1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00

gg: change draw_cubic_bezier* call signatures for speed and to match *_poly (#11323)

This commit is contained in:
Larpon 2021-08-27 15:52:05 +02:00 committed by GitHub
parent 4d5521bbf7
commit e85311c2ba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 25 additions and 19 deletions

View File

@ -4,8 +4,7 @@ import gg
import gx
const (
p1_and_p2 = [f32(200.0), 200.0, 400.0, 300.0]
ctrl_p1_and_p2 = [f32(200.0), 100.0, 400.0, 100.0]
points = [f32(200.0), 200.0, 200.0, 100.0, 400.0, 100.0, 400.0, 300.0]
)
struct App {
@ -30,6 +29,6 @@ fn main() {
fn frame(mut app App) {
app.gg.begin()
app.gg.draw_cubic_bezier(p1_and_p2, ctrl_p1_and_p2, gx.blue)
app.gg.draw_cubic_bezier(points, gx.blue)
app.gg.end()
}

View File

@ -48,13 +48,21 @@ fn main() {
fn frame(mut app App) {
time := app.anim.time
ctrl_p1_x := f32(200.0) + (40 * time)
ctrl_p2_x := f32(400.0) + (-40 * time)
p1_x := f32(200.0)
p1_y := f32(200.0) + (10 * time)
p1_and_p2 := [f32(200.0), 200.0 + (10 * time), 400.0, 200.0 + (10 * time)]
p2_x := f32(400.0)
p2_y := f32(200.0) + (10 * time)
ctrl_p1_x := f32(200.0) + (40 * time)
ctrl_p1_y := f32(100.0)
ctrl_p2_x := f32(400.0) + (-40 * time)
ctrl_p2_y := f32(100.0)
points := [p1_x, p1_y, ctrl_p1_x, ctrl_p1_y, ctrl_p2_x, ctrl_p2_y, p2_x, p2_y]
app.gg.begin()
app.gg.draw_cubic_bezier(p1_and_p2, [ctrl_p1_x, 100.0, ctrl_p2_x, 100.0], gx.blue)
app.gg.draw_cubic_bezier(points, gx.blue)
app.gg.end()
app.anim.advance()
}

View File

@ -675,22 +675,21 @@ pub fn (ctx &Context) draw_empty_poly(points []f32, c gx.Color) {
}
// draw_cubic_bezier draws a cubic Bézier curve, also known as a spline, from four points.
// The four points is provided as two arrays; `points` and `control_points`, which is both pairs of x and y coordinates.
// Thus a coordinate pair could be declared like: `points := [x1, y1, x2, y2]`.
// The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates).
// Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`.
// Please see `draw_cubic_bezier_in_steps` to control the amount of steps (segments) used to draw the curve.
pub fn (ctx &Context) draw_cubic_bezier(points []f32, control_points []f32, c gx.Color) {
ctx.draw_cubic_bezier_in_steps(points, control_points, u32(30 * ctx.scale), c)
pub fn (ctx &Context) draw_cubic_bezier(points []f32, c gx.Color) {
ctx.draw_cubic_bezier_in_steps(points, u32(30 * ctx.scale), c)
}
// draw_cubic_bezier_in_steps draws a cubic Bézier curve, also known as a spline, from four points.
// The smoothness of the curve can be controlled with the `steps` parameter. `steps` determines how many iterations is
// taken to draw the curve.
// The four points is provided as two arrays; `points` and `control_points`, which is both pairs of x and y coordinates.
// Thus a coordinate pair could be declared like: `points := [x1, y1, x2, y2]`.
pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, control_points []f32, steps u32, c gx.Color) {
// The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates).
// Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`.
pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, steps u32, c gx.Color) {
assert steps > 0
assert points.len == 4
assert points.len == control_points.len
assert points.len == 8
if c.a != 255 {
sgl.load_pipeline(ctx.timage_pip)
@ -700,10 +699,10 @@ pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, control_points []
sgl.begin_line_strip()
p1_x, p1_y := points[0], points[1]
p2_x, p2_y := points[2], points[3]
p2_x, p2_y := points[6], points[7]
ctrl_p1_x, ctrl_p1_y := control_points[0], control_points[1]
ctrl_p2_x, ctrl_p2_y := control_points[2], control_points[3]
ctrl_p1_x, ctrl_p1_y := points[2], points[3]
ctrl_p2_x, ctrl_p2_y := points[4], points[5]
// The constant 3 is actually points.len() - 1;