1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

math: add math.vec module with generic 2D, 3D and 4D vector operations (#16710)

This commit is contained in:
Larpon 2022-12-19 17:10:48 +01:00 committed by GitHub
parent 2090e4a12f
commit 7e4dc24f1b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 1484 additions and 0 deletions

View File

@ -1,5 +1,6 @@
## V 0.3.3
*Not yet released*
- add `math.vec` module for generic vector math.
- `go foo()` has been replaced with `spawn foo()` (launches an OS thread, `go` will be used for
upcoming coroutines instead).
- vfmt now supports `// vfmt off` and `// vfmt on` for turning off the formatting locally for *short* snippets of code. Useful for keeping your carefully arranged matrices intact.

389
vlib/math/vec/vec2.v Normal file
View File

@ -0,0 +1,389 @@
// Copyright(C) 2020-2022 Lars Pontoppidan. All rights reserved.
// Use of this source code is governed by an MIT license file distributed with this software package
module vec
import math
pub const vec_epsilon = f32(10e-7)
// Vec2[T] is a generic struct representing a vector in 2D space.
pub struct Vec2[T] {
pub mut:
x T
y T
}
// vec2[T] returns a `Vec2` of type `T`, with `x` and `y` fields set.
pub fn vec2[T](x T, y T) Vec2[T] {
return Vec2[T]{
x: x
y: y
}
}
// zero sets the `x` and `y` fields to 0.
pub fn (mut v Vec2[T]) zero() {
v.x = 0
v.y = 0
}
// one sets the `x` and `y` fields to 1.
pub fn (mut v Vec2[T]) one() {
v.x = 1
v.y = 1
}
// copy returns a copy of this vector.
pub fn (v Vec2[T]) copy() Vec2[T] {
return Vec2[T]{v.x, v.y}
}
// from sets the `x` and `y` fields from `u`.
pub fn (mut v Vec2[T]) from(u Vec2[T]) {
v.x = u.x
v.y = u.y
}
// from_vec3 sets the `x` and `y` fields from `u`.
pub fn (mut v Vec2[T]) from_vec3[U](u Vec3[U]) {
v.x = T(u.x)
v.y = T(u.y)
}
// as_vec3 returns a Vec3 with `x` and `y` fields set from `v`, `z` is set to 0.
pub fn (v Vec2[T]) as_vec3[T]() Vec3[T] {
return Vec3[T]{v.x, v.y, 0}
}
// from_vec4 sets the `x` and `y` fields from `u`.
pub fn (mut v Vec2[T]) from_vec4[U](u Vec4[U]) {
v.x = T(u.x)
v.y = T(u.y)
}
// as_vec4 returns a Vec4 with `x` and `y` fields set from `v`, `z` and `w` is set to 0.
pub fn (v Vec2[T]) as_vec4[T]() Vec4[T] {
return Vec4[T]{v.x, v.y, 0, 0}
}
//
// Addition
//
// + returns the resulting vector of the addition of `v` and `u`.
[inline]
pub fn (v Vec2[T]) + (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x + u.x, v.y + u.y}
}
// add returns the resulting vector of the addition of `v` + `u`.
pub fn (v Vec2[T]) add(u Vec2[T]) Vec2[T] {
return v + u
}
// add_scalar returns the resulting vector of the addition of the `scalar` value.
pub fn (v Vec2[T]) add_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x + T(scalar), v.y + T(scalar)}
}
// plus adds vector `u` to the vector.
pub fn (mut v Vec2[T]) plus(u Vec2[T]) {
v.x += u.x
v.y += u.y
}
// plus_scalar adds the scalar `scalar` to the vector.
pub fn (mut v Vec2[T]) plus_scalar[U](scalar U) {
v.x += T(scalar)
v.y += T(scalar)
}
//
// Subtraction
//
// - returns the resulting vector of the subtraction of `v` and `u`.
[inline]
pub fn (v Vec2[T]) - (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x - u.x, v.y - u.y}
}
// sub returns the resulting vector of the subtraction of `v` - `u`.
pub fn (v Vec2[T]) sub(u Vec2[T]) Vec2[T] {
return v - u
}
// sub_scalar returns the resulting vector of the subtraction of the `scalar` value.
pub fn (v Vec2[T]) sub_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x - T(scalar), v.y - T(scalar)}
}
// subtract subtracts vector `u` from the vector.
pub fn (mut v Vec2[T]) subtract(u Vec2[T]) {
v.x -= u.x
v.y -= u.y
}
// subtract_scalar subtracts the scalar `scalar` from the vector.
pub fn (mut v Vec2[T]) subtract_scalar[U](scalar U) {
v.x -= T(scalar)
v.y -= T(scalar)
}
//
// Multiplication
//
// * returns the resulting vector of the multiplication of `v` and `u`.
[inline]
pub fn (v Vec2[T]) * (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x * u.x, v.y * u.y}
}
// mul returns the resulting vector of the multiplication of `v` * `u`.
pub fn (v Vec2[T]) mul(u Vec2[T]) Vec2[T] {
return v * u
}
// mul_scalar returns the resulting vector of the multiplication of the `scalar` value.
pub fn (v Vec2[T]) mul_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x * T(scalar), v.y * T(scalar)}
}
// multiply multiplies the vector with `u`.
pub fn (mut v Vec2[T]) multiply(u Vec2[T]) {
v.x *= u.x
v.y *= u.y
}
// multiply_scalar multiplies the vector with `scalar`.
pub fn (mut v Vec2[T]) multiply_scalar[U](scalar U) {
v.x *= T(scalar)
v.y *= T(scalar)
}
//
// Division
//
// / returns the resulting vector of the division of `v` and `u`.
[inline]
pub fn (v Vec2[T]) / (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x / u.x, v.y / u.y}
}
// div returns the resulting vector of the division of `v` / `u`.
pub fn (v Vec2[T]) div(u Vec2[T]) Vec2[T] {
return v / u
}
// div_scalar returns the resulting vector of the division by the `scalar` value.
pub fn (v Vec2[T]) div_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x / T(scalar), v.y / T(scalar)}
}
// divide divides the vector by `u`.
pub fn (mut v Vec2[T]) divide(u Vec2[T]) {
v.x /= u.x
v.y /= u.y
}
// divide_scalar divides the vector by `scalar`.
pub fn (mut v Vec2[T]) divide_scalar[U](scalar U) {
v.x /= T(scalar)
v.y /= T(scalar)
}
//
// Utility
//
// magnitude returns the magnitude, also known as the length, of the vector.
pub fn (v Vec2[T]) magnitude() T {
if v.x == 0 && v.y == 0 {
return T(0)
}
$if T is f64 {
return math.sqrt((v.x * v.x) + (v.y * v.y))
} $else {
return T(math.sqrt(f64(v.x * v.x) + f64(v.y * v.y)))
}
}
// magnitude_x returns the magnitude, also known as the length, of the 1D vector field x, y is ignored.
pub fn (v Vec2[T]) magnitude_x() T {
return T(math.sqrt(v.x * v.x))
}
// magnitude_x returns the magnitude, also known as the length, of the 1D vector field y, x is ignored.
pub fn (v Vec2[T]) magnitude_y() T {
return T(math.sqrt(v.y * v.y))
}
// dot returns the dot product of `v` and `u`.
pub fn (v Vec2[T]) dot(u Vec2[T]) T {
return (v.x * u.x) + (v.y * u.y)
}
// cross returns the cross product of `v` and `u`.
pub fn (v Vec2[T]) cross(u Vec2[T]) T {
return (v.x * u.y) - (v.y * u.x)
}
// unit returns the unit vector.
// unit vectors always have a magnitude, or length, of exactly 1.
pub fn (v Vec2[T]) unit() Vec2[T] {
m := v.magnitude()
return Vec2[T]{v.x / m, v.y / m}
}
// perp_cw returns the clockwise, or "left-hand", perpendicular vector of this vector.
pub fn (v Vec2[T]) perp_cw() Vec2[T] {
return Vec2[T]{v.y, -v.x}
}
// perp_ccw returns the counter-clockwise, or "right-hand", perpendicular vector of this vector.
pub fn (v Vec2[T]) perp_ccw() Vec2[T] {
return Vec2[T]{-v.y, v.x}
}
// perpendicular returns the `u` projected perpendicular vector to this vector.
pub fn (v Vec2[T]) perpendicular(u Vec2[T]) Vec2[T] {
return v - v.project(u)
}
// project returns the projected vector.
pub fn (v Vec2[T]) project(u Vec2[T]) Vec2[T] {
percent := v.dot(u) / u.dot(v)
return u.mul_scalar(percent)
}
// eq returns a bool indicating if the two vectors are equal.
[inline]
pub fn (v Vec2[T]) eq(u Vec2[T]) bool {
return v.x == u.x && v.y == u.y
}
// eq_epsilon returns a bool indicating if the two vectors are equal within the module `vec_epsilon` const.
pub fn (v Vec2[T]) eq_epsilon(u Vec2[T]) bool {
return v.eq_approx[T, f32](u, vec.vec_epsilon)
}
// eq_approx returns whether these vectors are approximately equal within `tolerance`.
pub fn (v Vec2[T]) eq_approx[T, U](u Vec2[T], tolerance U) bool {
diff_x := math.abs(v.x - u.x)
diff_y := math.abs(v.y - u.y)
if diff_x <= tolerance && diff_y <= tolerance {
return true
}
max_x := math.max(math.abs(v.x), math.abs(u.x))
max_y := math.max(math.abs(v.y), math.abs(u.y))
if diff_x < max_x * tolerance && diff_y < max_y * tolerance {
return true
}
return false
}
// is_approx_zero returns whether this vector is equal to zero within `tolerance`.
pub fn (v Vec2[T]) is_approx_zero(tolerance T) bool {
if math.abs(v.x) <= tolerance && math.abs(v.y) <= tolerance {
return true
}
return false
}
// eq_scalar returns a bool indicating if the `x` and `y` fields both equals `scalar`.
pub fn (v Vec2[T]) eq_scalar[U](scalar U) bool {
return v.x == T(scalar) && v.y == scalar
}
// distance returns the distance to the vector `u`.
pub fn (v Vec2[T]) distance(u Vec2[T]) T {
$if T is f64 {
return math.sqrt((v.x - u.x) * (v.x - u.x) + (v.y - u.y) * (v.y - u.y))
} $else {
return T(math.sqrt(f64(v.x - u.x) * f64(v.x - u.x) + f64(v.y - u.y) * f64(v.y - u.y)))
}
}
// manhattan_distance returns the Manhattan Distance to the vector `u`.
pub fn (v Vec2[T]) manhattan_distance(u Vec2[T]) T {
return math.abs(v.x - u.x) + math.abs(v.y - u.y)
}
// angle_between returns the angle in radians to the vector `u`.
pub fn (v Vec2[T]) angle_between(u Vec2[T]) T {
$if T is f64 {
return math.atan2((v.y - u.y), (v.x - u.x))
} $else {
return T(math.atan2(f64(v.y - u.y), f64(v.x - u.x)))
}
}
// angle returns the angle in radians of the vector.
pub fn (v Vec2[T]) angle() T {
$if T is f64 {
return math.atan2(v.y, v.x)
} $else {
return T(math.atan2(f64(v.y), f64(v.x)))
}
}
// abs sets `x` and `y` field values to their absolute values.
pub fn (mut v Vec2[T]) abs() {
if v.x < 0 {
v.x = math.abs(v.x)
}
if v.y < 0 {
v.y = math.abs(v.y)
}
}
// clean returns a vector with all fields of this vector set to zero (0) if they fall within `tolerance`.
pub fn (v Vec2[T]) clean[U](tolerance U) Vec2[T] {
mut r := v.copy()
if math.abs(v.x) < tolerance {
r.x = 0
}
if math.abs(v.y) < tolerance {
r.y = 0
}
return r
}
// clean_tolerance sets all fields to zero (0) if they fall within `tolerance`.
pub fn (mut v Vec2[T]) clean_tolerance[U](tolerance U) {
if math.abs(v.x) < tolerance {
v.x = 0
}
if math.abs(v.y) < tolerance {
v.y = 0
}
}
// inv returns the inverse, or reciprocal, of the vector.
pub fn (v Vec2[T]) inv() Vec2[T] {
return Vec2[T]{
x: if v.x != 0 { T(1) / v.x } else { 0 }
y: if v.y != 0 { T(1) / v.y } else { 0 }
}
}
// normalize normalizes the vector.
pub fn (v Vec2[T]) normalize() Vec2[T] {
m := v.magnitude()
if m == 0 {
return vec2[T](0, 0)
}
return Vec2[T]{
x: v.x * (1 / m)
y: v.y * (1 / m)
}
}
// sum returns a sum of all the fields.
pub fn (v Vec2[T]) sum() T {
return v.x + v.y
}

84
vlib/math/vec/vec2_test.v Normal file
View File

@ -0,0 +1,84 @@
import math.vec
fn test_vec2_int() {
mut v1 := vec.vec2(0, 0)
mut v2 := vec.vec2(0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec2[int]'
assert v3.x == 2
assert v3.y == 2
}
fn test_vec2_f32() {
mut v1 := vec.vec2(f32(0), 0)
mut v2 := vec.vec2(f32(0), 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec2[f32]'
assert v3.x == 2
assert v3.y == 2
}
fn test_vec2_f64() {
mut v1 := vec.vec2(0.0, 0)
mut v2 := vec.vec2(0.0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec2[f64]'
assert v3.x == 2
assert v3.y == 2
}
fn test_vec2_f64_utils_1() {
mut v1 := vec.vec2(2.0, 3.0)
mut v2 := vec.vec2(1.0, 4.0)
mut zv := vec.vec2(5.0, 5.0)
zv.zero()
v3 := v1 + v2
assert v3.x == 3
assert v3.y == 7
assert v1.dot(v2) == 14
assert v1.cross(v2) == 5
v1l := vec.vec2(40.0, 9.0)
assert v1l.magnitude() == 41
mut ctv1 := vec.vec2(0.000001, 0.000001)
ctv1.clean_tolerance(0.00001)
assert ctv1 == zv
}
fn test_vec2_f64_utils_2() {
mut v1 := vec.vec2(4.0, 4.0)
assert v1.unit().magnitude() == 1
v2 := v1.mul_scalar(0.5)
assert v2.x == 2
assert v2.y == 2
assert v2.unit().magnitude() == 1
invv2 := v2.inv()
assert invv2.x == 0.5
assert invv2.y == 0.5
}

396
vlib/math/vec/vec3.v Normal file
View File

@ -0,0 +1,396 @@
// Copyright(C) 2020-2022 Lars Pontoppidan. All rights reserved.
// Use of this source code is governed by an MIT license file distributed with this software package
module vec
import math
// Vec3[T] is a generic struct representing a vector in 3D space.
pub struct Vec3[T] {
pub mut:
x T
y T
z T
}
// vec3[T] returns a `Vec3` of type `T`, with `x`,`y` and `z` fields set.
pub fn vec3[T](x T, y T, z T) Vec3[T] {
return Vec3[T]{
x: x
y: y
z: z
}
}
// zero sets the `x`,`y` and `z` fields to 0.
pub fn (mut v Vec3[T]) zero() {
v.x = 0
v.y = 0
v.z = 0
}
// one sets the `x`,`y` and `z` fields to 1.
pub fn (mut v Vec3[T]) one() {
v.x = 1
v.y = 1
v.z = 1
}
// copy returns a copy of this vector.
pub fn (mut v Vec3[T]) copy() Vec3[T] {
return Vec3[T]{v.x, v.y, v.z}
}
// from sets the `x`,`y` and `z` fields from `u`.
pub fn (mut v Vec3[T]) from(u Vec3[T]) {
v.x = u.x
v.y = u.y
v.z = u.z
}
// from_vec2 sets the `x` and `y` fields from `u`.
pub fn (mut v Vec3[T]) from_vec2[U](u Vec2[U]) {
v.x = T(u.x)
v.y = T(u.y)
}
// as_vec2 returns a Vec2 with `x` and `y` fields set from `v`.
pub fn (mut v Vec3[T]) as_vec2[T]() Vec2[T] {
return Vec2[T]{v.x, v.y}
}
// from_vec4 sets the `x`,`y` and `z` fields from `u`.
pub fn (mut v Vec3[T]) from_vec4[U](u Vec4[U]) {
v.x = T(u.x)
v.y = T(u.y)
v.z = T(u.z)
}
// as_vec4 returns a Vec4 with `x`,`y` and `z` fields set from `v`, `w` is set to 0.
pub fn (mut v Vec3[T]) as_vec4[T]() Vec4[T] {
return Vec4[T]{v.x, v.y, v.z, 0}
}
//
// Addition
//
// + returns the resulting vector of the addition of `v` and `u`.
[inline]
pub fn (v Vec3[T]) + (u Vec3[T]) Vec3[T] {
return Vec3[T]{v.x + u.x, v.y + u.y, v.z + u.z}
}
// add returns the resulting vector of the addition of `v` + `u`.
pub fn (v Vec3[T]) add(u Vec3[T]) Vec3[T] {
return v + u
}
// add_vec2 returns the resulting vector of the addition of the
// `x` and `y` fields of `u`, `z` is left untouched.
pub fn (v Vec3[T]) add_vec2[U](u Vec2[U]) Vec3[T] {
return Vec3[T]{v.x + T(u.x), v.y + T(u.y), v.z}
}
// add_scalar returns the resulting vector of the addition of the `scalar` value.
pub fn (v Vec3[T]) add_scalar[U](scalar U) Vec3[T] {
return Vec3[T]{v.x + T(scalar), v.y + T(scalar), v.z + T(scalar)}
}
// plus adds vector `u` to the vector.
pub fn (mut v Vec3[T]) plus(u Vec3[T]) {
v.x += u.x
v.y += u.y
v.z += u.z
}
// plus_vec2 adds `x` and `y` fields of vector `u` to the vector, `z` is left untouched.
pub fn (mut v Vec3[T]) plus_vec2[U](u Vec2[U]) {
v.x += T(u.x)
v.y += T(u.y)
}
// plus_scalar adds the scalar `scalar` to the vector.
pub fn (mut v Vec3[T]) plus_scalar[U](scalar U) {
v.x += T(scalar)
v.y += T(scalar)
v.z += T(scalar)
}
//
// Subtraction
//
// - returns the resulting vector of the subtraction of `v` and `u`.
[inline]
pub fn (v Vec3[T]) - (u Vec3[T]) Vec3[T] {
return Vec3[T]{v.x - u.x, v.y - u.y, v.z - u.z}
}
// sub returns the resulting vector of the subtraction of `v` - `u`.
pub fn (v Vec3[T]) sub(u Vec3[T]) Vec3[T] {
return v - u
}
// sub_scalar returns the resulting vector of the subtraction of the `scalar` value.
pub fn (v Vec3[T]) sub_scalar[U](scalar U) Vec3[T] {
return Vec3[T]{v.x - T(scalar), v.y - T(scalar), v.z - T(scalar)}
}
// subtract subtracts vector `u` from the vector.
pub fn (mut v Vec3[T]) subtract(u Vec3[T]) {
v.x -= u.x
v.y -= u.y
v.z -= u.z
}
// subtract_scalar subtracts the scalar `scalar` from the vector.
pub fn (mut v Vec3[T]) subtract_scalar[U](scalar U) {
v.x -= T(scalar)
v.y -= T(scalar)
v.z -= T(scalar)
}
//
// Multiplication
//
// * returns the resulting vector of the multiplication of `v` and `u`.
[inline]
pub fn (v Vec3[T]) * (u Vec3[T]) Vec3[T] {
return Vec3[T]{v.x * u.x, v.y * u.y, v.z * u.z}
}
// mul returns the resulting vector of the multiplication of `v` * `u`.
pub fn (v Vec3[T]) mul(u Vec3[T]) Vec3[T] {
return v * u
}
// mul_scalar returns the resulting vector of the multiplication of the `scalar` value.
pub fn (v Vec3[T]) mul_scalar[U](scalar U) Vec3[T] {
return Vec3[T]{v.x * T(scalar), v.y * T(scalar), v.z * T(scalar)}
}
// multiply multiplies the vector with `u`.
pub fn (mut v Vec3[T]) multiply(u Vec3[T]) {
v.x *= u.x
v.y *= u.y
v.z *= u.z
}
// multiply_scalar multiplies the vector with `scalar`.
pub fn (mut v Vec3[T]) multiply_scalar[U](scalar U) {
v.x *= T(scalar)
v.y *= T(scalar)
v.z *= T(scalar)
}
//
// Division
//
// / returns the resulting vector of the division of `v` and `u`.
[inline]
pub fn (v Vec3[T]) / (u Vec3[T]) Vec3[T] {
return Vec3[T]{v.x / u.x, v.y / u.y, v.z / u.z}
}
// div returns the resulting vector of the division of `v` / `u`.
pub fn (v Vec3[T]) div(u Vec3[T]) Vec3[T] {
return v / u
}
// div_scalar returns the resulting vector of the division by the `scalar` value.
pub fn (v Vec3[T]) div_scalar[U](scalar U) Vec3[T] {
return Vec3[T]{v.x / T(scalar), v.y / T(scalar), v.z / T(scalar)}
}
// divide divides the vector by `u`.
pub fn (mut v Vec3[T]) divide(u Vec3[T]) {
v.x /= u.x
v.y /= u.y
v.z /= u.z
}
// divide_scalar divides the vector by `scalar`.
pub fn (mut v Vec3[T]) divide_scalar[U](scalar U) {
v.x /= T(scalar)
v.y /= T(scalar)
v.z /= T(scalar)
}
//
// Utility
//
// magnitude returns the magnitude, also known as the length, of the vector.
pub fn (v Vec3[T]) magnitude() T {
if v.x == 0 && v.y == 0 && v.z == 0 {
return T(0)
}
return T(math.sqrt((v.x * v.x) + (v.y * v.y) + (v.z * v.z)))
}
// dot returns the dot product of `v` and `u`.
pub fn (v Vec3[T]) dot(u Vec3[T]) T {
return T((v.x * u.x) + (v.y * u.y) + (v.z * u.z))
}
// cross returns the cross product of `v` and `u`.
pub fn (v Vec3[T]) cross(u Vec3[T]) Vec3[T] {
return Vec3[T]{
x: (v.y * u.z) - (v.z * u.y)
y: (v.z * u.x) - (v.x * u.z)
z: (v.x * u.y) - (v.y * u.x)
}
}
// unit returns the unit vector.
// unit vectors always have a magnitude, or length, of exactly 1.
pub fn (v Vec3[T]) unit() Vec3[T] {
m := v.magnitude()
return Vec3[T]{v.x / m, v.y / m, v.z / m}
}
// perpendicular returns the `u` projected perpendicular vector to this vector.
pub fn (v Vec3[T]) perpendicular(u Vec3[T]) Vec3[T] {
return v - v.project(u)
}
// project returns the projected vector.
pub fn (v Vec3[T]) project(u Vec3[T]) Vec3[T] {
percent := v.dot(u) / u.dot(v)
return u.mul_scalar(percent)
}
// eq returns a bool indicating if the two vectors are equal.
[inline]
pub fn (v Vec3[T]) eq(u Vec3[T]) bool {
return v.x == u.x && v.y == u.y && v.z == u.z
}
// eq_epsilon returns a bool indicating if the two vectors are equal within the module `vec_epsilon` const.
pub fn (v Vec3[T]) eq_epsilon(u Vec3[T]) bool {
return v.eq_approx[T, f32](u, vec_epsilon)
}
// eq_approx returns whether these vectors are approximately equal within `tolerance`.
pub fn (v Vec3[T]) eq_approx[T, U](u Vec3[T], tolerance U) bool {
diff_x := math.abs(v.x - u.x)
diff_y := math.abs(v.y - u.y)
diff_z := math.abs(v.z - u.z)
if diff_x <= tolerance && diff_y <= tolerance && diff_z <= tolerance {
return true
}
max_x := math.max(math.abs(v.x), math.abs(u.x))
max_y := math.max(math.abs(v.y), math.abs(u.y))
max_z := math.max(math.abs(v.z), math.abs(u.z))
if diff_x < max_x * tolerance && diff_y < max_y * tolerance && diff_z < max_z * tolerance {
return true
}
return false
}
// is_approx_zero returns whether this vector is equal to zero within `tolerance`.
pub fn (v Vec3[T]) is_approx_zero(tolerance f64) bool {
if math.abs(v.x) <= tolerance && math.abs(v.y) <= tolerance && math.abs(v.z) <= tolerance {
return true
}
return false
}
// eq_scalar returns a bool indicating if the `x`,`y` and `z` fields all equals `scalar`.
pub fn (v Vec3[T]) eq_scalar[U](scalar U) bool {
return v.x == T(scalar) && v.y == T(scalar) && v.z == T(scalar)
}
// distance returns the distance to the vector `u`.
pub fn (v Vec3[T]) distance(u Vec3[T]) f64 {
return math.sqrt((v.x - u.x) * (v.x - u.x) + (v.y - u.y) * (v.y - u.y) +
(v.z - u.z) * (v.z - u.z))
}
// manhattan_distance returns the Manhattan distance to the vector `u`.
pub fn (v Vec3[T]) manhattan_distance(u Vec3[T]) f64 {
return math.abs(v.x - u.x) + math.abs(v.y - u.y) + math.abs(v.z - u.z)
}
// angle_between returns the angle in radians to the vector `u`.
pub fn (v Vec3[T]) angle_between(u Vec3[T]) T {
$if T is f64 {
return math.acos(((v.x * u.x) + (v.y * u.y) + (v.z * u.z)) / math.sqrt((v.x * v.x) +
(v.y * v.y) + (v.z * v.z)) * math.sqrt((u.x * u.x) + (u.y * u.y) + (u.z * u.z)))
} $else {
return T(math.acos(f64((v.x * u.x) + (v.y * u.y) + (v.z * u.z)) / math.sqrt(
f64(v.x * v.x) + (v.y * v.y) + (v.z * v.z)) * math.sqrt(f64(u.x * u.x) + (u.y * u.y) +
(u.z * u.z))))
}
}
// abs sets `x`, `y` and `z` field values to their absolute values.
pub fn (mut v Vec3[T]) abs() {
if v.x < 0 {
v.x = math.abs(v.x)
}
if v.y < 0 {
v.y = math.abs(v.y)
}
if v.z < 0 {
v.z = math.abs(v.z)
}
}
// clean returns a vector with all fields of this vector set to zero (0) if they fall within `tolerance`.
pub fn (v Vec3[T]) clean[U](tolerance U) Vec3[T] {
mut r := v.copy()
if math.abs(v.x) < tolerance {
r.x = 0
}
if math.abs(v.y) < tolerance {
r.y = 0
}
if math.abs(v.z) < tolerance {
r.z = 0
}
return r
}
// clean_tolerance sets all fields to zero (0) if they fall within `tolerance`.
pub fn (mut v Vec3[T]) clean_tolerance[U](tolerance U) {
if math.abs(v.x) < tolerance {
v.x = 0
}
if math.abs(v.y) < tolerance {
v.y = 0
}
if math.abs(v.z) < tolerance {
v.z = 0
}
}
// inv returns the inverse, or reciprocal, of the vector.
pub fn (v Vec3[T]) inv() Vec3[T] {
return Vec3[T]{
x: if v.x != 0 { T(1) / v.x } else { 0 }
y: if v.y != 0 { T(1) / v.y } else { 0 }
z: if v.z != 0 { T(1) / v.z } else { 0 }
}
}
// normalize normalizes the vector.
pub fn (v Vec3[T]) normalize() Vec3[T] {
m := v.magnitude()
if m == 0 {
return vec3[T](0, 0, 0)
}
return Vec3[T]{
x: v.x * (1 / m)
y: v.y * (1 / m)
z: v.z * (1 / m)
}
}
// sum returns a sum of all the fields.
pub fn (v Vec3[T]) sum() T {
return v.x + v.y + v.z
}

90
vlib/math/vec/vec3_test.v Normal file
View File

@ -0,0 +1,90 @@
import math.vec
fn test_vec3_int() {
mut v1 := vec.vec3(0, 0, 0)
mut v2 := vec.vec3(0, 0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1.z == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec3[int]'
assert v3.x == 2
assert v3.y == 2
assert v3.z == 2
}
fn test_vec3_f32() {
mut v1 := vec.vec3(f32(0), 0, 0)
mut v2 := vec.vec3(f32(0), 0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1.z == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec3[f32]'
assert v3.x == 2
assert v3.y == 2
assert v3.z == 2
}
fn test_vec3_f64() {
mut v1 := vec.vec3(0.0, 0, 0)
mut v2 := vec.vec3(0.0, 0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1.z == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec3[f64]'
assert v3.x == 2
assert v3.y == 2
assert v3.z == 2
}
fn test_vec3_f64_utils_1() {
mut v1 := vec.vec3(2.0, 3.0, 1.5)
mut v2 := vec.vec3(1.0, 4.0, 1.5)
mut zv := vec.vec3(5.0, 5.0, 5.0)
zv.zero()
v3 := v1 + v2
assert v3.x == 3
assert v3.y == 7
assert v3.z == 3
v1l := vec.vec3(6.0, 2.0, -3.0)
assert v1l.magnitude() == 7
mut ctv1 := vec.vec3(0.000001, 0.000001, 0.000001)
ctv1.clean_tolerance(0.00001)
assert ctv1 == zv
}
fn test_vec3_f64_utils_2() {
mut v1 := vec.vec3(4.0, 4.0, 8.0)
assert v1.unit().magnitude() == 1
v2 := v1.mul_scalar(0.5)
assert v2.x == 2
assert v2.y == 2
assert v2.z == 4
assert v2.unit().magnitude() == 1
invv2 := v2.inv()
assert invv2.x == 0.5
assert invv2.y == 0.5
assert invv2.z == 0.25
}

425
vlib/math/vec/vec4.v Normal file
View File

@ -0,0 +1,425 @@
// Copyright(C) 2020-2022 Lars Pontoppidan. All rights reserved.
// Use of this source code is governed by an MIT license file distributed with this software package
module vec
import math
// Vec4[T] is a generic struct representing a vector in 4D space.
pub struct Vec4[T] {
pub mut:
x T
y T
z T
w T
}
// vec4[T] returns a `Vec4` of type `T`, with `x`,`y`,`z` and `w` fields set.
pub fn vec4[T](x T, y T, z T, w T) Vec4[T] {
return Vec4[T]{
x: x
y: y
z: z
w: w
}
}
// zero sets the `x`,`y`,`z` and `w` fields to 0.
pub fn (mut v Vec4[T]) zero() {
v.x = 0
v.y = 0
v.z = 0
v.w = 0
}
// one sets the `x`,`y`,`z` and `w` fields to 1.
pub fn (mut v Vec4[T]) one() {
v.x = 1
v.y = 1
v.z = 1
v.w = 1
}
// copy returns a copy of this vector.
pub fn (v Vec4[T]) copy() Vec4[T] {
return Vec4[T]{v.x, v.y, v.z, v.w}
}
// from sets the `x`,`y`,`z` and `w` fields from `u`.
pub fn (mut v Vec4[T]) from(u Vec4[T]) {
v.x = u.x
v.y = u.y
v.z = u.z
v.w = u.w
}
// from_vec2 sets the `x` and `y` fields from `u`.
pub fn (mut v Vec4[T]) from_vec2(u Vec2[T]) {
v.x = u.x
v.y = u.y
}
// as_vec2 returns a Vec2 with `x` and `y` fields set from `v`.
pub fn (v Vec4[T]) as_vec2[U]() Vec2[U] {
return Vec2[U]{v.x, v.y}
}
// from_vec3 sets the `x`,`y` and `z` fields from `u`.
pub fn (mut v Vec4[T]) from_vec3[U](u Vec3[U]) {
v.x = T(u.x)
v.y = T(u.y)
v.z = T(u.z)
}
// as_vec3 returns a Vec3 with `x`,`y` and `z` fields set from `v`.
pub fn (v Vec4[T]) as_vec3[U]() Vec3[U] {
return Vec3[U]{v.x, v.y, v.z}
}
//
// Addition
//
// + returns the resulting vector of the addition of `v` and `u`.
[inline]
pub fn (v Vec4[T]) + (u Vec4[T]) Vec4[T] {
return Vec4[T]{v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w}
}
// add returns the resulting vector of the addition of `v` + `u`.
pub fn (v Vec4[T]) add(u Vec4[T]) Vec4[T] {
return v + u
}
// add_vec2 returns the resulting vector of the addition of the
// `x` and `y` fields of `u`, `z` is left untouched.
pub fn (v Vec4[T]) add_vec2[U](u Vec2[U]) Vec4[T] {
return Vec4[T]{v.x + u.x, v.y + u.y, 0, 0}
}
// add_vec3 returns the resulting vector of the addition of the
// `x`,`y` and `z` fields of `u`, `w` is left untouched.
pub fn (v Vec4[T]) add_vec3[U](u Vec3[U]) Vec4[T] {
return Vec4[T]{v.x + u.x, v.y + u.y, v.z + u.z, 0}
}
// add_scalar returns the resulting vector of the addition of the `scalar` value.
pub fn (v Vec4[T]) add_scalar[U](scalar U) Vec4[T] {
return Vec4[T]{v.x + T(scalar), v.y + T(scalar), v.z + T(scalar), v.w + T(scalar)}
}
// plus adds vector `u` to the vector.
pub fn (mut v Vec4[T]) plus(u Vec4[T]) {
v.x += u.x
v.y += u.y
v.z += u.z
v.w += u.w
}
// plus_scalar adds the scalar `scalar` to the vector.
pub fn (mut v Vec4[T]) plus_scalar[U](scalar U) {
v.x += T(scalar)
v.y += T(scalar)
v.z += T(scalar)
v.w += T(scalar)
}
//
// Subtraction
//
// - returns the resulting vector of the subtraction of `v` and `u`.
[inline]
pub fn (v Vec4[T]) - (u Vec4[T]) Vec4[T] {
return Vec4[T]{v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w}
}
// sub returns the resulting vector of the subtraction of `v` - `u`.
pub fn (v Vec4[T]) sub(u Vec4[T]) Vec4[T] {
return v - u
}
// sub_scalar returns the resulting vector of the subtraction of the `scalar` value.
pub fn (v Vec4[T]) sub_scalar[U](scalar U) Vec4[T] {
return Vec4[T]{v.x - T(scalar), v.y - T(scalar), v.z - T(scalar), v.w - T(scalar)}
}
// subtract subtracts vector `u` from the vector.
pub fn (mut v Vec4[T]) subtract(u Vec4[T]) {
v.x -= u.x
v.y -= u.y
v.z -= u.z
v.w -= u.w
}
// subtract_scalar subtracts the scalar `scalar` from the vector.
pub fn (mut v Vec4[T]) subtract_scalar[U](scalar U) {
v.x -= T(scalar)
v.y -= T(scalar)
v.z -= T(scalar)
v.w -= T(scalar)
}
//
// Multiplication
//
// * returns the resulting vector of the multiplication of `v` and `u`.
[inline]
pub fn (v Vec4[T]) * (u Vec4[T]) Vec4[T] {
return Vec4[T]{v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w}
}
// mul returns the resulting vector of the multiplication of `v` * `u`.
pub fn (v Vec4[T]) mul(u Vec4[T]) Vec4[T] {
return v * u
}
// mul_scalar returns the resulting vector of the multiplication of the `scalar` value.
pub fn (v Vec4[T]) mul_scalar[U](scalar U) Vec4[T] {
return Vec4[T]{v.x * T(scalar), v.y * T(scalar), v.z * T(scalar), v.w * T(scalar)}
}
// multiply multiplies the vector with `u`.
pub fn (mut v Vec4[T]) multiply(u Vec4[T]) {
v.x *= u.x
v.y *= u.y
v.z *= u.z
v.w *= u.w
}
// multiply_scalar multiplies the vector with `scalar`.
pub fn (mut v Vec4[T]) multiply_scalar[U](scalar U) {
v.x *= T(scalar)
v.y *= T(scalar)
v.z *= T(scalar)
v.w *= T(scalar)
}
//
// Division
//
// / returns the resulting vector of the division of `v` and `u`.
[inline]
pub fn (v Vec4[T]) / (u Vec4[T]) Vec4[T] {
return Vec4[T]{v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w}
}
// div returns the resulting vector of the division of `v` / `u`.
pub fn (v Vec4[T]) div(u Vec4[T]) Vec4[T] {
return v / u
}
// div_scalar returns the resulting vector of the division by the `scalar` value.
pub fn (v Vec4[T]) div_scalar[U](scalar U) Vec4[T] {
return Vec4[T]{v.x / T(scalar), v.y / T(scalar), v.z / T(scalar), v.w / T(scalar)}
}
// divide divides the vector by `u`.
pub fn (mut v Vec4[T]) divide(u Vec4[T]) {
v.x /= u.x
v.y /= u.y
v.z /= u.z
v.w /= u.w
}
// divide_scalar divides the vector by `scalar`.
pub fn (mut v Vec4[T]) divide_scalar[U](scalar U) {
v.x /= T(scalar)
v.y /= T(scalar)
v.z /= T(scalar)
v.w /= T(scalar)
}
//
// Utility
//
// magnitude returns the magnitude, also known as the length, of the vector.
pub fn (v Vec4[T]) magnitude() T {
if v.x == 0 && v.y == 0 && v.z == 0 && v.w == 0 {
return T(0)
}
return T(math.sqrt((v.x * v.x) + (v.y * v.y) + (v.z * v.z) + (v.w * v.w)))
}
// dot returns the dot product of `v` and `u`.
pub fn (v Vec4[T]) dot(u Vec4[T]) T {
return T((v.x * u.x) + (v.y * u.y) + (v.z * u.z) + (v.w * u.w))
}
// cross_xyz returns the cross product of `v` and `u`'s `x`,`y` and `z` fields.
pub fn (v Vec4[T]) cross_xyz(u Vec4[T]) Vec4[T] {
return Vec4[T]{
x: (v.y * u.z) - (v.z * u.y)
y: (v.z * u.x) - (v.x * u.z)
z: (v.x * u.y) - (v.y * u.x)
w: 0
}
}
// unit returns the unit vector.
// unit vectors always have a magnitude, or length, of exactly 1.
pub fn (v Vec4[T]) unit() Vec4[T] {
m := v.magnitude()
return Vec4[T]{
x: v.x / m
y: v.y / m
z: v.z / m
w: v.w / m
}
}
// perpendicular returns the `u` projected perpendicular vector to this vector.
pub fn (v Vec4[T]) perpendicular(u Vec4[T]) Vec4[T] {
return v - v.project(u)
}
// project returns the projected vector.
pub fn (v Vec4[T]) project(u Vec4[T]) Vec4[T] {
percent := v.dot(u) / u.dot(v)
return u.mul_scalar(percent)
}
// eq returns a bool indicating if the two vectors are equal.
[inline]
pub fn (v Vec4[T]) eq(u Vec4[T]) bool {
return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w
}
// eq_epsilon returns a bool indicating if the two vectors are equal within the module `vec_epsilon` const.
pub fn (v Vec4[T]) eq_epsilon(u Vec4[T]) bool {
return v.eq_approx[T, f32](u, vec_epsilon)
}
// eq_approx returns whether these vectors are approximately equal within `tolerance`.
pub fn (v Vec4[T]) eq_approx[T, U](u Vec4[T], tolerance U) bool {
diff_x := math.abs(v.x - u.x)
diff_y := math.abs(v.y - u.y)
diff_z := math.abs(v.z - u.z)
diff_w := math.abs(v.w - u.w)
if diff_x <= tolerance && diff_y <= tolerance && diff_z <= tolerance && diff_w <= tolerance {
return true
}
max_x := math.max(math.abs(v.x), math.abs(u.x))
max_y := math.max(math.abs(v.y), math.abs(u.y))
max_z := math.max(math.abs(v.z), math.abs(u.z))
max_w := math.max(math.abs(v.w), math.abs(u.w))
if diff_x < max_x * tolerance && diff_y < max_y * tolerance && diff_z < max_z * tolerance
&& diff_w < max_w * tolerance {
return true
}
return false
}
// is_approx_zero returns whether this vector is equal to zero within `tolerance`.
pub fn (v Vec4[T]) is_approx_zero(tolerance f64) bool {
if math.abs(v.x) <= tolerance && math.abs(v.y) <= tolerance && math.abs(v.z) <= tolerance
&& math.abs(v.w) <= tolerance {
return true
}
return false
}
// eq_scalar returns a bool indicating if the `x`,`y`,`z` and `w` fields all equals `scalar`.
pub fn (v Vec4[T]) eq_scalar[U](scalar U) bool {
return v.x == scalar && v.y == T(scalar) && v.z == T(scalar) && v.w == T(scalar)
}
// distance returns the distance to the vector `u`.
pub fn (v Vec4[T]) distance(u Vec4[T]) f64 {
return math.sqrt((v.x - u.x) * (v.x - u.x) + (v.y - u.y) * (v.y - u.y) +
(v.z - u.z) * (v.z - u.z) + (v.w - u.w) * (v.w - u.w))
}
// manhattan_distance returns the Manhattan distance to the vector `u`.
pub fn (v Vec4[T]) manhattan_distance(u Vec4[T]) f64 {
return math.abs(v.x - u.x) + math.abs(v.y - u.y) + math.abs(v.z - u.z) + math.abs(v.w - u.w)
}
// abs sets `x`, `y`, `z` and `w` field values to their absolute values.
pub fn (mut v Vec4[T]) abs() {
if v.x < 0 {
v.x = math.abs(v.x)
}
if v.y < 0 {
v.y = math.abs(v.y)
}
if v.z < 0 {
v.z = math.abs(v.z)
}
if v.w < 0 {
v.w = math.abs(v.w)
}
}
// NOTE a few of the following functions was adapted and/or inspired from Dario Deleddas excellent
// work on the `gg.m4` vlib module. Here's the Copyright/license text covering that code:
//
// Copyright (c) 2021 Dario Deledda. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
// clean returns a vector with all fields of this vector set to zero (0) if they fall within `tolerance`.
pub fn (v Vec4[T]) clean[U](tolerance U) Vec4[T] {
mut r := v.copy()
if math.abs(v.x) < tolerance {
r.x = 0
}
if math.abs(v.y) < tolerance {
r.y = 0
}
if math.abs(v.z) < tolerance {
r.z = 0
}
if math.abs(v.w) < tolerance {
r.w = 0
}
return r
}
// clean_tolerance sets all fields to zero (0) if they fall within `tolerance`.
pub fn (mut v Vec4[T]) clean_tolerance[U](tolerance U) {
if math.abs(v.x) < tolerance {
v.x = 0
}
if math.abs(v.y) < tolerance {
v.y = 0
}
if math.abs(v.z) < tolerance {
v.z = 0
}
if math.abs(v.w) < tolerance {
v.w = 0
}
}
// inv returns the inverse, or reciprocal, of the vector.
pub fn (v Vec4[T]) inv() Vec4[T] {
return Vec4[T]{
x: if v.x != 0 { T(1) / v.x } else { 0 }
y: if v.y != 0 { T(1) / v.y } else { 0 }
z: if v.z != 0 { T(1) / v.z } else { 0 }
w: if v.w != 0 { T(1) / v.w } else { 0 }
}
}
// normalize normalizes the vector.
pub fn (v Vec4[T]) normalize() Vec4[T] {
m := v.magnitude()
if m == 0 {
return vec4[T](0, 0, 0, 0)
}
return Vec4[T]{
x: v.x * (1 / m)
y: v.y * (1 / m)
z: v.z * (1 / m)
w: v.w * (1 / m)
}
}
// sum returns a sum of all the fields.
pub fn (v Vec4[T]) sum() T {
return v.x + v.y + v.z + v.w
}

99
vlib/math/vec/vec4_test.v Normal file
View File

@ -0,0 +1,99 @@
import math.vec
fn test_vec4_int() {
mut v1 := vec.vec4(0, 0, 0, 0)
mut v2 := vec.vec4(0, 0, 0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1.z == 1
assert v1.w == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec4[int]'
assert v3.x == 2
assert v3.y == 2
assert v3.z == 2
assert v3.w == 2
}
fn test_vec4_f32() {
mut v1 := vec.vec4(f32(0), 0, 0, 0)
mut v2 := vec.vec4(f32(0), 0, 0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1.z == 1
assert v1.w == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec4[f32]'
assert v3.x == 2
assert v3.y == 2
assert v3.z == 2
assert v3.w == 2
}
fn test_vec4_f64() {
mut v1 := vec.vec4(0.0, 0, 0, 0)
mut v2 := vec.vec4(0.0, 0, 0, 0)
assert v1 == v2
v1.one()
v2.one()
assert v1.x == 1
assert v1.y == 1
assert v1.z == 1
assert v1.w == 1
assert v1 == v2
v3 := v1 + v2
assert typeof(v3).name == 'vec.Vec4[f64]'
assert v3.x == 2
assert v3.y == 2
assert v3.z == 2
assert v3.w == 2
}
fn test_vec4_f64_utils_1() {
mut v1 := vec.vec4(2.0, 3.0, 1.5, 3.0)
mut v2 := vec.vec4(1.0, 4.0, 1.5, 3.0)
mut zv := vec.vec4(5.0, 5.0, 5.0, 5.0)
zv.zero()
v3 := v1 + v2
assert v3.x == 3
assert v3.y == 7
assert v3.z == 3
assert v3.w == 6
assert v3.unit().magnitude() == 1
mut ctv1 := vec.vec4(0.000001, 0.000001, 0.000001, 0.000001)
ctv1.clean_tolerance(0.00001)
assert ctv1 == zv
}
fn test_vec4_f64_utils_2() {
mut v1 := vec.vec4(4.0, 4.0, 8.0, 2.0)
assert v1.unit().magnitude() == 1
v2 := v1.mul_scalar(0.5)
assert v2.x == 2
assert v2.y == 2
assert v2.z == 4
assert v2.w == 1
assert v2.unit().magnitude() == 1
invv2 := v2.inv()
assert invv2.x == 0.5
assert invv2.y == 0.5
assert invv2.z == 0.25
assert invv2.w == 1.0
}