1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

arrays, maps: cleanup comments and parameter names in function signatures (#15960)

This commit is contained in:
ChAoS_UnItY 2022-10-04 15:07:36 +08:00 committed by GitHub
parent 40cbd68272
commit acbfe88dd9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 123 additions and 123 deletions

View File

@ -11,12 +11,12 @@ module arrays
// min returns the minimum value in the array
// Example: arrays.min([1,2,3,0,9]) // => 0
pub fn min<T>(a []T) ?T {
if a.len == 0 {
pub fn min<T>(array []T) !T {
if array.len == 0 {
return error('.min called on an empty array')
}
mut val := a[0]
for e in a {
mut val := array[0]
for e in array {
if e < val {
val = e
}
@ -26,12 +26,12 @@ pub fn min<T>(a []T) ?T {
// max returns the maximum value in the array
// Example: arrays.max([1,2,3,0,9]) // => 9
pub fn max<T>(a []T) ?T {
if a.len == 0 {
pub fn max<T>(array []T) !T {
if array.len == 0 {
return error('.max called on an empty array')
}
mut val := a[0]
for e in a {
mut val := array[0]
for e in array {
if e > val {
val = e
}
@ -41,13 +41,13 @@ pub fn max<T>(a []T) ?T {
// idx_min returns the index of the minimum value in the array
// Example: arrays.idx_min([1,2,3,0,9]) // => 3
pub fn idx_min<T>(a []T) ?int {
if a.len == 0 {
pub fn idx_min<T>(array []T) !int {
if array.len == 0 {
return error('.idx_min called on an empty array')
}
mut idx := 0
mut val := a[0]
for i, e in a {
mut val := array[0]
for i, e in array {
if e < val {
val = e
idx = i
@ -58,13 +58,13 @@ pub fn idx_min<T>(a []T) ?int {
// idx_max returns the index of the maximum value in the array
// Example: arrays.idx_max([1,2,3,0,9]) // => 4
pub fn idx_max<T>(a []T) ?int {
if a.len == 0 {
pub fn idx_max<T>(array []T) !int {
if array.len == 0 {
return error('.idx_max called on an empty array')
}
mut idx := 0
mut val := a[0]
for i, e in a {
mut val := array[0]
for i, e in array {
if e > val {
val = e
idx = i
@ -114,12 +114,12 @@ pub fn merge<T>(a []T, b []T) []T {
//
// NOTE: An error will be generated if the type annotation is omitted.
// Example: arrays.group<int>([1,2,3],[4,5,6]) // => [[1, 4], [2, 5], [3, 6]]
pub fn group<T>(lists ...[]T) [][]T {
mut length := if lists.len > 0 { lists[0].len } else { 0 }
pub fn group<T>(arrays ...[]T) [][]T {
mut length := if arrays.len > 0 { arrays[0].len } else { 0 }
// calculate length of output by finding shortest input array
for ndx in 1 .. lists.len {
if lists[ndx].len < length {
length = lists[ndx].len
for ndx in 1 .. arrays.len {
if arrays[ndx].len < length {
length = arrays[ndx].len
}
}
@ -127,10 +127,10 @@ pub fn group<T>(lists ...[]T) [][]T {
mut arr := [][]T{cap: length}
// append all combined arrays into the resultant array
for ndx in 0 .. length {
mut grouped := []T{cap: lists.len}
mut grouped := []T{cap: arrays.len}
// combine each list item for the ndx position into one array
for list_ndx in 0 .. lists.len {
grouped << lists[list_ndx][ndx]
for arr_ndx in 0 .. arrays.len {
grouped << arrays[arr_ndx][ndx]
}
arr << grouped
}
@ -142,24 +142,24 @@ pub fn group<T>(lists ...[]T) [][]T {
// chunk array into a single array of arrays where each element is the next `size` elements of the original
// Example: arrays.chunk([1, 2, 3, 4, 5, 6, 7, 8, 9], 2)) // => [[1, 2], [3, 4], [5, 6], [7, 8], [9]]
pub fn chunk<T>(list []T, size int) [][]T {
pub fn chunk<T>(array []T, size int) [][]T {
// allocate chunk array
mut chunks := [][]T{cap: list.len / size + if list.len % size == 0 { 0 } else { 1 }}
mut chunks := [][]T{cap: array.len / size + if array.len % size == 0 { 0 } else { 1 }}
for i := 0; true; {
// check chunk size is greater than remaining element size
if list.len < i + size {
if array.len < i + size {
// check if there's no more element to chunk
if list.len <= i {
if array.len <= i {
break
}
chunks << list[i..]
chunks << array[i..]
break
}
chunks << list[i..i + size]
chunks << array[i..i + size]
i += size
}
@ -177,17 +177,17 @@ pub struct WindowAttribute {
//
// Example: arrays.window([1, 2, 3, 4], size: 2) // => [[1, 2], [2, 3], [3, 4]]
// Example: arrays.window([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size: 3, step: 2) // => [[1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9]]
pub fn window<T>(list []T, attr WindowAttribute) [][]T {
pub fn window<T>(array []T, attr WindowAttribute) [][]T {
// allocate snapshot array
mut windows := [][]T{cap: list.len - attr.size + 1}
mut windows := [][]T{cap: array.len - attr.size + 1}
for i := 0; true; {
// check remaining elements size is less than snapshot size
if list.len < i + attr.size {
if array.len < i + attr.size {
break
}
windows << list[i..i + attr.size]
windows << array[i..i + attr.size]
i += attr.step
}
@ -200,13 +200,13 @@ pub fn window<T>(list []T, attr WindowAttribute) [][]T {
// which means you can only pass array of numbers for now.
// TODO: Fix generic operator overloading detection issue.
// Example: arrays.sum<int>([1, 2, 3, 4, 5])? // => 15
pub fn sum<T>(list []T) ?T {
if list.len == 0 {
pub fn sum<T>(array []T) ?T {
if array.len == 0 {
return error('Cannot sum up array of nothing.')
} else {
mut head := list[0]
mut head := array[0]
for i, e in list {
for i, e in array {
if i == 0 {
continue
} else {
@ -218,18 +218,18 @@ pub fn sum<T>(list []T) ?T {
}
}
// reduce sets `acc = list[0]`, then successively calls `acc = reduce_op(acc, elem)` for each remaining element in `list`.
// reduce sets `acc = array[0]`, then successively calls `acc = reduce_op(acc, elem)` for each remaining element in `array`.
// returns the accumulated value in `acc`.
// returns an error if the array is empty.
// See also: [fold](#fold).
// Example: arrays.reduce([1, 2, 3, 4, 5], fn (t1 int, t2 int) int { return t1 * t2 })? // => 120
pub fn reduce<T>(list []T, reduce_op fn (t1 T, t2 T) T) ?T {
if list.len == 0 {
pub fn reduce<T>(array []T, reduce_op fn (acc T, elem T) T) ?T {
if array.len == 0 {
return error('Cannot reduce array of nothing.')
} else {
mut value := list[0]
mut value := array[0]
for i, e in list {
for i, e in array {
if i == 0 {
continue
} else {
@ -241,17 +241,17 @@ pub fn reduce<T>(list []T, reduce_op fn (t1 T, t2 T) T) ?T {
}
}
// reduce_indexed sets `acc = list[0]`, then successively calls `acc = reduce_op(idx, acc, elem)` for each remaining element in `list`.
// reduce_indexed sets `acc = array[0]`, then successively calls `acc = reduce_op(idx, acc, elem)` for each remaining element in `array`.
// returns the accumulated value in `acc`.
// returns an error if the array is empty.
// See also: [fold_indexed](#fold_indexed).
pub fn reduce_indexed<T>(list []T, reduce_op fn (int, T, T) T) ?T {
if list.len == 0 {
pub fn reduce_indexed<T>(array []T, reduce_op fn (idx int, acc T, elem T) T) ?T {
if array.len == 0 {
return error('Cannot reduce array of nothing.')
} else {
mut value := list[0]
mut value := array[0]
for i, e in list {
for i, e in array {
if i == 0 {
continue
} else {
@ -263,12 +263,12 @@ pub fn reduce_indexed<T>(list []T, reduce_op fn (int, T, T) T) ?T {
}
}
// filter_indexed filters elements based on predicate function
// filter_indexed filters elements based on `predicate` function
// being invoked on each element with its index in the original array.
pub fn filter_indexed<T>(list []T, predicate fn (idx int, e T) bool) []T {
mut result := []T{cap: list.len}
pub fn filter_indexed<T>(array []T, predicate fn (idx int, elem T) bool) []T {
mut result := []T{cap: array.len}
for i, e in list {
for i, e in array {
if predicate(i, e) {
result << e
}
@ -277,7 +277,7 @@ pub fn filter_indexed<T>(list []T, predicate fn (idx int, e T) bool) []T {
return result
}
// fold sets `acc = init`, then successively calls `acc = fold_op(acc, elem)` for each element in `list`.
// fold sets `acc = init`, then successively calls `acc = fold_op(acc, elem)` for each element in `array`.
// returns `acc`.
// Example:
// ```v
@ -287,22 +287,22 @@ pub fn filter_indexed<T>(list []T, predicate fn (idx int, e T) bool) []T {
// fn (r int, t string) int { return r + t.len })
// assert r == 5
// ```
pub fn fold<T, R>(list []T, init R, fold_op fn (r R, t T) R) R {
pub fn fold<T, R>(array []T, init R, fold_op fn (acc R, elem T) R) R {
mut value := init
for e in list {
for e in array {
value = fold_op(value, e)
}
return value
}
// fold_indexed sets `acc = init`, then successively calls `acc = fold_op(idx, acc, elem)` for each element in `list`.
// fold_indexed sets `acc = init`, then successively calls `acc = fold_op(idx, acc, elem)` for each element in `array`.
// returns `acc`.
pub fn fold_indexed<T, R>(list []T, init R, fold_op fn (idx int, r R, t T) R) R {
pub fn fold_indexed<T, R>(array []T, init R, fold_op fn (idx int, acc R, elem T) R) R {
mut value := init
for i, e in list {
for i, e in array {
value = fold_op(i, value, e)
}
@ -311,11 +311,11 @@ pub fn fold_indexed<T, R>(list []T, init R, fold_op fn (idx int, r R, t T) R) R
// flatten flattens n + 1 dimensional array into n dimensional array
// Example: arrays.flatten<int>([[1, 2, 3], [4, 5]]) // => [1, 2, 3, 4, 5]
pub fn flatten<T>(list [][]T) []T {
pub fn flatten<T>(array [][]T) []T {
// calculate required capacity
mut required_size := 0
for e1 in list {
for e1 in array {
for _ in e1 {
required_size += 1
}
@ -324,7 +324,7 @@ pub fn flatten<T>(list [][]T) []T {
// allocate flattened array
mut result := []T{cap: required_size}
for e1 in list {
for e1 in array {
for e2 in e1 {
result << e2
}
@ -335,10 +335,10 @@ pub fn flatten<T>(list [][]T) []T {
// flat_map creates a new array populated with the flattened result of calling transform function
// being invoked on each element of `list`.
pub fn flat_map<T, R>(list []T, transform fn (T) []R) []R {
mut result := [][]R{cap: list.len}
pub fn flat_map<T, R>(array []T, transform fn (elem T) []R) []R {
mut result := [][]R{cap: array.len}
for v in list {
for v in array {
result << transform(v)
}
@ -347,10 +347,10 @@ pub fn flat_map<T, R>(list []T, transform fn (T) []R) []R {
// flat_map_indexed creates a new array populated with the flattened result of calling the `transform` function
// being invoked on each element with its index in the original array.
pub fn flat_map_indexed<T, R>(list []T, transform fn (int, T) []R) []R {
mut result := [][]R{cap: list.len}
pub fn flat_map_indexed<T, R>(array []T, transform fn (idx int, elem T) []R) []R {
mut result := [][]R{cap: array.len}
for i, v in list {
for i, v in array {
result << transform(i, v)
}
@ -359,10 +359,10 @@ pub fn flat_map_indexed<T, R>(list []T, transform fn (int, T) []R) []R {
// map_indexed creates a new array populated with the result of calling the `transform` function
// being invoked on each element with its index in the original array.
pub fn map_indexed<T, R>(list []T, transform fn (int, T) R) []R {
mut result := []R{cap: list.len}
pub fn map_indexed<T, R>(array []T, transform fn (idx int, elem T) R) []R {
mut result := []R{cap: array.len}
for i, v in list {
for i, v in array {
result << transform(i, v)
}
@ -371,10 +371,10 @@ pub fn map_indexed<T, R>(list []T, transform fn (int, T) R) []R {
// group_by groups together elements, for which the `grouping_op` callback produced the same result.
// Example: arrays.group_by<int, string>(['H', 'el', 'lo'], fn (v string) int { return v.len }) // => {1: ['H'], 2: ['el', 'lo']}
pub fn group_by<K, V>(list []V, grouping_op fn (v V) K) map[K][]V {
pub fn group_by<K, V>(array []V, grouping_op fn (val V) K) map[K][]V {
mut result := map[K][]V{}
for v in list {
for v in array {
key := grouping_op(v)
// check if key exists, if not, then create a new array with matched value, otherwise append.
@ -403,39 +403,39 @@ pub fn concat<T>(a []T, b ...T) []T {
return m
}
// returns the smallest element >= val, requires `arr` to be sorted
// returns the smallest element >= val, requires `array` to be sorted
// Example: arrays.lower_bound([2, 4, 6, 8], 3)? // => 4
pub fn lower_bound<T>(arr []T, val T) ?T {
if arr.len == 0 {
pub fn lower_bound<T>(array []T, val T) !T {
if array.len == 0 {
return error('.lower_bound called on an empty array')
}
mut left, mut right := 0, arr.len - 1
mut left, mut right := 0, array.len - 1
for ; left <= right; {
idx := (left + right) / 2
elem := arr[idx]
elem := array[idx]
if elem < val {
left = idx + 1
} else {
right = idx - 1
}
}
if left >= arr.len {
if left >= array.len {
return error('')
} else {
return arr[left]
return array[left]
}
}
// returns the largest element <= val, requires `arr` to be sorted
// returns the largest element <= val, requires `array` to be sorted
// Example: arrays.upper_bound([2, 4, 6, 8], 3)? // => 2
pub fn upper_bound<T>(arr []T, val T) ?T {
if arr.len == 0 {
pub fn upper_bound<T>(array []T, val T) ?T {
if array.len == 0 {
return error('.upper_bound called on an empty array')
}
mut left, mut right := 0, arr.len - 1
mut left, mut right := 0, array.len - 1
for ; left <= right; {
idx := (left + right) / 2
elem := arr[idx]
elem := array[idx]
if elem > val {
right = idx - 1
} else {
@ -445,20 +445,20 @@ pub fn upper_bound<T>(arr []T, val T) ?T {
if right < 0 {
return error('')
} else {
return arr[right]
return array[right]
}
}
// binary search, requires `arr` to be sorted, returns index of found item or error.
// binary search, requires `array` to be sorted, returns index of found item or error.
// Binary searches on sorted lists can be faster than other array searches because at maximum
// the algorithm only has to traverse log N elements
// Example: arrays.binary_search([1, 2, 3, 4], 4)? // => 3
pub fn binary_search<T>(arr []T, target T) ?int {
pub fn binary_search<T>(array []T, target T) !int {
mut left := 0
mut right := arr.len - 1
mut right := array.len - 1
for ; left <= right; {
idx := (left + right) / 2
elem := arr[idx]
elem := array[idx]
if elem == target {
return idx
}
@ -472,7 +472,7 @@ pub fn binary_search<T>(arr []T, target T) ?int {
}
// rotate_left rotates the array in-place such that the first `mid` elements of the array move to the end
// while the last `arr.len - mid` elements move to the front. After calling `rotate_left`, the element
// while the last `array.len - mid` elements move to the front. After calling `rotate_left`, the element
// previously at index `mid` will become the first element in the array.
// Example:
// ```v
@ -480,17 +480,17 @@ pub fn binary_search<T>(arr []T, target T) ?int {
// arrays.rotate_left(mut x, 2)
// println(x) // [3, 4, 5, 6, 1, 2]
// ```
pub fn rotate_left<T>(mut arr []T, mid int) {
assert mid <= arr.len && mid >= 0
k := arr.len - mid
p := &T(arr.data)
pub fn rotate_left<T>(mut array []T, mid int) {
assert mid <= array.len && mid >= 0
k := array.len - mid
p := &T(array.data)
unsafe {
ptr_rotate<T>(mid, &T(usize(voidptr(p)) + usize(sizeof(T)) * usize(mid)), k)
}
}
// rotate_right rotates the array in-place such that the first `arr.len - k` elements of the array move to the end
// while the last `k` elements move to the front. After calling `rotate_right`, the element previously at index `arr.len - k`
// rotate_right rotates the array in-place such that the first `array.len - k` elements of the array move to the end
// while the last `k` elements move to the front. After calling `rotate_right`, the element previously at index `array.len - k`
// will become the first element in the array.
// Example:
// ```v
@ -498,10 +498,10 @@ pub fn rotate_left<T>(mut arr []T, mid int) {
// arrays.rotate_right(mut x, 2)
// println(x) // [5, 6, 1, 2, 3, 4]
// ```
pub fn rotate_right<T>(mut arr []T, k int) {
assert k <= arr.len && k >= 0
mid := arr.len - k
p := &T(arr.data)
pub fn rotate_right<T>(mut array []T, k int) {
assert k <= array.len && k >= 0
mid := array.len - k
p := &T(array.data)
unsafe {
ptr_rotate<T>(mid, &T(usize(voidptr(p)) + usize(sizeof(T)) * usize(mid)), k)
}

View File

@ -2,17 +2,17 @@ module arrays
fn test_min() {
a := [8, 2, 6, 4]
mut ri := min(a)?
mut ri := min(a)!
assert ri == 2
ri = min(a[2..])?
ri = min(a[2..])!
assert ri == 4
b := [f32(5.1), 3.1, 1.1, 9.1]
mut rf := min(b)?
mut rf := min(b)!
assert rf == f32(1.1)
rf = min(b[..2])?
rf = min(b[..2])!
assert rf == f32(3.1)
c := [u8(4), 9, 3, 1]
mut rb := min(c)?
mut rb := min(c)!
assert rb == u8(1)
rb = min(c[..3])?
assert rb == u8(3)
@ -20,43 +20,43 @@ fn test_min() {
fn test_max() {
a := [8, 2, 6, 4]
mut ri := max(a)?
mut ri := max(a)!
assert ri == 8
ri = max(a[1..])?
ri = max(a[1..])!
assert ri == 6
b := [f32(5.1), 3.1, 1.1, 9.1]
mut rf := max(b)?
mut rf := max(b)!
assert rf == f32(9.1)
rf = max(b[..3])?
rf = max(b[..3])!
assert rf == f32(5.1)
c := [u8(4), 9, 3, 1]
mut rb := max(c)?
mut rb := max(c)!
assert rb == u8(9)
rb = max(c[2..])?
rb = max(c[2..])!
assert rb == u8(3)
}
fn test_idx_min() {
a := [8, 2, 6, 4]
ri := idx_min(a)?
ri := idx_min(a)!
assert ri == 1
b := [f32(5.1), 3.1, 1.1, 9.1]
rf := idx_min(b)?
rf := idx_min(b)!
assert rf == 2
c := [u8(4), 9, 3, 1]
rb := idx_min(c)?
rb := idx_min(c)!
assert rb == 3
}
fn test_idx_max() {
a := [8, 2, 6, 4]
ri := idx_max(a)?
ri := idx_max(a)!
assert ri == 0
b := [f32(5.1), 3.1, 1.1, 9.1]
rf := idx_max(b)?
rf := idx_max(b)!
assert rf == 3
c := [u8(4), 9, 3, 1]
rb := idx_max(c)?
rb := idx_max(c)!
assert rb == 1
}

View File

@ -1,7 +1,7 @@
module maps
// filter filters map entries by the given predicate function
pub fn filter<K, V>(m map[K]V, f fn (K, V) bool) map[K]V {
pub fn filter<K, V>(m map[K]V, f fn (key K, val V) bool) map[K]V {
mut mp := map[K]V{}
for k, v in m {
@ -14,7 +14,7 @@ pub fn filter<K, V>(m map[K]V, f fn (K, V) bool) map[K]V {
}
// to_array maps map entries into one-dimensional array
pub fn to_array<K, V, I>(m map[K]V, f fn (K, V) I) []I {
pub fn to_array<K, V, I>(m map[K]V, f fn (key K, val V) I) []I {
mut a := []I{cap: m.len}
for k, v in m {
@ -25,7 +25,7 @@ pub fn to_array<K, V, I>(m map[K]V, f fn (K, V) I) []I {
}
// flat_map maps map entries into arrays and flattens into a one-dimensional array
pub fn flat_map<K, V, I>(m map[K]V, f fn (K, V) []I) []I {
pub fn flat_map<K, V, I>(m map[K]V, f fn (key K, val V) []I) []I {
mut a := []I{cap: m.len}
for k, v in m {
@ -36,7 +36,7 @@ pub fn flat_map<K, V, I>(m map[K]V, f fn (K, V) []I) []I {
}
// to_map maps map entries into new entries and constructs a new map
pub fn to_map<K, V, X, Y>(m map[K]V, f fn (K, V) (X, Y)) map[X]Y {
pub fn to_map<K, V, X, Y>(m map[K]V, f fn (key K, val V) (X, Y)) map[X]Y {
mut mp := map[X]Y{}
for k, v in m {
@ -59,10 +59,10 @@ pub fn invert<K, V>(m map[K]V) map[V]K {
}
// from_array maps array into map with index to element per entry
pub fn from_array<T>(a []T) map[int]T {
pub fn from_array<T>(array []T) map[int]T {
mut mp := map[int]T{}
for i, e in a {
for i, e in array {
mp[i] = e
}