1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

math.big: improve multiplication performance (#15200)

This commit is contained in:
Subhomoy Haldar 2022-07-24 22:05:37 +05:30 committed by GitHub
parent 2d7406a8cd
commit 297cb5f89c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 158 additions and 36 deletions

View File

@ -110,14 +110,20 @@ fn subtract_digit_array(operand_a []u32, operand_b []u32, mut storage []u32) {
shrink_tail_zeros(mut storage)
}
const karatsuba_multiplication_limit = 1_000_000
const karatsuba_multiplication_limit = 240
// set limit to choose algorithm
const toom3_multiplication_limit = 10_000
[inline]
fn multiply_digit_array(operand_a []u32, operand_b []u32, mut storage []u32) {
if operand_a.len >= big.karatsuba_multiplication_limit
|| operand_b.len >= big.karatsuba_multiplication_limit {
max_len := if operand_a.len >= operand_b.len {
operand_a.len
} else {
operand_b.len
}
if max_len >= big.toom3_multiplication_limit {
toom3_multiply_digit_array(operand_a, operand_b, mut storage)
} else if max_len >= big.karatsuba_multiplication_limit {
karatsuba_multiply_digit_array(operand_a, operand_b, mut storage)
} else {
simple_multiply_digit_array(operand_a, operand_b, mut storage)

View File

@ -16,4 +16,9 @@ pub const (
signum: 1
is_const: true
}
three_int = Integer{
digits: [u32(3)]
signum: 1
is_const: true
}
)

View File

@ -61,8 +61,9 @@ fn newton_divide_array_by_array(operand_a []u32, operand_b []u32, mut quotient [
shrink_tail_zeros(mut remainder)
}
// bit_length returns the number of bits needed to represent the absolute value of the integer a.
[inline]
fn bit_length(a Integer) int {
pub fn bit_length(a Integer) int {
return a.digits.len * 32 - bits.leading_zeros_32(a.digits.last())
}
@ -82,32 +83,37 @@ fn debug_u32_str(a []u32) string {
return sb.str()
}
[direct_array_access; inline]
fn found_multiplication_base_case(operand_a []u32, operand_b []u32, mut storage []u32) bool {
// base case necessary to end recursion
if operand_a.len == 0 || operand_b.len == 0 {
storage.clear()
return true
}
if operand_a.len < operand_b.len {
multiply_digit_array(operand_b, operand_a, mut storage)
return true
}
if operand_b.len == 1 {
multiply_array_by_digit(operand_a, operand_b[0], mut storage)
return true
}
return false
}
// karatsuba algorithm for multiplication
// possible optimisations:
// - transform one or all the recurrences in loops
[direct_array_access]
fn karatsuba_multiply_digit_array(operand_a []u32, operand_b []u32, mut storage []u32) {
// base case necessary to end recursion
if operand_a.len == 0 || operand_b.len == 0 {
storage.clear()
if found_multiplication_base_case(operand_a, operand_b, mut storage) {
return
}
if operand_a.len < operand_b.len {
multiply_digit_array(operand_b, operand_a, mut storage)
return
}
if operand_b.len == 1 {
multiply_array_by_digit(operand_a, operand_b[0], mut storage)
return
}
// karatsuba
// thanks to the base cases we can pass zero-length arrays to the mult func
half := math.max(operand_a.len, operand_b.len) / 2
if half <= 0 {
panic('Unreachable. Both array have 1 length and multiply_array_by_digit should have been called')
}
a_l := operand_a[0..half]
a_h := operand_a[half..]
mut b_l := []u32{}
@ -137,14 +143,107 @@ fn karatsuba_multiply_digit_array(operand_a []u32, operand_b []u32, mut storage
subtract_in_place(mut p_2, p_3)
// return p_1.lshift(2 * u32(half * 32)) + p_2.lshift(u32(half * 32)) + p_3
lshift_byte_in_place(mut storage, 2 * half)
lshift_byte_in_place(mut p_2, half)
lshift_digits_in_place(mut storage, 2 * half)
lshift_digits_in_place(mut p_2, half)
add_in_place(mut storage, p_2)
add_in_place(mut storage, p_3)
shrink_tail_zeros(mut storage)
}
[direct_array_access]
fn toom3_multiply_digit_array(operand_a []u32, operand_b []u32, mut storage []u32) {
if found_multiplication_base_case(operand_a, operand_b, mut storage) {
return
}
// After the base case, we have operand_a as the larger integer in terms of digit length
// k is the length (in u32 digits) of the lower order slices
k := (operand_a.len + 2) / 3
k2 := 2 * k
// The pieces of the calculation need to be worked on as proper big.Integers
// because the intermediate results can be negative. After recombination, the
// final result will be positive.
// Slices of a and b
a0 := Integer{
digits: operand_a[0..k]
signum: 1
}
a1 := Integer{
digits: operand_a[k..k2]
signum: 1
}
a2 := Integer{
digits: operand_a[k2..]
signum: 1
}
// Zero arrays by default
mut b0 := zero_int.clone()
mut b1 := zero_int.clone()
mut b2 := zero_int.clone()
if operand_b.len < k {
b0 = Integer{
digits: operand_b
signum: 1
}
} else if operand_b.len < k2 {
b0 = Integer{
digits: operand_b[0..k]
signum: 1
}
b1 = Integer{
digits: operand_b[k..]
signum: 1
}
} else {
b0 = Integer{
digits: operand_b[0..k]
signum: 1
}
b1 = Integer{
digits: operand_b[k..k2]
signum: 1
}
b2 = Integer{
digits: operand_b[k2..]
signum: 1
}
}
// https://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication#Details
// DOI: 10.1007/978-3-540-73074-3_10
p0 := a0 * b0
mut ptemp := a2 + a0
mut qtemp := b2 + b0
vm1 := (ptemp - a1) * (qtemp - b1)
ptemp += a1
qtemp += b1
p1 := ptemp * qtemp
p2 := ((ptemp + a2).lshift(1) - a0) * ((qtemp + b2).lshift(1) - b0)
pinf := a2 * b2
mut t2 := (p2 - vm1) / three_int
mut tm1 := (p1 - vm1).rshift(1)
mut t1 := p1 - p0
t2 = (t2 - t1).rshift(1)
t1 = (t1 - tm1 - pinf)
t2 = t2 - pinf.lshift(1)
tm1 = tm1 - t2
// shift amount
s := u32(k) << 5
result := (((pinf.lshift(s) + t2).lshift(s) + t1).lshift(s) + tm1).lshift(s) + p0
storage = result.digits
}
[inline]
fn pow2(k int) Integer {
mut ret := []u32{len: (k >> 5) + 1}
@ -155,22 +254,34 @@ fn pow2(k int) Integer {
}
}
// optimized left shift of full u8(s) in place. byte_nb must be positive
// optimized left shift in place. amount must be positive
[direct_array_access]
fn lshift_byte_in_place(mut a []u32, byte_nb int) {
fn lshift_digits_in_place(mut a []u32, amount int) {
a_len := a.len
// control or allocate capacity
for _ in a_len .. a_len + byte_nb {
for _ in a_len .. a_len + amount {
a << u32(0)
}
for index := a_len - 1; index >= 0; index-- {
a[index + byte_nb] = a[index]
a[index + amount] = a[index]
}
for index in 0 .. byte_nb {
for index in 0 .. amount {
a[index] = u32(0)
}
}
// optimized right shift in place. amount must be positive
[direct_array_access]
fn rshift_digits_in_place(mut a []u32, amount int) {
for index := 0; index < a.len - amount; index++ {
a[index] = a[index + amount]
}
for index := a.len - amount; index < a.len; index++ {
a[index] = u32(0)
}
shrink_tail_zeros(mut a)
}
// operand b can be greater than operand a
// the capacity of both array is supposed to be sufficient
[direct_array_access; inline]
@ -210,20 +321,20 @@ fn subtract_in_place(mut a []u32, b []u32) {
mut carry := u32(0)
mut new_carry := u32(0)
for index in 0 .. min {
if a[index] < (b[index] + carry) {
new_carry = 1
new_carry = if a[index] < (b[index] + carry) {
u32(1)
} else {
new_carry = 0
u32(0)
}
a[index] -= (b[index] + carry)
carry = new_carry
}
if len_a >= len_b {
for index in min .. max {
if a[index] < carry {
new_carry = 1
new_carry = if a[index] < carry {
u32(1)
} else {
new_carry = 0
u32(0)
}
a[index] -= carry
carry = new_carry

View File

@ -24,9 +24,9 @@ fn test_add_in_place() {
assert a == [u32(0x17ff72ad), 0x1439]
}
fn test_lshift_byte_in_place() {
fn test_lshift_digits_in_place() {
mut a := [u32(5), 6, 7, 8]
lshift_byte_in_place(mut a, 2)
lshift_digits_in_place(mut a, 2)
assert a == [u32(0), 0, 5, 6, 7, 8]
}