1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

math: digits function; SqrtTau; extra spaces; re writed doc's to correct form; test for factorial

This commit is contained in:
RustemB 2019-07-02 15:50:33 +05:00 committed by Alexander Medvednikov
parent 4ed67fbe7e
commit cd4fe63355
2 changed files with 69 additions and 35 deletions

View File

@ -13,6 +13,7 @@ const (
Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974
SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931
SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779
SqrtTau = 2.50662827463100050241576528481104525300698674060993831662992357
SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038
Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
@ -29,67 +30,82 @@ pub fn abs(a f64) f64 {
return a
}
// Inverse cosine.
// acos calculates inversed cosine (arccosine).
pub fn acos(a f64) f64 {
return C.acos(a)
}
// Inverse sine.
// asin calculates inversed sine (arcsine).
pub fn asin(a f64) f64 {
return C.asin(a)
}
// Inverse tangent
// atan calculates inversed tangent (arctangent).
pub fn atan(a f64) f64 {
return C.atan(a)
}
// Inverse tangent with two arguments, returns angle between the X axis and the point.
// atan2 calculates inverseed tangent with two arguments, returns angle between the X axis and the point.
pub fn atan2(a, b f64) f64 {
return C.atan2(a, b)
}
// Cubic root.
// cbrt calculates cubic root.
pub fn cbrt(a f64) f64 {
return C.cbrt(a)
return C.cbrt(a)
}
// Returns the nearest integer equal or higher to the provided value.
// ceil returns the nearest integer equal or higher to the provided value.
pub fn ceil(a f64) f64 {
return C.ceil(a)
}
// Cosine.
// cos calculates cosine.
pub fn cos(a f64) f64 {
return C.cos(a)
}
// Hyperbolic cosine.
// cosh calculates hyperbolic cosine.
pub fn cosh(a f64) f64 {
return C.cosh(a)
}
// Returns euler number (e) raised to the provided power.
// exp calculates exponement of the number (math.pow(math.E, a)).
pub fn exp(a f64) f64 {
return C.exp(a)
}
// Returns the base-2 exponential function of x.
pub fn exp2(a f64) f64 {
return C.exp2(a)
// digits returns an array of the digits of n in the given base.
pub fn digits(n, base int) []int {
mut sign := 1
if n < 0 {
sign = -1
n = -n
}
mut res := []int
for n != 0 {
res << (n % base) * sign
n /= base
}
return res
}
// Returns the nearest integer equal or lower of the provided value.
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
pub fn exp2(a f64) f64 {
return C.exp2(a)
}
// floor returns the nearest integer equal or lower of the provided value.
pub fn floor(a f64) f64 {
return C.floor(a)
}
// Returns the floating-point remainder of number / denom (rounded towards zero):
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
pub fn fmod(a, b f64) f64 {
return C.fmod(a, b)
}
// gcd calculates greatest common (positive) divisor (or zero if x and y are both zero).
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
pub fn gcd(a, b int) int {
if a < 0 {
a = -a
@ -119,27 +135,27 @@ pub fn lcm(a, b int) int {
return res
}
// Returns natural (base e) logarithm of the provided value.
// log calculates natural (base e) logarithm of the provided value.
pub fn log(a f64) f64 {
return C.log(a)
}
// Returns base 2 logarithm of the provided value.
// log2 calculates base-2 logarithm of the provided value.
pub fn log2(a f64) f64 {
return C.log(a) / C.log(2)
return C.log(a) / C.log(2)
}
// Returns the common (base-10) logarithm of x.
// log10 calculates the common (base-10) logarithm of the provided value.
pub fn log10(a f64) f64 {
return C.log10(a)
}
// Returns base N logarithm of the provided value.
// log_n calculates base-N logarithm of the provided value.
pub fn log_n(a, b f64) f64 {
return C.log(a) / C.log(b)
}
// Returns the maximum value of the two provided.
// max returns the maximum value of the two provided.
pub fn max(a, b f64) f64 {
if a > b {
return a
@ -147,7 +163,7 @@ pub fn max(a, b f64) f64 {
return b
}
// Returns the minimum value of all the values provided.
// min returns the minimum value of all the values provided.
pub fn min(a, b f64) f64 {
if a < b {
return a
@ -155,59 +171,59 @@ pub fn min(a, b f64) f64 {
return b
}
// Returns base raised to the provided power.
// pow returns base raised to the provided power.
pub fn pow(a, b f64) f64 {
return C.pow(a, b)
}
// Radians conversion.
// radians convert from radians to degrees.
pub fn radians(degrees f64) f64 {
return degrees * (Pi / 180.0)
}
// Degrees conversion.
// degrees convert from degrees to radians.
pub fn degrees(radians f64) f64 {
return radians * (180.0 / Pi)
}
// Returns the integer nearest to the provided value.
// round returns the integer nearest to the provided value.
pub fn round(f f64) f64 {
return C.round(f)
}
// Sine.
// sin calculates sine.
pub fn sin(a f64) f64 {
return C.sin(a)
}
// Hyperbolic sine.
// sinh calculates hyperbolic sine.
pub fn sinh(a f64) f64 {
return C.sinh(a)
}
// Returns square of the provided value.
// sqrt calculates square of the provided value.
pub fn sqrt(a f64) f64 {
return C.sqrt(a)
}
// Tangent.
// tan calculates tangent.
pub fn tan(a f64) f64 {
return C.tan(a)
}
// Hyperbolic tangent.
// tanh calculates hyperbolic tangent.
pub fn tanh(a f64) f64 {
return C.tanh(a)
}
// Rounds a toward zero, returning the nearest integral value that is not
// trunc rounds a toward zero, returning the nearest integral value that is not
// larger in magnitude than a.
pub fn trunc(a f64) f64 {
return C.trunc(a)
}
// Return the factorial of the value provided.
// factorial calculates the factorial of the provided value.
pub fn factorial(a int) i64 {
mut prod := 1
mut prod := 1
for i:= 0; i < a; i++ {
prod = prod * (i+1)
}

View File

@ -13,3 +13,21 @@ fn test_lcm() {
assert math.lcm(-2, -3) == 6
assert math.lcm(0, 0) == 0
}
fn test_digits() {
digits_in_10th_base := math.digits(125, 10)
assert digits_in_10th_base[0] == 5
assert digits_in_10th_base[1] == 2
assert digits_in_10th_base[2] == 1
digits_in_16th_base := math.digits(15, 16)
assert digits_in_16th_base[0] == 15
negative_digits := math.digits(-4, 2)
assert negative_digits[2] == -1
}
fn test_factorial() {
assert math.factorial(5) == 120
assert math.factorial(0) == 1
}