f((x + w) * ctx.scale, y * ctx.scale)
sgl.v2f((x + w) * ctx.scale, (y + h) * ctx.scale)
sgl.v2f(x * ctx.scale, (y + h) * ctx.scale)
sgl.v2f(x * ctx.scale, (y - 1) * ctx.scale)
sgl.end()
}
// Draws a circle
pub fn (ctx &Context) draw_circle(x f32, y f32, r f32, c gx.Color) {
ctx.draw_circle_with_segments(x, y, r, 10, c)
}
// Draws a circle with a specific number of segments (affects how smooth/round the circle is)
pub fn (ctx &Context) draw_circle_with_segments(x f32, y f32, r f32, segments int, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
nx := x * ctx.scale
ny := y * ctx.scale
nr := r * ctx.scale
mut theta := f32(0)
mut xx := f32(0)
mut yy := f32(0)
sgl.begin_triangle_strip()
for i := 0; i < segments + 1; i++ {
theta = 2.0 * f32(math.pi) * f32(i) / f32(segments)
xx = nr * math.cosf(theta)
yy = nr * math.sinf(theta)
sgl.v2f(xx + nx, yy + ny)
sgl.v2f(nx, ny)
}
sgl.end()
}
// Draws a circle slice/pie.
pub fn (ctx &Context) draw_slice(x f32, y f32, r f32, start_angle f32, arc_angle f32, segments int, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
nx := x * ctx.scale
ny := y * ctx.scale
theta := f32(arc_angle / f32(segments))
tan_factor := math.tanf(theta)
rad_factor := math.cosf(theta)
mut xx := r * math.cosf(start_angle)
mut yy := r * math.sinf(start_angle)
sgl.begin_triangle_strip()
for i := 0; i < segments + 1; i++ {
sgl.v2f(xx + nx, yy + ny)
sgl.v2f(nx, ny)
tx := -yy
ty := xx
xx += tx * tan_factor
yy += ty * tan_factor
xx *= rad_factor
yy *= rad_factor
}
sgl.end()
}
// Draws the outline of a circle slice/pie.
pub fn (ctx &Context) draw_empty_slice(x f32, y f32, r f32, start_angle f32, arc_angle f32, segments int, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
theta := f32(arc_angle / f32(segments))
tan_factor := math.tanf(theta)
rad_factor := math.cosf(theta)
nx := x * ctx.scale
ny := y * ctx.scale
mut xx := r * math.cosf(start_angle)
mut yy := r * math.sinf(start_angle)
sgl.begin_line_strip()
for i := 0; i < segments + 1; i++ {
sgl.v2f(xx + nx, yy + ny)
tx := -yy
ty := xx
xx += tx * tan_factor
yy += ty * tan_factor
xx *= rad_factor
yy *= rad_factor
}
sgl.end()
}
// Resize the context's Window
pub fn (mut ctx Context) resize(width int, height int) {
ctx.width = width
ctx.height = height
// C.sapp_resize_window(width, height)
}
// Draws a line between the points provided
pub fn (ctx &Context) draw_line(x f32, y f32, x2 f32, y2 f32, c gx.Color) {
$if macos {
if ctx.native_rendering {
// Make the line more clear on hi dpi screens: draw a rectangle
mut width := math.abs(x2 - x)
mut height := math.abs(y2 - y)
if width == 0 {
width = 1
} else if height == 0 {
height = 1
}
ctx.draw_rect(x, y, f32(width), f32(height), c)
return
}
}
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
sgl.v2f(x * ctx.scale, y * ctx.scale)
sgl.v2f(x2 * ctx.scale, y2 * ctx.scale)
sgl.end()
}
// Draws a line between the points provided with the PenConfig
pub fn (ctx &Context) draw_line_with_config(x f32, y f32, x2 f32, y2 f32, config PenConfig) {
if config.color.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
if config.thickness <= 0 {
return
}
nx := x * ctx.scale
ny := y * ctx.scale
nx2 := x2 * ctx.scale
ny2 := y2 * ctx.scale
dx := nx2 - nx
dy := ny2 - ny
length := math.sqrtf(math.powf(x2 - x, 2) + math.powf(y2 - y, 2))
theta := f32(math.atan2(dy, dx))
sgl.push_matrix()
sgl.translate(nx, ny, 0)
sgl.rotate(theta, 0, 0, 1)
sgl.translate(-nx, -ny, 0)
if config.line_type == .solid {
ctx.draw_rect(x, y, length, config.thickness, config.color)
} else {
size := if config.line_type == .dotted { config.thickness } else { config.thickness * 3 }
space := if size == 1 { 2 } else { size }
mut available := length
mut start_x := x
for i := 0; available > 0; i++ {
if i % 2 == 0 {
ctx.draw_rect(start_x, y, size, config.thickness, config.color)
available -= size
start_x += size
continue
}
available -= space
start_x += space
}
}
sgl.pop_matrix()
}
// Draws an arc
pub fn (ctx &Context) draw_arc(x f32, y f32, inner_r f32, outer_r f32, start_angle f32, end_angle f32, segments int, c gx.Color) {
if start_angle == end_angle || outer_r <= 0.0 {
return
}
mut r1 := inner_r
mut r2 := outer_r
mut a1 := start_angle
mut a2 := end_angle
// TODO: Maybe this does not make since inner_r and outer_r is actually integers?
if outer_r < inner_r {
r1, r2 = r2, r1
if r2 <= 0.0 {
r2 = 0.1
}
}
if a2 < a1 {
a1, a2 = a2, a1
}
if r1 <= 0.0 {
ctx.draw_slice(x, y, int(r2), a1, a2, segments, c)
return
}
mut step_length := (a2 - a1) / f32(segments)
mut angle := a1
sgl.begin_quads()
sgl.c4b(c.r, c.g, c.b, c.a)
for _ in 0 .. segments {
sgl.v2f(x + f32(math.sin(angle)) * r1, y + f32(math.cos(angle) * r1))
sgl.v2f(x + f32(math.sin(angle)) * r2, y + f32(math.cos(angle) * r2))
sgl.v2f(x + f32(math.sin(angle + step_length)) * r2, y + f32(math.cos(angle +
step_length) * r2))
sgl.v2f(x + f32(math.sin(angle + step_length)) * r1, y + f32(math.cos(angle +
step_length) * r1))
angle += step_length
}
sgl.end()
2021-12-18 13:39:14 +03:00
}
// Draws the outline of an arc
pub fn (ctx &Context) draw_arc_empty(x f32, y f32, inner_r f32, outer_r f32, start_angle f32, end_angle f32, segments int, c gx.Color) {
if start_angle == end_angle || outer_r <= 0.0 {
return
}
mut r1 := inner_r
mut r2 := outer_r
mut a1 := start_angle
mut a2 := end_angle
if outer_r < inner_r {
r1, r2 = r2, r1
if r2 <= 0.0 {
r2 = 0.1
}
}
if a2 < a1 {
a1, a2 = a2, a1
}
if r1 <= 0.0 {
ctx.draw_empty_slice(x, y, int(r2), a1, a2, segments, c)
return
}
mut step_length := (a2 - a1) / f32(segments)
mut angle := a1
sgl.begin_line_strip()
sgl.c4b(c.r, c.g, c.b, c.a)
// Outer circle
for _ in 0 .. segments {
sgl.v2f(x + f32(math.sin(angle)) * r2, y + f32(math.cos(angle) * r2))
sgl.v2f(x + f32(math.sin(angle + step_length)) * r2, y + f32(math.cos(angle +
step_length) * r2))
angle += step_length
}
// Inner circle
for _ in 0 .. segments {
sgl.v2f(x + f32(math.sin(angle)) * r1, y + f32(math.cos(angle) * r1))
sgl.v2f(x + f32(math.sin(angle - step_length)) * r1, y +
f32(math.cos(angle - step_length) * r1))
angle -= step_length
}
// Closing end
sgl.v2f(x + f32(math.sin(angle)) * r1, y + f32(math.cos(angle) * r1))
sgl.v2f(x + f32(math.sin(angle)) * r2, y + f32(math.cos(angle) * r2))
sgl.end()
}
// Draws a filled rounded rectangle
pub fn (ctx &Context) draw_rounded_rect(x f32, y f32, w f32, h f32, radius f32, c gx.Color) {
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_triangle_strip()
mut theta := f32(0)
mut xx := f32(0)
mut yy := f32(0)
r := radius * ctx.scale
nx := x * ctx.scale
ny := y * ctx.scale
width := w * ctx.scale
height := h * ctx.scale
segments := 2 * math.pi * r
segdiv := segments / 4
rb := 0
lb := int(rb + segdiv)
lt := int(lb + segdiv)
rt := int(lt + segdiv)
// left top
lx := nx + r
ly := ny + r
for i in lt .. rt {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + lx, yy + ly)
sgl.v2f(lx, ly)
}
// right top
mut rx := nx + width - r
mut ry := ny + r
for i in rt .. int(segments) {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + rx, yy + ry)
sgl.v2f(rx, ry)
}
// right bottom
mut rbx := rx
mut rby := ny + height - r
for i in rb .. lb {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + rbx, yy + rby)
sgl.v2f(rbx, rby)
}
// left bottom
mut lbx := lx
mut lby := ny + height - r
for i in lb .. lt {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + lbx, yy + lby)
sgl.v2f(lbx, lby)
}
sgl.v2f(lx + xx, ly)
sgl.v2f(lx, ly)
sgl.end()
sgl.begin_quads()
sgl.v2f(lx, ly)
sgl.v2f(rx, ry)
sgl.v2f(rbx, rby)
sgl.v2f(lbx, lby)
sgl.end()
}
// Draws the outline of a rounded rectangle
pub fn (ctx &Context) draw_empty_rounded_rect(x f32, y f32, w f32, h f32, radius f32, c gx.Color) {
mut theta := f32(0)
mut xx := f32(0)
mut yy := f32(0)
r := radius * ctx.scale
nx := x * ctx.scale
ny := y * ctx.scale
width := w * ctx.scale
height := h * ctx.scale
segments := 2 * math.pi * r
segdiv := segments / 4
rb := 0
lb := int(rb + segdiv)
lt := int(lb + segdiv)
rt := int(lt + segdiv)
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
// left top
lx := nx + r
ly := ny + r
for i in lt .. rt {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + lx, yy + ly)
}
// right top
mut rx := nx + width - r
mut ry := ny + r
for i in rt .. int(segments) {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + rx, yy + ry)
}
// right bottom
mut rbx := rx
mut rby := ny + height - r
for i in rb .. lb {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + rbx, yy + rby)
}
// left bottom
mut lbx := lx
mut lby := ny + height - r
for i in lb .. lt {
theta = 2 * f32(math.pi) * f32(i) / segments
xx = r * math.cosf(theta)
yy = r * math.sinf(theta)
sgl.v2f(xx + lbx, yy + lby)
}
sgl.v2f(lx + xx, ly)
sgl.end()
}
// draw_convex_poly draws a convex polygon, given an array of points, and a color.
// Note that the points must be given in clockwise order.
pub fn (ctx &Context) draw_convex_poly(points []f32, c gx.Color) {
assert points.len % 2 == 0
len := points.len / 2
assert len >= 3
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_triangle_strip()
x0 := points[0] * ctx.scale
y0 := points[1] * ctx.scale
for i in 1 .. (len / 2 + 1) {
sgl.v2f(x0, y0)
sgl.v2f(points[i * 4 - 2] * ctx.scale, points[i * 4 - 1] * ctx.scale)
sgl.v2f(points[i * 4] * ctx.scale, points[i * 4 + 1] * ctx.scale)
}
if len % 2 == 0 {
sgl.v2f(points[2 * len - 2] * ctx.scale, points[2 * len - 1] * ctx.scale)
}
sgl.end()
}
// draw_empty_poly - draws the borders of a polygon, given an array of points, and a color.
// Note that the points must be given in clockwise order.
pub fn (ctx &Context) draw_empty_poly(points []f32, c gx.Color) {
assert points.len % 2 == 0
len := points.len / 2
assert len >= 3
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
for i in 0 .. len {
sgl.v2f(points[2 * i] * ctx.scale, points[2 * i + 1] * ctx.scale)
}
sgl.v2f(points[0] * ctx.scale, points[1] * ctx.scale)
sgl.end()
}
// draw_cubic_bezier draws a cubic Bézier curve, also known as a spline, from four points.
// The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates).
// Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`.
// Please see `draw_cubic_bezier_in_steps` to control the amount of steps (segments) used to draw the curve.
pub fn (ctx &Context) draw_cubic_bezier(points []f32, c gx.Color) {
ctx.draw_cubic_bezier_in_steps(points, u32(30 * ctx.scale), c)
}
// draw_cubic_bezier_in_steps draws a cubic Bézier curve, also known as a spline, from four points.
// The smoothness of the curve can be controlled with the `steps` parameter. `steps` determines how many iterations is
// taken to draw the curve.
// The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates).
// Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`.
pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, steps u32, c gx.Color) {
assert steps > 0
assert points.len == 8
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
p1_x, p1_y := points[0], points[1]
p2_x, p2_y := points[6], points[7]
ctrl_p1_x, ctrl_p1_y := points[2], points[3]
ctrl_p2_x, ctrl_p2_y := points[4], points[5]
// The constant 3 is actually points.len() - 1;
step := f32(1.0) / steps
sgl.v2f(p1_x * ctx.scale, p1_y * ctx.scale)
for u := f32(0.0); u <= f32(1.0); u += step {
pow_2_u := u * u
pow_3_u := pow_2_u * u
x := pow_3_u * (p2_x + 3 * (ctrl_p1_x - ctrl_p2_x) - p1_x) +
3 * pow_2_u * (p1_x - 2 * ctrl_p1_x + ctrl_p2_x) + 3 * u * (ctrl_p1_x - p1_x) + p1_x
y := pow_3_u * (p2_y + 3 * (ctrl_p1_y - ctrl_p2_y) - p1_y) +
3 * pow_2_u * (p1_y - 2 * ctrl_p1_y + ctrl_p2_y) + 3 * u * (ctrl_p1_y - p1_y) + p1_y
sgl.v2f(x * ctx.scale, y * ctx.scale)
}
sgl.v2f(p2_x * ctx.scale, p2_y * ctx.scale)
sgl.end()
}
// window_size returns the `Size` of the active window
pub fn window_size() Size {
s := dpi_scale()
return Size{int(sapp.width() / s), int(sapp.height() / s)}
}
// window_size_real_pixels returns the `Size` of the active window without scale
pub fn window_size_real_pixels() Size {
return Size{sapp.width(), sapp.height()}
}
pub fn dpi_scale() f32 {
mut s := sapp.dpi_scale()
$if android {
s *= android_dpi_scale()
}
// NB: on older X11, `Xft.dpi` from ~/.Xresources, that sokol uses,
// may not be set which leads to sapp.dpi_scale reporting incorrectly 0.0
if s < 0.1 {
s = 1.0
}
return s
}
// draw_ellipse_filled draws an opaque elipse, with a center at x,y , filled with the color `c`
pub fn (ctx &Context) draw_ellipse_filled(x f32, y f32, r_horizontal f32, r_vertical f32, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_triangle_strip()
for i := 0; i < 360; i += 10 {
sgl.v2f(x, y)
sgl.v2f(x + math.sinf(f32(math.radians(i))) * r_horizontal, y +
math.cosf(f32(math.radians(i))) * r_vertical)
sgl.v2f(x + math.sinf(f32(math.radians(i + 10))) * r_horizontal, y +
math.cosf(f32(math.radians(i + 10))) * r_vertical)
}
sgl.end()
}
// draw_ellipse_empty draws the outline of an ellipse, with a center at x,y
pub fn (ctx &Context) draw_ellipse_empty(x f32, y f32, r_horizontal f32, r_vertical f32, c gx.Color) {
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
for i := 0; i < 360; i += 10 {
sgl.v2f(x + math.sinf(f32(math.radians(i))) * r_horizontal, y +
math.cosf(f32(math.radians(i))) * r_vertical)
sgl.v2f(x + math.sinf(f32(math.radians(i + 10))) * r_horizontal, y +
math.cosf(f32(math.radians(i + 10))) * r_vertical)
}
sgl.end()
}