mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
path tracing example
This commit is contained in:
parent
869e16c340
commit
ce6ee1505f
488
examples/path_tracing.v
Normal file
488
examples/path_tracing.v
Normal file
@ -0,0 +1,488 @@
|
||||
/**********************************************************************
|
||||
*
|
||||
* path tracing demo
|
||||
*
|
||||
* Copyright (c) 2019-2020 Dario Deledda. All rights reserved.
|
||||
* Use of this source code is governed by an MIT license
|
||||
* that can be found in the LICENSE file.
|
||||
*
|
||||
* This file contains a path tracer example in less of 500 line of codes
|
||||
* 3 demo scenes included
|
||||
*
|
||||
* This code is inspired by:
|
||||
* - "Realistic Ray Tracing" by Peter Shirley 2000 ISBN-13: 978-1568814612
|
||||
* - https://www.kevinbeason.com/smallpt/
|
||||
*
|
||||
* Known limitations:
|
||||
* - there are some approximation errors in the calculations
|
||||
* - to speed-up the code a cos/sin table is used
|
||||
* - the full precision code is present but commented, can be restored very easily
|
||||
* - an higher number of samples ( > 60) can block the program on higher resolutions
|
||||
* without a stack size increase
|
||||
* - as a recursive program this code depend on the stack size,
|
||||
* for higher number of samples increase the stack size
|
||||
* in linux: ulimit -s byte_size_of_the_stack
|
||||
* example: ulimit -s 16000000
|
||||
* - No OpenMP support
|
||||
*
|
||||
**********************************************************************/
|
||||
import os
|
||||
import math
|
||||
import rand
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* 3D Vector utility struct
|
||||
*
|
||||
******************************************************************************/
|
||||
struct Vec {
|
||||
mut:
|
||||
x f64 = f64(0.0)
|
||||
y f64 = f64(0.0)
|
||||
z f64 = f64(0.0)
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (v Vec) + (b Vec) Vec{
|
||||
return Vec{ v.x + b.x , v.y + b.y, v.z + b.z }
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (v Vec) - (b Vec) Vec{
|
||||
return Vec{ v.x - b.x , v.y - b.y, v.z - b.z }
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (v Vec) * (b Vec) Vec{
|
||||
return Vec{ v.x * b.x , v.y * b.y, v.z * b.z }
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (v Vec) dot (b Vec) f64{
|
||||
return v.x * b.x + v.y * b.y + v.z * b.z
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (v Vec) mult_s (b f64) Vec{
|
||||
return Vec{ v.x * b , v.y * b, v.z * b }
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (v Vec) cross (b Vec) Vec{
|
||||
return Vec{
|
||||
v.y * b.z - v.z * b.y,
|
||||
v.z * b.x - v.x * b.z,
|
||||
v.x * b.y - v.y * b.x
|
||||
}
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (v Vec) norm () Vec {
|
||||
tmp_norm := f64(1.0) / math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z)
|
||||
return Vec{ v.x * tmp_norm , v.y * tmp_norm, v.z * tmp_norm }
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* Ray
|
||||
*
|
||||
******************************************************************************/
|
||||
struct Ray {
|
||||
o Vec
|
||||
d Vec
|
||||
}
|
||||
|
||||
// material types, used in radiance()
|
||||
enum Refl_t {
|
||||
diff,
|
||||
spec,
|
||||
refr
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* Sphere
|
||||
*
|
||||
******************************************************************************/
|
||||
struct Sphere {
|
||||
rad f64 = f64(0.0) // radius
|
||||
p Vec // position
|
||||
e Vec // emission
|
||||
c Vec // color
|
||||
refl Refl_t // reflection type => [diffuse, specular, refractive]
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn (sp Sphere) intersect (r Ray) f64 {
|
||||
op := sp.p - r.o // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
|
||||
mut t := f64(0.0)
|
||||
eps := f64(1e-4)
|
||||
b := op.dot(r.d)
|
||||
mut det := b * b - op.dot(op) + sp.rad * sp.rad
|
||||
|
||||
if det < 0 {
|
||||
return f64(0)
|
||||
} else {
|
||||
det = math.sqrt(det)
|
||||
}
|
||||
|
||||
t = b - det
|
||||
if t > eps { return t }
|
||||
t = b + det
|
||||
if t > eps { return t }
|
||||
return f64(0)
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* Scenes
|
||||
*
|
||||
* 0) Cornell Box with 2 spheres
|
||||
* 1) Sunset
|
||||
* 2) Psychedelic
|
||||
*
|
||||
* the sphere fileds are: Sphere{radius, position, emission, color, material}
|
||||
*
|
||||
******************************************************************************/
|
||||
const (
|
||||
|
||||
Cen = Vec{50, 40.8, -860} // used by scene 1
|
||||
|
||||
spheres = [
|
||||
|
||||
[// scene 0 cornnel box
|
||||
Sphere{rad: 1e+5, p: Vec{ 1e+5 +1,40.8,81.6} , e: Vec{} , c: Vec{.75,.25,.25} , refl: .diff},//Left
|
||||
Sphere{rad: 1e+5, p: Vec{-1e+5 +99,40.8,81.6}, e: Vec{} , c: Vec{.25,.25,.75} , refl: .diff},//Rght
|
||||
Sphere{rad: 1e+5, p: Vec{50,40.8, 1e+5} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Back
|
||||
Sphere{rad: 1e+5, p: Vec{50,40.8,-1e+5 +170} , e: Vec{} , c: Vec{1e-16, 1e-16, 1e-16}, refl: .diff},//Frnt
|
||||
Sphere{rad: 1e+5, p: Vec{50, 1e+5, 81.6} , e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Botm
|
||||
Sphere{rad: 1e+5, p: Vec{50,-1e+5 +81.6,81.6}, e: Vec{} , c: Vec{.75,.75,.75} , refl: .diff},//Top
|
||||
Sphere{rad: 16.5, p: Vec{27.0,16.5,47.0} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .spec},//Mirr
|
||||
Sphere{rad: 16.5, p: Vec{73,16.5,78} , e: Vec{} , c: Vec{1,1,1}.mult_s(.999) , refl: .refr},//Glas
|
||||
Sphere{rad: 600 , p: Vec{50,681.6-.27,81.6} , e: Vec{12,12,12}, c: Vec{1e-16, 1e-16, 1e-16}, refl: .diff} //Lite
|
||||
]
|
||||
|
||||
|
||||
,[// scene 1 sunset
|
||||
Sphere{rad: 1600, p: Vec{1.0,0.0,2.0}.mult_s(3000), e: Vec{1.0,.9,.8}.mult_s(1.2e+1*1.56*2) , c: Vec{} , refl: .diff}, // sun
|
||||
Sphere{rad: 1560, p: Vec{1,0,2}.mult_s(3500) , e: Vec{1.0,.5,.05}.mult_s(4.8e+1*1.56*2) , c: Vec{} , refl: .diff}, // horizon sun2
|
||||
Sphere{rad: 10000, p: Cen+Vec{0,0,-200}, e: Vec{0.00063842, 0.02001478, 0.28923243}.mult_s(6e-2*8), c: Vec{.7,.7,1}.mult_s(.25), refl: .diff}, // sky
|
||||
|
||||
Sphere{rad: 100000, p: Vec{50, -100000, 0} , e: Vec{} , c: Vec{.3,.3,.3} , refl: .diff}, // grnd
|
||||
Sphere{rad: 110000, p: Vec{50, -110048.5, 0} , e: Vec{.9,.5,.05}.mult_s(4) , c: Vec{}, refl: .diff},// horizon brightener
|
||||
Sphere{rad: 4e+4 , p: Vec{50, -4e+4-30, -3000}, e: Vec{} , c: Vec{.2,.2,.2} , refl: .diff},// mountains
|
||||
|
||||
Sphere{rad: 26.5, p: Vec{22,26.5,42}, e: Vec{}, c: Vec{1,1,1}.mult_s(.596) , refl: .spec}, // white Mirr
|
||||
Sphere{rad: 13, p: Vec{75,13,82 }, e: Vec{}, c: Vec{.96,.96,.96}.mult_s(.96), refl: .refr},// Glas
|
||||
Sphere{rad: 22, p: Vec{87,22,24 }, e: Vec{}, c: Vec{.6,.6,.6}.mult_s(.696) , refl: .refr} // Glas2
|
||||
]
|
||||
|
||||
|
||||
,[// scene 3 Psychedelic
|
||||
Sphere{rad: 150, p: Vec{50+75,28,62}, e: Vec{1,1,1}.mult_s(0e-3), c: Vec{1,.9,.8}.mult_s(.93), refl: .refr},
|
||||
Sphere{rad: 28 , p: Vec{50+5,-28,62}, e: Vec{1,1,1}.mult_s(1e+1), c: Vec{1,1,1}.mult_s(0) , refl: .diff},
|
||||
Sphere{rad: 300, p: Vec{50,28,62} , e: Vec{1,1,1}.mult_s(0e-3), c: Vec{1,1,1}.mult_s(.93) , refl: .spec}
|
||||
]
|
||||
|
||||
] // end of scene array
|
||||
|
||||
)
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* Utility
|
||||
*
|
||||
******************************************************************************/
|
||||
[inline]
|
||||
fn clamp(x f64) f64 {
|
||||
if x < f64(0.0) { return f64(0.0) }
|
||||
if x > f64(1.0) { return f64(1.0) }
|
||||
return x
|
||||
}
|
||||
|
||||
[inline]
|
||||
fn to_int(x f64) int {
|
||||
p := math.pow(clamp(x), f64(1.0/2.2))
|
||||
return int(p*f64(255.0)+f64(0.5))
|
||||
}
|
||||
|
||||
[inline]
|
||||
//fn intersect(r Ray, id1 int, scene int) (bool, f64, int){
|
||||
fn intersect(r Ray, id1 int, spheres []Sphere) (bool, f64, int){
|
||||
mut d := f64(0)
|
||||
inf := f64(1e+20)
|
||||
mut t := f64(1e+20)
|
||||
//mut i := spheres[scene].len-1
|
||||
mut i := spheres.len-1
|
||||
mut id := id1
|
||||
for i >= 0 {
|
||||
//d = spheres[scene][i].intersect(r)
|
||||
d = spheres[i].intersect(r)
|
||||
if d != 0.0 && d < t {
|
||||
t = d
|
||||
id = i
|
||||
}
|
||||
i--
|
||||
}
|
||||
return (t < inf) , t, id
|
||||
}
|
||||
|
||||
// some casual random function, try to avoid the 0
|
||||
[inline]
|
||||
fn rand_f64() f64 {
|
||||
x := (C.rand()+1) & 0x3FFF_FFFF
|
||||
return f64(x)/f64(0x3FFF_FFFF)
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* Cache for sin/cos speed-up table and scene selector
|
||||
*
|
||||
******************************************************************************/
|
||||
const(
|
||||
cache_len = 65536 // the 2*pi angle will be splitted in 65536 part
|
||||
cache_mask = cache_len - 1 // mask to speed-up the module process
|
||||
)
|
||||
|
||||
struct Cache {
|
||||
mut:
|
||||
scene int = 0
|
||||
sin_tab [cache_len]f64
|
||||
cos_tab [cache_len]f64
|
||||
}
|
||||
|
||||
fn (c mut Cache) fill() {
|
||||
inv_len := 1.0 / f64(cache_len)
|
||||
for i in 0..cache_len {
|
||||
x := f64(i) * math.pi * 2.0 * inv_len
|
||||
c.sin_tab[i] = math.sin(x)
|
||||
c.cos_tab[i] = math.cos(x)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* main function for the radiance calculation
|
||||
*
|
||||
******************************************************************************/
|
||||
fn radiance(r Ray, depthi int, tb &Cache) Vec {
|
||||
mut depth := depthi // actual depth in the reflection tree
|
||||
mut t := f64(0) // distance to intersection
|
||||
mut id := 0 // id of intersected object
|
||||
mut res := false // result of intersect
|
||||
|
||||
v_1 := f64(1.0)
|
||||
//v_2 := f64(2.0)
|
||||
|
||||
//res, t, id = intersect(r, id, tb.scene)
|
||||
res, t, id = intersect(r, id, spheres[tb.scene])
|
||||
if !res { return Vec{} } //if miss, return black
|
||||
|
||||
obj := spheres[tb.scene][id] // the hit object
|
||||
|
||||
x := r.o + r.d.mult_s(t)
|
||||
n := (x - obj.p).norm()
|
||||
|
||||
mut nl := n
|
||||
if n.dot(r.d) >= 0.0 {
|
||||
nl = n.mult_s(-1)
|
||||
}
|
||||
|
||||
mut f := obj.c
|
||||
|
||||
// max reflection
|
||||
mut p := f.z
|
||||
if f.x > f.y && f.x > f.z {
|
||||
p = f.x
|
||||
} else {
|
||||
if f.y > f.z {
|
||||
p = f.y
|
||||
}
|
||||
}
|
||||
|
||||
depth++
|
||||
if depth > 5 {
|
||||
if rand_f64() < p {
|
||||
f = f.mult_s(1.0/p)
|
||||
} else {
|
||||
return obj.e //R.R.
|
||||
}
|
||||
}
|
||||
|
||||
if obj.refl == .diff { // Ideal DIFFUSE reflection
|
||||
// **Full Precision**
|
||||
//r1 := f64(2.0 * math.pi) * rand_f64()
|
||||
|
||||
// tabbed speed-up
|
||||
r1 := C.rand() & cache_mask
|
||||
|
||||
r2 := rand_f64()
|
||||
r2s := math.sqrt(r2)
|
||||
|
||||
w := nl
|
||||
|
||||
mut u := Vec{1, 0, 0}
|
||||
if math.abs(w.x) > 0.1 {
|
||||
u = Vec{0, 1, 0}
|
||||
}
|
||||
u = u.cross(w)
|
||||
u = u.norm()
|
||||
|
||||
v := w.cross(u)
|
||||
|
||||
// **Full Precision**
|
||||
//d := (u.mult_s(math.cos(r1) * r2s) + v.mult_s(math.sin(r1) * r2s) + w.mult_s(1.0 - r2)).norm()
|
||||
|
||||
// tabbed speed-up
|
||||
d := (u.mult_s(tb.cos_tab[r1] * r2s) + v.mult_s(tb.sin_tab[r1] * r2s) + w.mult_s(1.0 - r2)).norm()
|
||||
|
||||
return obj.e + (f * radiance(Ray{x, d}, depth, tb))
|
||||
} else {
|
||||
if obj.refl == .spec { // Ideal SPECULAR reflection
|
||||
return obj.e + (f * radiance(Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d)) }, depth, tb))
|
||||
}
|
||||
}
|
||||
|
||||
refl_ray := Ray{x, r.d - n.mult_s(2.0 * n.dot(r.d))} // Ideal dielectric REFRACTION
|
||||
into := n.dot(nl) > 0.0 // Ray from outside going in?
|
||||
|
||||
nc := f64(1.0)
|
||||
nt := f64(1.5)
|
||||
|
||||
mut nnt := nt / nc
|
||||
if into { nnt = nc / nt }
|
||||
|
||||
ddn := r.d.dot(nl)
|
||||
mut cos2t:= f64(0)
|
||||
cos2t = v_1 - nnt * nnt * (v_1 - ddn * ddn)
|
||||
|
||||
if cos2t < 0.0 { // Total internal reflection
|
||||
return obj.e + (f * radiance(refl_ray, depth, tb))
|
||||
}
|
||||
|
||||
mut dirc := -1
|
||||
if into { dirc = 1 }
|
||||
tdir := r.d.mult_s(nnt) -n.mult_s(dirc).mult_s(ddn * nnt + math.sqrt(cos2t)).norm()
|
||||
|
||||
a := nt - nc
|
||||
b := nt + nc
|
||||
r0 := a * a / (b * b)
|
||||
mut c := v_1 - tdir.dot(n)
|
||||
if into { c = v_1 + ddn }
|
||||
|
||||
re := r0 + (v_1 - r0) * c * c * c * c * c
|
||||
tr := v_1 - re
|
||||
p = f64(.25) + f64(.5) * re
|
||||
rp := re / p
|
||||
tp := tr / (v_1 - p)
|
||||
|
||||
mut res_f := obj.e
|
||||
|
||||
mut tmp := radiance(Ray{x, tdir}, depth, tb).mult_s(tp)
|
||||
if rand_f64() < p {
|
||||
tmp = radiance(refl_ray, depth, tb).mult_s(rp)
|
||||
}
|
||||
|
||||
if depth > 2 {
|
||||
res_f = res_f + f * tmp
|
||||
return res_f
|
||||
}
|
||||
|
||||
tmp1 := radiance(refl_ray, depth, tb).mult_s(re) + radiance( Ray{x, tdir}, depth, tb).mult_s(tr)
|
||||
res_f = res_f + f * tmp1
|
||||
return res_f
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
*
|
||||
* beam scan routine
|
||||
*
|
||||
******************************************************************************/
|
||||
fn ray_trace(w int, h int, samps int, file_name string, tb &Cache) {
|
||||
|
||||
// inverse costants
|
||||
w1 := f64(1.0 / w)
|
||||
h1 := f64(1.0 / h)
|
||||
samps1 := f64(1.0 / samps)
|
||||
|
||||
cam := Ray{Vec{50, 52, 296.5}, Vec{0, -0.042612, -1}.norm()} // cam position, direction
|
||||
cx := Vec{ f64(w) * .5135 / f64(h), 0, 0}
|
||||
cy := ((cx.cross(cam.d)).norm()).mult_s(0.5135)
|
||||
mut c := [Vec{}].repeat(w * h)
|
||||
mut r := Vec{}
|
||||
|
||||
// OpenMP injection point! #pragma omp parallel for schedule(dynamic, 1) shared(c)
|
||||
for y:=0; y < h; y++ {
|
||||
eprint("\rRendering (${samps * 4} spp) ${(100.0 * f64(y)) / (f64(h) - 1.0)}%")
|
||||
for x := 0; x < w; x++ {
|
||||
|
||||
i := (h - y - 1) * w + x
|
||||
// we use sx and sy to perform a square subsampling of 4 samples
|
||||
for sy := f64(0.5) ; sy < 2.5; sy += 1.0 {
|
||||
for sx := f64(0.5); sx < 2.5; sx += 1.0 {
|
||||
r.x = 0
|
||||
r.y = 0
|
||||
r.z = 0
|
||||
for s := 0; s < samps; s++ {
|
||||
// speed-up constants
|
||||
v_1 := f64(1.0)
|
||||
v_2 := f64(2.0)
|
||||
|
||||
r1 := v_2 * rand_f64()
|
||||
mut dx := v_1 - math.sqrt(v_2 - r1)
|
||||
if r1 < v_1 { dx = math.sqrt(r1) - v_1 }
|
||||
|
||||
r2 := v_2 * rand_f64()
|
||||
mut dy := v_1 - math.sqrt(v_2 - r2)
|
||||
if r2 < v_1 { dy = math.sqrt(r2) - v_1 }
|
||||
|
||||
d := cx.mult_s( ( (sx + dx)*0.5 + f64(x))*w1 - .5) +
|
||||
cy.mult_s( ( (sy + dy)*0.5 + f64(y))*h1 - .5) + cam.d
|
||||
|
||||
r = r + radiance(Ray{cam.o+d.mult_s(140.0), d.norm()}, 0, tb).mult_s(samps1)
|
||||
|
||||
}
|
||||
tmp_vec := Vec{clamp(r.x),clamp(r.y),clamp(r.z)}.mult_s(.25)
|
||||
c[i] = c[i] + tmp_vec
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
eprintln('\nRendering finished.')
|
||||
|
||||
//
|
||||
// write out a .ppm file
|
||||
//
|
||||
mut f_out := os.create(file_name) or { exit }
|
||||
f_out.writeln('P3')
|
||||
f_out.writeln('${w} ${h}')
|
||||
f_out.writeln('255')
|
||||
for i in 0..w*h {
|
||||
c_r := to_int(c[i].x)
|
||||
c_g := to_int(c[i].y)
|
||||
c_b := to_int(c[i].z)
|
||||
f_out.write('$c_r $c_g $c_b ')
|
||||
}
|
||||
f_out.close()
|
||||
|
||||
println("image saved as [${file_name}]")
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// init the rand, using the same seed allows to obtain the same result in different runs
|
||||
// change the seed from 2020 for different results
|
||||
rand.seed(2020)
|
||||
|
||||
// init the sin/cos cache table
|
||||
mut tb := Cache{}
|
||||
tb.fill()
|
||||
|
||||
width := 1280 // width of the rendering in pixels
|
||||
height := 1280 // height of the rendering in pixels
|
||||
samples := 10 // number of samples*4 per pixel, increase for better quality
|
||||
tb.scene = 1 // scene to render [0 cornell box,1 sunset,2 psyco]
|
||||
file_name := "image.ppm" // name of the output file in .ppm format
|
||||
|
||||
ray_trace(width, height, samples, file_name, tb)
|
||||
}
|
Loading…
Reference in New Issue
Block a user