mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
math: factorial submodule
This commit is contained in:
committed by
Alexander Medvednikov
parent
a5b43e1f4d
commit
1277ce22f8
80
vlib/math/factorial/factorial.v
Normal file
80
vlib/math/factorial/factorial.v
Normal file
@@ -0,0 +1,80 @@
|
||||
// Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
|
||||
// Use of this source code is governed by an MIT license
|
||||
// that can be found in the LICENSE file.
|
||||
|
||||
// Module created by Ulises Jeremias Cornejo Fandos based on
|
||||
// the definitions provided in https://scientificc.github.io/cmathl/
|
||||
|
||||
module factorial
|
||||
|
||||
import math
|
||||
|
||||
// factorial calculates the factorial of the provided value.
|
||||
pub fn factorial(n f64) f64 {
|
||||
// For a large postive argument (n >= FACTORIALS.len) return max_f64
|
||||
|
||||
if n >= FACTORIALS.len {
|
||||
return math.max_f64
|
||||
}
|
||||
|
||||
// Otherwise return n!.
|
||||
if n == f64(i64(n)) && n >= 0.0 {
|
||||
return FACTORIALS[i64(n)]
|
||||
}
|
||||
|
||||
return math.gamma(n + 1.0)
|
||||
}
|
||||
|
||||
// log_factorial calculates the log-factorial of the provided value.
|
||||
pub fn log_factorial(n f64) f64 {
|
||||
// For a large postive argument (n < 0) return max_f64
|
||||
|
||||
if n < 0 {
|
||||
return -math.max_f64
|
||||
}
|
||||
|
||||
// If n < N then return ln(n!).
|
||||
|
||||
if n != f64(i64(n)) {
|
||||
return math.log_gamma(n+1)
|
||||
} else if n < LOG_FACTORIALS.len {
|
||||
return LOG_FACTORIALS[i64(n)]
|
||||
}
|
||||
|
||||
// Otherwise return asymptotic expansion of ln(n!).
|
||||
|
||||
return log_factorial_asymptotic_expansion(int(n))
|
||||
}
|
||||
|
||||
fn log_factorial_asymptotic_expansion(n int) f64 {
|
||||
m := 6
|
||||
mut term := []f64
|
||||
xx := f64((n + 1) * (n + 1))
|
||||
mut xj := f64(n + 1)
|
||||
|
||||
log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)
|
||||
|
||||
mut i := 0
|
||||
|
||||
for i = 0; i < m; i++ {
|
||||
term << B[i] / xj
|
||||
xj *= xx
|
||||
}
|
||||
|
||||
mut sum := term[m-1]
|
||||
|
||||
for i = m - 2; i >= 0; i-- {
|
||||
if math.abs(sum) <= math.abs(term[i]) {
|
||||
break
|
||||
}
|
||||
|
||||
sum = term[i]
|
||||
}
|
||||
|
||||
for i >= 0 {
|
||||
sum += term[i]
|
||||
i--
|
||||
}
|
||||
|
||||
return log_factorial + sum
|
||||
}
|
||||
Reference in New Issue
Block a user