1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/doc/docs.md

102 KiB
Raw Blame History

V Documentation

Introduction

V is a statically typed compiled programming language designed for building maintainable software.

It's similar to Go and its design has also been influenced by Oberon, Rust, Swift, Kotlin, and Python.

V is a very simple language. Going through this documentation will take you about an hour, and by the end of it you will have pretty much learned the entire language.

The language promotes writing simple and clear code with minimal abstraction.

Despite being simple, V gives the developer a lot of power. Anything you can do in other languages, you can do in V.

Install from source

The major way to get the latest and greatest V, is to install it from source. It is easy, and it usually takes only a few seconds.

Linux, macOS, FreeBSD, etc:

You need git, and a C compiler like tcc, gcc or clang, and make:

git clone https://github.com/vlang/v
cd v
make

Windows:

You need git, and a C compiler like tcc, gcc, clang or msvc:

git clone https://github.com/vlang/v
cd v
make.bat -tcc

NB: You can also pass one of -gcc, -msvc, -clang to make.bat instead, if you do prefer to use a different C compiler, but -tcc is small, fast, and easy to install (V will download a prebuilt binary automatically).

It is recommended to add this folder to the PATH of your environment variables. This can be done with the command v.exe symlink.

Android

Running V graphical apps on Android is also possible via vab.

V Android dependencies: V, Java JDK >= 8, Android SDK + NDK.

  1. Install dependencies (see vab)
  2. Connect your Android device
  3. Run:
git clone https://github.com/vlang/vab && cd vab && v vab.v
./vab --device auto run /path/to/v/examples/sokol/particles

For more details and troubleshooting, please visit the vab GitHub repository.

Table of Contents

Hello World

fn main() {
	println('hello world')
}

Save this snippet into a file named hello.v. Now do: v run hello.v.

That is assuming you have symlinked your V with v symlink, as described here. If you haven't yet, you have to type the path to V manually.

Congratulations - you just wrote and executed your first V program!

You can compile a program without execution with v hello.v. See v help for all supported commands.

From the example above, you can see that functions are declared with the fn keyword. The return type is specified after the function name. In this case main doesn't return anything, so there is no return type.

As in many other languages (such as C, Go, and Rust), main is the entry point of your program.

println is one of the few built-in functions. It prints the value passed to it to standard output.

fn main() declaration can be skipped in one file programs. This is useful when writing small programs, "scripts", or just learning the language. For brevity, fn main() will be skipped in this tutorial.

This means that a "hello world" program in V is as simple as

println('hello world')

Running a project folder with several files

Suppose you have a folder with several .v files in it, where one of them contains your main() function, and the other files have other helper functions. They may be organized by topic, but still not yet structured enough to be their own separate reusable modules, and you want to compile them all into one program.

In other languages, you would have to use includes or a build system to enumerate all files, compile them separately to object files, then link them into one final executable.

In V however, you can compile and run the whole folder of .v files together, using just v run .. Passing parameters also works, so you can do: v run . --yourparam some_other_stuff

The above will first compile your files into a single program (named after your folder/project), and then it will execute the program with --yourparam some_other_stuff passed to it as CLI parameters.

Your program can then use the CLI parameters like this:

import os

println(os.args)

NB: after a successful run, V will delete the generated executable. If you want to keep it, use v -keepc run . instead, or just compile manually with v . .

NB: any V compiler flags should be passed before the run command. Everything after the source file/folder, will be passed to the program as is - it will not be processed by V.

Comments

// This is a single line comment.
/*
This is a multiline comment.
   /* It can be nested. */
*/

Functions

fn main() {
	println(add(77, 33))
	println(sub(100, 50))
}

fn add(x int, y int) int {
	return x + y
}

fn sub(x int, y int) int {
	return x - y
}

Again, the type comes after the argument's name.

Just like in Go and C, functions cannot be overloaded. This simplifies the code and improves maintainability and readability.

Functions can be used before their declaration: add and sub are declared after main, but can still be called from main. This is true for all declarations in V and eliminates the need for header files or thinking about the order of files and declarations.

Returning multiple values

fn foo() (int, int) {
	return 2, 3
}

a, b := foo()
println(a) // 2
println(b) // 3
c, _ := foo() // ignore values using `_`

Symbol visibility

pub fn public_function() {
}

fn private_function() {
}

Functions are private (not exported) by default. To allow other modules to use them, prepend pub. The same applies to constants and types.

Note: pub can only be used from a named module. For information about creating a module, see Modules.

Variables

name := 'Bob'
age := 20
large_number := i64(9999999999)
println(name)
println(age)
println(large_number)

Variables are declared and initialized with :=. This is the only way to declare variables in V. This means that variables always have an initial value.

The variable's type is inferred from the value on the right hand side. To choose a different type, use type conversion: the expression T(v) converts the value v to the type T.

Unlike most other languages, V only allows defining variables in functions. Global (module level) variables are not allowed. There's no global state in V (see Pure functions by default for details).

For consistency across different code bases, all variable and function names must use the snake_case style, as opposed to type names, which must use PascalCase.

Mutable variables

mut age := 20
println(age)
age = 21
println(age)

To change the value of the variable use =. In V, variables are immutable by default. To be able to change the value of the variable, you have to declare it with mut.

Try compiling the program above after removing mut from the first line.

Initialization vs assignment

Note the (important) difference between := and =. := is used for declaring and initializing, = is used for assigning.

fn main() {
    age = 21
}

This code will not compile, because the variable age is not declared. All variables need to be declared in V.

fn main() {
	age := 21
}

The values of multiple variables can be changed in one line. In this way, their values can be swapped without an intermediary variable.

mut a := 0
mut b := 1
println('$a, $b') // 0, 1
a, b = b, a
println('$a, $b') // 1, 0

Declaration errors

In development mode the compiler will warn you that you haven't used the variable (you'll get an "unused variable" warning). In production mode (enabled by passing the -prod flag to v v -prod foo.v) it will not compile at all (like in Go).

fn main() {
    a := 10
    if true {
        a := 20 // error: redefinition of `a`
    }
    // warning: unused variable `a`
}

Unlike most languages, variable shadowing is not allowed. Declaring a variable with a name that is already used in a parent scope will cause a compilation error.

You can shadow imported modules though, as it is very useful in some situations:

import ui
import gg

fn draw(ctx &gg.Context) {
    gg := ctx.parent.get_ui().gg
    gg.draw_rect(10, 10, 100, 50)
}

Types

Primitive types

bool

string

i8    i16  int  i64      i128 (soon)
byte  u16  u32  u64      u128 (soon)

rune // represents a Unicode code point

f32 f64

byteptr, voidptr, charptr, size_t // these are mostly used for C interoperability

any // similar to C's void* and Go's interface{}

Please note that unlike C and Go, int is always a 32 bit integer.

There is an exception to the rule that all operators in V must have values of the same type on both sides. A small primitive type on one side can be automatically promoted if it fits completely into the data range of the type on the other side. These are the allowed possibilities:

   i8  i16  int  i64
                       
                    f32  f64
                       
 byte  u16  u32  u64 
                      ptr
   i8  i16  int  i64 

An int value for example can be automatically promoted to f64 or i64 but not to f32 or u32. (f32 would mean precision loss for large values and u32 would mean loss of the sign for negative values).

Literals like 123 or 4.56 are treated in a special way. They do not lead to type promotions, however they default to int and f64 respectively, when their type has to be decided:

u := u16(12)
v := 13 + u    // v is of type `u16` - no promotion
x := f32(45.6)
y := x + 3.14  // x is of type `f32` - no promotion
a := 75        // a is of type `int` - default for int literal
b := 14.7      // b is of type `f64` - default for float literal
c := u + a     // c is of type `int` - automatic promotion of `u`'s value
d := b + x     // d is of type `f64` - automatic promotion of `x`'s value

Strings

name := 'Bob'
println(name.len)
println(name[0]) // indexing gives a byte B
println(name[1..3]) // slicing gives a string 'ob'
windows_newline := '\r\n' // escape special characters like in C
assert windows_newline.len == 2

In V, a string is a read-only array of bytes. String data is encoded using UTF-8. String values are immutable. You cannot mutate elements:

mut s := 'hello 🌎'
s[0] = `H` // not allowed

error: cannot assign to s[i] since V strings are immutable

Note that indexing a string will produce a byte, not a rune. Indexes correspond to bytes in the string, not Unicode code points.

Character literals have type rune. To denote them, use `

rocket := `🚀`
assert 'aloha!'[0] == `a`

Both single and double quotes can be used to denote strings. For consistency, vfmt converts double quotes to single quotes unless the string contains a single quote character.

For raw strings, prepend r. Raw strings are not escaped:

s := r'hello\nworld'
println(s) // "hello\nworld"

Strings can be easily converted to integers:

s := '42'
n := s.int() // 42

String interpolation

Basic interpolation syntax is pretty simple - use $ before a variable name. The variable will be converted to a string and embedded into the literal:

name := 'Bob'
println('Hello, $name!') // Hello, Bob!

It also works with fields: 'age = $user.age'. If you need more complex expressions, use ${}: 'can register = ${user.age > 13}'.

Format specifiers similar to those in C's printf() are also supported. f, g, x, etc. are optional and specify the output format. The compiler takes care of the storage size, so there is no hd or llu.

x := 123.4567
println('x = ${x:4.2f}')
println('[${x:10}]') // pad with spaces on the left => [   123.457]
println('[${int(x):-10}]') // pad with spaces on the right => [123       ]
println('[${int(x):010}]') // pad with zeros on the left => [0000000123]

String operators

name := 'Bob'
bobby := name + 'by' // + is used to concatenate strings
println(bobby) // "Bobby"
mut s := 'hello '
s += 'world' // `+=` is used to append to a string
println(s) // "hello world"

All operators in V must have values of the same type on both sides. You cannot concatenate an integer to a string:

age := 10
println('age = ' + age) // not allowed

error: infix expr: cannot use int (right expression) as string

We have to either convert age to a string:

age := 11
println('age = ' + age.str())

or use string interpolation (preferred):

age := 12
println('age = $age')

Numbers

a := 123

This will assign the value of 123 to a. By default a will have the type int.

You can also use hexadecimal, binary or octal notation for integer literals:

a := 0x7B
b := 0b01111011
c := 0o173

All of these will be assigned the same value, 123. They will all have type int, no matter what notation you used.

V also supports writing numbers with _ as separator:

num := 1_000_000 // same as 1000000
three := 0b0_11 // same as 0b11
float_num := 3_122.55 // same as 3122.55
hexa := 0xF_F // same as 255
oct := 0o17_3 // same as 0o173

If you want a different type of integer, you can use casting:

a := i64(123)
b := byte(42)
c := i16(12345)

Assigning floating point numbers works the same way:

f := 1.0
f1 := f64(3.14)
f2 := f32(3.14)

If you do not specify the type explicitly, by default float literals will have the type of f64.

Arrays

mut nums := [1, 2, 3]
println(nums) // "[1, 2, 3]"
println(nums[1]) // "2"
nums[1] = 5
println(nums) // "[1, 5, 3]"
println(nums.len) // "3"
nums = [] // The array is now empty
println(nums.len) // "0"
// Declare an empty array:
users := []int{}

The type of an array is determined by the first element:

  • [1, 2, 3] is an array of ints ([]int).
  • ['a', 'b'] is an array of strings ([]string).

The user can explicitly specify the type for the first element: [byte(16), 32, 64, 128]. V arrays are homogeneous (all elements must have the same type). This means that code like [1, 'a'] will not compile.

The .len field returns the length of the array. Note that it's a read-only field, and it can't be modified by the user. Exported fields are read-only by default in V. See Access modifiers.

Array operations

mut nums := [1, 2, 3]
nums << 4
println(nums) // "[1, 2, 3, 4]"
// append array
nums << [5, 6, 7]
println(nums) // "[1, 2, 3, 4, 5, 6, 7]"
mut names := ['John']
names << 'Peter'
names << 'Sam'
// names << 10  <-- This will not compile. `names` is an array of strings.
println(names.len) // "3"
println('Alex' in names) // "false"

<< is an operator that appends a value to the end of the array. It can also append an entire array.

val in array returns true if the array contains val. See in operator.

Initializing array properties

During initialization you can specify the capacity of the array (cap), its initial length (len), and the default element (init):

arr := []int{len: 5, init: -1}
// `[-1, -1, -1, -1, -1]`

Setting the capacity improves performance of insertions, as it reduces the number of reallocations needed:

mut numbers := []int{cap: 1000}
println(numbers.len) // 0
// Now appending elements won't reallocate
for i in 0 .. 1000 {
	numbers << i
}

Note: The above code uses a range for statement.

Array methods

All arrays can be easily printed with println(arr) and converted to a string with s := arr.str().

Copying the data from the array is done with .clone():

nums := [1, 2, 3]
nums_copy := nums.clone()

Arrays can be efficiently filtered and mapped with the .filter() and .map() methods:

nums := [1, 2, 3, 4, 5, 6]
even := nums.filter(it % 2 == 0)
println(even) // [2, 4, 6]
// filter can accept anonymous functions
even_fn := nums.filter(fn (x int) bool {
	return x % 2 == 0
})
println(even_fn)
words := ['hello', 'world']
upper := words.map(it.to_upper())
println(upper) // ['HELLO', 'WORLD']
// map can also accept anonymous functions
upper_fn := words.map(fn (w string) string {
	return w.to_upper()
})
println(upper_fn) // ['HELLO', 'WORLD']

it is a builtin variable which refers to element currently being processed in filter/map methods.

Multidimensional Arrays

Arrays can have more than one dimension.

2d array example:

mut a := [][]int{len: 2, init: []int{len: 3}}
a[0][1] = 2
println(a) // [[0, 2, 0], [0, 0, 0]]

3d array example:

mut a := [][][]int{len: 2, init: [][]int{len: 3, init: []int{len: 2}}}
a[0][1][1] = 2
println(a) // [[[0, 0], [0, 2], [0, 0]], [[0, 0], [0, 0], [0, 0]]]

Sorting arrays

Sorting arrays of all kinds is very simple and intuitive. Special variables a and b are used when providing a custom sorting condition.

mut numbers := [1, 3, 2]
numbers.sort() // 1, 2, 3
numbers.sort(a > b) // 3, 2, 1
struct User {
	age  int
	name string
}

mut users := [User{21, 'Bob'}, User{20, 'Zarkon'}, User{25, 'Alice'}]
users.sort(a.age < b.age) // sort by User.age int field
users.sort(a.name > b.name) // reverse sort by User.name string field

Array Slices

Slices are partial arrays. They represent every element between two indices separated by a .. operator. The right-side index must be greater than or equal to the left side index.

If a right-side index is absent, it is assumed to be the array length. If a left-side index is absent, it is assumed to be 0.

nums := [1, 2, 3, 4, 5]
println(nums[1..4]) // [2, 3, 4]
println(nums[..4]) // [1, 2, 3, 4]
println(nums[1..]) // [2, 3, 4, 5]

All array operations may be performed on slices. Slices can be pushed onto an array of the same type.

array_1 := [3, 5, 4, 7, 6]
mut array_2 := [0, 1]
array_2 << array_1[..3]
println(array_2) // [0, 1, 3, 5, 4]

Fixed size arrays

V also supports arrays with fixed size. Unlike ordinary arrays, their length is constant. You cannot append elements to them, nor shrink them. You can only modify their elements in place.

However, access to the elements of fixed size arrays is more efficient, they need less memory than ordinary arrays, and unlike ordinary arrays, their data is on the stack, so you may want to use them as buffers if you do not want additional heap allocations.

Most methods are defined to work on ordinary arrays, not on fixed size arrays. You can convert a fixed size array to an ordinary array with slicing:

mut fnums := [3]int{} // fnums is a fixed size array with 3 elements.
fnums[0] = 1
fnums[1] = 10
fnums[2] = 100
println(fnums) // => [1, 10, 100]
println(typeof(fnums).name) // => [3]int

anums := fnums[0..fnums.len]
println(anums) // => [1, 10, 100]
println(typeof(anums).name) // => []int

Note that slicing will cause the data of the fixed size array to be copied to the newly created ordinary array.

Maps

mut m := map[string]int{} // a map with `string` keys and `int` values
m['one'] = 1
m['two'] = 2
println(m['one']) // "1"
println(m['bad_key']) // "0"
println('bad_key' in m) // Use `in` to detect whether such key exists
m.delete('two')

Maps can have keys of type string, rune, integer, float or voidptr.

The whole map can be initialized using this short syntax:

numbers := map{
	1: 'one'
	2: 'two'
}
println(numbers)

If a key is not found, a zero value is returned by default:

sm := map{
	'abc': 'xyz'
}
val := sm['bad_key']
println(val) // ''
intm := map{
	1: 1234
	2: 5678
}
s := intm[3]
println(s) // 0

It's also possible to use an or {} block to handle missing keys:

mm := map[string]int{}
val := mm['bad_key'] or { panic('key not found') }

The same optional check applies to arrays:

arr := [1, 2, 3]
large_index := 999
val := arr[large_index] or { panic('out of bounds') }

Module imports

For information about creating a module, see Modules.

Modules can be imported using the import keyword:

import os

fn main() {
	// read text from stdin
	name := os.input('Enter your name: ')
	println('Hello, $name!')
}

This program can use any public definitions from the os module, such as the input function. See the standard library documentation for a list of common modules and their public symbols.

By default, you have to specify the module prefix every time you call an external function. This may seem verbose at first, but it makes code much more readable and easier to understand - it's always clear which function from which module is being called. This is especially useful in large code bases.

Cyclic module imports are not allowed, like in Go.

Selective imports

You can also import specific functions and types from modules directly:

import os { input }

fn main() {
	// read text from stdin
	name := input('Enter your name: ')
	println('Hello, $name!')
}

Note: This is not allowed for constants - they must always be prefixed.

You can import several specific symbols at once:

import os { input, user_os }

name := input('Enter your name: ')
println('Name: $name')
os := user_os()
println('Your OS is ${os}.')

Module import aliasing

Any imported module name can be aliased using the as keyword:

NOTE: this example will not compile unless you have created mymod/sha256.v

import crypto.sha256
import mymod.sha256 as mysha256

fn main() {
    v_hash := sha256.sum('hi'.bytes()).hex()
    my_hash := mysha256.sum('hi'.bytes()).hex()
    assert my_hash == v_hash
}

You cannot alias an imported function or type. However, you can redeclare a type.

import time
import math

type MyTime = time.Time

fn (mut t MyTime) century() int {
	return int(1.0 + math.trunc(f64(t.year) * 0.009999794661191))
}

fn main() {
	mut my_time := MyTime{
		year: 2020
		month: 12
		day: 25
	}
	println(time.new_time(my_time).utc_string())
	println('Century: $my_time.century()')
}

Statements & expressions

If

a := 10
b := 20
if a < b {
	println('$a < $b')
} else if a > b {
	println('$a > $b')
} else {
	println('$a == $b')
}

if statements are pretty straightforward and similar to most other languages. Unlike other C-like languages, there are no parentheses surrounding the condition and the braces are always required.

if can be used as an expression:

num := 777
s := if num % 2 == 0 { 'even' } else { 'odd' }
println(s)
// "odd"

Type checks and casts

You can check the current type of a sum type using is and its negated form !is.

You can do it either in an if:

struct Abc {
	val string
}

struct Xyz {
	foo string
}

type Alphabet = Abc | Xyz

x := Alphabet(Abc{'test'}) // sum type
if x is Abc {
	// x is automatically casted to Abc and can be used here
	println(x)
}
if x !is Abc {
	println('Not Abc')
}

or using match:

match x {
	Abc {
		// x is automatically casted to Abc and can be used here
		println(x)
	}
	Xyz {
		// x is automatically casted to Xyz and can be used here
		println(x)
	}
}

This works also with struct fields:

struct MyStruct {
	x int
}

struct MyStruct2 {
	y string
}

type MySumType = MyStruct | MyStruct2

struct Abc {
	bar MySumType
}

x := Abc{
	bar: MyStruct{123} // MyStruct will be converted to MySumType type automatically
}
if x.bar is MyStruct {
	// x.bar is automatically casted
	println(x.bar)
}
match x.bar {
	MyStruct {
		// x.bar is automatically casted
		println(x.bar)
	}
	else {}
}

Mutable variables can change, and doing a cast would be unsafe. However, sometimes it's needed to have a type cast despite of mutability. In this case the developer has to mark the expression with a mut keyword to tell the compiler that you're aware of what you're doing.

It works like this:

mut x := MySumType(MyStruct{123})
if mut x is MyStruct {
	// x is casted to MyStruct even if it's mutable
	// without the mut keyword that wouldn't work
	println(x)
}
// same with match
match mut x {
	MyStruct {
		// x is casted to MyStruct even it's mutable
		// without the mut keyword that wouldn't work
		println(x)
	}
}

In operator

in allows to check whether an array or a map contains an element. To do the opposite, use !in.

nums := [1, 2, 3]
println(1 in nums) // true
println(4 !in nums) // true
m := map{
	'one': 1
	'two': 2
}
println('one' in m) // true
println('three' !in m) // true

It's also useful for writing boolean expressions that are clearer and more compact:

enum Token {
	plus
	minus
	div
	mult
}

struct Parser {
	token Token
}

parser := Parser{}
if parser.token == .plus || parser.token == .minus || parser.token == .div || parser.token == .mult {
	// ...
}
if parser.token in [.plus, .minus, .div, .mult] {
	// ...
}

V optimizes such expressions, so both if statements above produce the same machine code and no arrays are created.

For loop

V has only one looping keyword: for, with several forms.

for/in

This is the most common form. You can use it with an array, map or numeric range.

Array for
numbers := [1, 2, 3, 4, 5]
for num in numbers {
	println(num)
}
names := ['Sam', 'Peter']
for i, name in names {
	println('$i) $name')
	// Output: 0) Sam
	//         1) Peter
}

The for value in arr form is used for going through elements of an array. If an index is required, an alternative form for index, value in arr can be used.

Note, that the value is read-only. If you need to modify the array while looping, you have to use indexing:

mut numbers := [0, 1, 2]
for i, _ in numbers {
	numbers[i]++
}
println(numbers) // [1, 2, 3]

When an identifier is just a single underscore, it is ignored.

Map for
m := map{
	'one': 1
	'two': 2
}
for key, value in m {
	println('$key -> $value')
	// Output: one -> 1
	//         two -> 2
}

Either key or value can be ignored by using a single underscore as the identifier.

m := map{
	'one': 1
	'two': 2
}
// iterate over keys
for key, _ in m {
	println(key)
	// Output: one
	//         two
}
// iterate over values
for _, value in m {
	println(value)
	// Output: 1
	//         2
}
Range for
// Prints '01234'
for i in 0 .. 5 {
	print(i)
}

low..high means an exclusive range, which represents all values from low up to but not including high.

Condition for

mut sum := 0
mut i := 0
for i <= 100 {
	sum += i
	i++
}
println(sum) // "5050"

This form of the loop is similar to while loops in other languages. The loop will stop iterating once the boolean condition evaluates to false. Again, there are no parentheses surrounding the condition, and the braces are always required.

Bare for

mut num := 0
for {
	num += 2
	if num >= 10 {
		break
	}
}
println(num) // "10"

The condition can be omitted, resulting in an infinite loop.

C for

for i := 0; i < 10; i += 2 {
	// Don't print 6
	if i == 6 {
		continue
	}
	println(i)
}

Finally, there's the traditional C style for loop. It's safer than the while form because with the latter it's easy to forget to update the counter and get stuck in an infinite loop.

Here i doesn't need to be declared with mut since it's always going to be mutable by definition.

Labelled break & continue

break and continue control the innermost for loop by default. You can also use break and continue followed by a label name to refer to an outer for loop:

outer: for i := 4; true; i++ {
	println(i)
	for {
		if i < 7 {
			continue outer
		} else {
			break outer
		}
	}
}

The label must immediately precede the outer loop. The above code prints:

4
5
6
7

Match

os := 'windows'
print('V is running on ')
match os {
	'darwin' { println('macOS.') }
	'linux' { println('Linux.') }
	else { println(os) }
}

A match statement is a shorter way to write a sequence of if - else statements. When a matching branch is found, the following statement block will be run. The else branch will be run when no other branches match.

number := 2
s := match number {
	1 { 'one' }
	2 { 'two' }
	else { 'many' }
}

A match expression returns the value of the final expression from the matching branch.

enum Color {
	red
	blue
	green
}

fn is_red_or_blue(c Color) bool {
	return match c {
		.red, .blue { true } // comma can be used to test multiple values
		.green { false }
	}
}

A match statement can also be used to branch on the variants of an enum by using the shorthand .variant_here syntax. An else branch is not allowed when all the branches are exhaustive.

c := `v`
typ := match c {
	`0`...`9` { 'digit' }
	`A`...`Z` { 'uppercase' }
	`a`...`z` { 'lowercase' }
	else { 'other' }
}
println(typ)
// 'lowercase'

You can also use ranges as match patterns. If the value falls within the range of a branch, that branch will be executed.

Note that the ranges use ... (three dots) rather than .. (two dots). This is because the range is inclusive of the last element, rather than exclusive (as .. ranges are). Using .. in a match branch will throw an error.

Note: match as an expression is not usable in for loop and if statements.

Defer

A defer statement defers the execution of a block of statements until the surrounding function returns.

import os

fn read_log() {
	mut ok := false
	mut f := os.open('log.txt') or { panic(err.msg) }
	defer {
		f.close()
	}
	// ...
	if !ok {
		// defer statement will be called here, the file will be closed
		return
	}
	// ...
	// defer statement will be called here, the file will be closed
}

Structs

struct Point {
	x int
	y int
}

mut p := Point{
	x: 10
	y: 20
}
println(p.x) // Struct fields are accessed using a dot
// Alternative literal syntax for structs with 3 fields or fewer
p = Point{10, 20}
assert p.x == 10

Heap structs

Structs are allocated on the stack. To allocate a struct on the heap and get a reference to it, use the & prefix:

struct Point {
	x int
	y int
}

p := &Point{10, 10}
// References have the same syntax for accessing fields
println(p.x)

The type of p is &Point. It's a reference to Point. References are similar to Go pointers and C++ references.

Embedded structs

V doesn't allow subclassing, but it supports embedded structs:

struct Widget {
mut:
	x int
	y int
}

struct Button {
	Widget
	title string
}

mut button := Button{
	title: 'Click me'
}
button.x = 3

Without embedding we'd have to name the Widget field and do:

button.widget.x = 3

Default field values

struct Foo {
	n   int    // n is 0 by default
	s   string // s is '' by default
	a   []int  // a is `[]int{}` by default
	pos int = -1 // custom default value
}

All struct fields are zeroed by default during the creation of the struct. Array and map fields are allocated.

It's also possible to define custom default values.

Required fields

struct Foo {
	n int [required]
}

You can mark a struct field with the [required] attribute, to tell V that that field must be initialized when creating an instance of that struct.

This example will not compile, since the field n isn't explicitly initialized:

_ = Foo{}

Short struct literal syntax

struct Point {
	x int
	y int
}

mut p := Point{
	x: 10
	y: 20
}
// you can omit the struct name when it's already known
p = {
	x: 30
	y: 4
}
assert p.y == 4

Omitting the struct name also works for returning a struct literal or passing one as a function argument.

Trailing struct literal arguments

V doesn't have default function arguments or named arguments, for that trailing struct literal syntax can be used instead:

struct ButtonConfig {
	text        string
	is_disabled bool
	width       int = 70
	height      int = 20
}

struct Button {
	text   string
	width  int
	height int
}

fn new_button(c ButtonConfig) &Button {
	return &Button{
		width: c.width
		height: c.height
		text: c.text
	}
}

button := new_button(text: 'Click me', width: 100)
// the height is unset, so it's the default value
assert button.height == 20

As you can see, both the struct name and braces can be omitted, instead of:

new_button(ButtonConfig{text:'Click me', width:100})

This only works for functions that take a struct for the last argument.

Access modifiers

Struct fields are private and immutable by default (making structs immutable as well). Their access modifiers can be changed with pub and mut. In total, there are 5 possible options:

struct Foo {
	a int // private immutable (default)
mut:
	b int // private mutable
	c int // (you can list multiple fields with the same access modifier)
pub:
	d int // public immutable (readonly)
pub mut:
	e int // public, but mutable only in parent module
__global:
	// (not recommended to use, that's why the 'global' keyword starts with __)
	f int // public and mutable both inside and outside parent module
}

For example, here's the string type defined in the builtin module:

struct string {
    str byteptr
pub:
    len int
}

It's easy to see from this definition that string is an immutable type. The byte pointer with the string data is not accessible outside builtin at all. The len field is public, but immutable:

fn main() {
    str := 'hello'
    len := str.len // OK
    str.len++      // Compilation error
}

This means that defining public readonly fields is very easy in V, no need in getters/setters or properties.

Methods

struct User {
	age int
}

fn (u User) can_register() bool {
	return u.age > 16
}

user := User{
	age: 10
}
println(user.can_register()) // "false"
user2 := User{
	age: 20
}
println(user2.can_register()) // "true"

V doesn't have classes, but you can define methods on types. A method is a function with a special receiver argument. The receiver appears in its own argument list between the fn keyword and the method name. Methods must be in the same module as the receiver type.

In this example, the can_register method has a receiver of type User named u. The convention is not to use receiver names like self or this, but a short, preferably one letter long, name.

Unions

Just like structs, unions support embedding.

struct Rgba32_Component {
	r byte
	g byte
	b byte
	a byte
}

union Rgba32 {
	Rgba32_Component
	value u32
}

clr1 := Rgba32{
	value: 0x008811FF
}

clr2 := Rgba32{
	Rgba32_Component: {
		a: 128
	}
}

sz := sizeof(Rgba32)
unsafe {
	println('Size: ${sz}B,clr1.b: $clr1.b,clr2.b: $clr2.b')
}

Output: Size: 4B, clr1.b: 136, clr2.b: 0

Union member access must be performed in an unsafe block.

Note that the embedded struct arguments are not necessarily stored in the order listed.

Functions 2

Pure functions by default

V functions are pure by default, meaning that their return values are a function of their arguments only, and their evaluation has no side effects (besides I/O).

This is achieved by a lack of global variables and all function arguments being immutable by default, even when references are passed.

V is not a purely functional language however.

There is a compiler flag to enable global variables (--enable-globals), but this is intended for low-level applications like kernels and drivers.

Mutable arguments

It is possible to modify function arguments by using the keyword mut:

struct User {
	name string
mut:
	is_registered bool
}

fn (mut u User) register() {
	u.is_registered = true
}

mut user := User{}
println(user.is_registered) // "false"
user.register()
println(user.is_registered) // "true"

In this example, the receiver (which is simply the first argument) is marked as mutable, so register() can change the user object. The same works with non-receiver arguments:

fn multiply_by_2(mut arr []int) {
	for i in 0 .. arr.len {
		arr[i] *= 2
	}
}

mut nums := [1, 2, 3]
multiply_by_2(mut nums)
println(nums)
// "[2, 4, 6]"

Note, that you have to add mut before nums when calling this function. This makes it clear that the function being called will modify the value.

It is preferable to return values instead of modifying arguments. Modifying arguments should only be done in performance-critical parts of your application to reduce allocations and copying.

For this reason V doesn't allow the modification of arguments with primitive types (e.g. integers). Only more complex types such as arrays and maps may be modified.

Use user.register() or user = register(user) instead of register(mut user).

Struct update syntax

V makes it easy to return a modified version of an object:

struct User {
	name          string
	age           int
	is_registered bool
}

fn register(u User) User {
	return {
		...u
		is_registered: true
	}
}

mut user := User{
	name: 'abc'
	age: 23
}
user = register(user)
println(user)

Variable number of arguments

fn sum(a ...int) int {
	mut total := 0
	for x in a {
		total += x
	}
	return total
}

println(sum()) // 0
println(sum(1)) // 1
println(sum(2, 3)) // 5
// using array decomposition
a := [2, 3, 4]
println(sum(...a)) // <-- using prefix ... here. output: 9
b := [5, 6, 7]
println(sum(...b)) // output: 18

Anonymous & high order functions

fn sqr(n int) int {
	return n * n
}

fn cube(n int) int {
	return n * n * n
}

fn run(value int, op fn (int) int) int {
	return op(value)
}

fn main() {
	// Functions can be passed to other functions
	println(run(5, sqr)) // "25"
	// Anonymous functions can be declared inside other functions:
	double_fn := fn (n int) int {
		return n + n
	}
	println(run(5, double_fn)) // "10"
	// Functions can be passed around without assigning them to variables:
	res := run(5, fn (n int) int {
		return n + n
	})
	println(res) // "10"
	// You can even have an array/map of functions:
	fns := [sqr, cube]
	println(fns[0](10)) // "100"
	fns_map := map{
		'sqr':  sqr
		'cube': cube
	}
	println(fns_map['cube'](2)) // "8"
}

References

struct Foo {}

fn (foo Foo) bar_method() {
	// ...
}

fn bar_function(foo Foo) {
	// ...
}

If a function argument is immutable (like foo in the examples above) V can pass it either by value or by reference. The compiler will decide, and the developer doesn't need to think about it.

You no longer need to remember whether you should pass the struct by value or by reference.

You can ensure that the struct is always passed by reference by adding &:

struct Foo {
	abc int
}

fn (foo &Foo) bar() {
	println(foo.abc)
}

foo is still immutable and can't be changed. For that, (mut foo Foo) must be used.

In general, V's references are similar to Go pointers and C++ references. For example, a generic tree structure definition would look like this:

struct Node<T> {
    val   T
    left  &Node
    right &Node
}

Constants

const (
	pi    = 3.14
	world = '世界'
)

println(pi)
println(world)

Constants are declared with const. They can only be defined at the module level (outside of functions). Constant values can never be changed. You can also declare a single constant separately:

const e = 2.71828

V constants are more flexible than in most languages. You can assign more complex values:

struct Color {
	r int
	g int
	b int
}

fn rgb(r int, g int, b int) Color {
	return Color{
		r: r
		g: g
		b: b
	}
}

const (
	numbers = [1, 2, 3]
	red     = Color{
		r: 255
		g: 0
		b: 0
	}
	// evaluate function call at compile-time*
	blue    = rgb(0, 0, 255)
)

println(numbers)
println(red)
println(blue)

* WIP - for now function calls are evaluated at program start-up

Global variables are not normally allowed, so this can be really useful.

Required module prefix

When naming constants, snake_case must be used. In order to distinguish consts from local variables, the full path to consts must be specified. For example, to access the PI const, full math.pi name must be used both outside the math module, and inside it. That restriction is relaxed only for the main module (the one containing your fn main()), where you can use the unqualified name of constants defined there, i.e. numbers, rather than main.numbers.

vfmt takes care of this rule, so you can type println(pi) inside the math module, and vfmt will automatically update it to println(math.pi).

Builtin functions

Some functions are builtin like println. Here is the complete list:

fn print(s string) // print anything on sdtout
fn println(s string) // print anything and a newline on sdtout

fn eprint(s string) // same as print(), but use stderr
fn eprintln(s string) // same as println(), but use stderr

fn exit(code int) // terminate the program with a custom error code
fn panic(s string) // print a message and backtraces on stderr, and terminate the program with error code 1
fn print_backtrace() // print backtraces on stderr

println is a simple yet powerful builtin function, that can print anything: strings, numbers, arrays, maps, structs.

struct User {
	name string
	age  int
}

println(1) // "1"
println('hi') // "hi"
println([1, 2, 3]) // "[1, 2, 3]"
println(User{ name: 'Bob', age: 20 }) // "User{name:'Bob', age:20}"

Printing custom types

If you want to define a custom print value for your type, simply define a .str() string method:

struct Color {
	r int
	g int
	b int
}

pub fn (c Color) str() string {
	return '{$c.r, $c.g, $c.b}'
}

red := Color{
	r: 255
	g: 0
	b: 0
}
println(red)

Modules

Every file in the root of a folder is part of the same module. Simple programs don't need to specify module name, in which case it defaults to 'main'.

V is a very modular language. Creating reusable modules is encouraged and is quite easy to do. To create a new module, create a directory with your module's name containing .v files with code:

cd ~/code/modules
mkdir mymodule
vim mymodule/myfile.v
// myfile.v
module mymodule

// To export a function we have to use `pub`
pub fn say_hi() {
    println('hello from mymodule!')
}

You can now use mymodule in your code:

import mymodule

fn main() {
    mymodule.say_hi()
}
  • Module names should be short, under 10 characters.
  • Module names must use snake_case.
  • Circular imports are not allowed.
  • You can have as many .v files in a module as you want.
  • You can create modules anywhere.
  • All modules are compiled statically into a single executable.

init functions

If you want a module to automatically call some setup/initialization code when it is imported, you can use a module init function:

fn init() {
	// your setup code here ...
}

The init function cannot be public - it will be called automatically. This feature is particularly useful for initializing a C library.

Types 2

Interfaces

struct Dog {
	breed string
}

struct Cat {
	breed string
}

fn (d Dog) speak() string {
	return 'woof'
}

fn (c Cat) speak() string {
	return 'meow'
}

// unlike Go and like TypeScript, V's interfaces can define fields, not just methods.
interface Speaker {
	breed string
	speak() string
}

dog := Dog{'Leonberger'}
cat := Cat{'Siamese'}

mut arr := []Speaker{}
arr << dog
arr << cat
for item in arr {
	println('a $item.breed says: $item.speak()')
}

A type implements an interface by implementing its methods and fields. There is no explicit declaration of intent, no "implements" keyword.

Casting an interface

We can test the underlying type of an interface using dynamic cast operators:

interface Something {}

fn announce(s Something) {
	if s is Dog {
		println('a $s.breed dog') // `s` is automatically cast to `Dog` (smart cast)
	} else if s is Cat {
		println('a $s.breed cat')
	} else {
		println('something else')
	}
}

For more information, see Dynamic casts.

Interface method definitions

Also unlike Go, an interface may implement a method. These methods are not implemented by structs which implement that interface.

When a struct is wrapped in an interface that has implemented a method with the same name as one implemented by this struct, only the method implemented on the interface is called.

struct Cat {}

fn (c Cat) speak() string {
	return 'meow!'
}

interface Adoptable {}

fn (a Adoptable) speak() string {
	return 'adopt me!'
}

fn new_adoptable() Adoptable {
	return Cat{}
}

fn main() {
	cat := Cat{}
	assert cat.speak() == 'meow!'
	a := new_adoptable()
	assert a.speak() == 'adopt me!'
	if a is Cat {
		println(a.speak()) // meow!
	}
}

Enums

enum Color {
	red
	green
	blue
}

mut color := Color.red
// V knows that `color` is a `Color`. No need to use `color = Color.green` here.
color = .green
println(color) // "green"
match color {
	.red { println('the color was red') }
	.green { println('the color was green') }
	.blue { println('the color was blue') }
}

Enum match must be exhaustive or have an else branch. This ensures that if a new enum field is added, it's handled everywhere in the code.

Enum fields cannot re-use reserved keywords. However, reserved keywords may be escaped with an @.

enum Color {
	@none
	red
	green
	blue
}

color := Color.@none
println(color)

Integers may be assigned to enum fields.

enum Grocery {
	apple
	orange = 5
	pear
}

g1 := int(Grocery.apple)
g2 := int(Grocery.orange)
g3 := int(Grocery.pear)
println('Grocery IDs: $g1, $g2, $g3')

Output: Grocery IDs: 0, 5, 6.

Operations are not allowed on enum variables; they must be explicity cast to int.

Sum types

A sum type instance can hold a value of several different types. Use the type keyword to declare a sum type:

struct Moon {}

struct Mars {}

struct Venus {}

type World = Mars | Moon | Venus

sum := World(Moon{})
assert sum.type_name() == 'Moon'
println(sum)

The built-in method type_name returns the name of the currently held type.

With sum types you could build recursive structures and write concise but powerful code on them.

// V's binary tree
struct Empty {}

struct Node {
	value f64
	left  Tree
	right Tree
}

type Tree = Empty | Node

// sum up all node values
fn sum(tree Tree) f64 {
	return match tree {
		Empty { f64(0) } // TODO: as match gets smarter just remove f64()
		Node { tree.value + sum(tree.left) + sum(tree.right) }
	}
}

fn main() {
	left := Node{0.2, Empty{}, Empty{}}
	right := Node{0.3, Empty{}, Node{0.4, Empty{}, Empty{}}}
	tree := Node{0.5, left, right}
	println(sum(tree)) // 0.2 + 0.3 + 0.4 + 0.5 = 1.4
}

Dynamic casts

To check whether a sum type instance holds a certain type, use sum is Type. To cast a sum type to one of its variants you can use sum as Type:

struct Moon {}

struct Mars {}

struct Venus {}

type World = Mars | Moon | Venus

fn (m Mars) dust_storm() bool {
	return true
}

fn main() {
	mut w := World(Moon{})
	assert w is Moon
	w = Mars{}
	// use `as` to access the Mars instance
	mars := w as Mars
	if mars.dust_storm() {
		println('bad weather!')
	}
}

as will panic if w doesn't hold a Mars instance. A safer way is to use a smart cast.

Smart casting

if w is Mars {
	assert typeof(w).name == 'Mars'
	if w.dust_storm() {
		println('bad weather!')
	}
}

w has type Mars inside the body of the if statement. This is known as flow-sensitive typing. If w is a mutable identifier, it would be unsafe if the compiler smart casts it without a warning. That's why you have to declare a mut before the is expression:

if mut w is Mars {
	assert typeof(w).name == 'Mars'
	if w.dust_storm() {
		println('bad weather!')
	}
}

Otherwise w would keep its original type.

This works for both, simple variables and complex expressions like user.name

Matching sum types

You can also use match to determine the variant:

struct Moon {}

struct Mars {}

struct Venus {}

type World = Mars | Moon | Venus

fn open_parachutes(n int) {
	println(n)
}

fn land(w World) {
	match w {
		Moon {} // no atmosphere
		Mars {
			// light atmosphere
			open_parachutes(3)
		}
		Venus {
			// heavy atmosphere
			open_parachutes(1)
		}
	}
}

match must have a pattern for each variant or have an else branch.

struct Moon {}
struct Mars {}
struct Venus {}

type World = Moon | Mars | Venus

fn (m Moon) moon_walk() {}
fn (m Mars) shiver() {}
fn (v Venus) sweat() {}

fn pass_time(w World) {
    match w {
        // using the shadowed match variable, in this case `w` (smart cast)
        Moon { w.moon_walk() }
        Mars { w.shiver() }
        else {}
    }
}

Option/Result types and error handling

Option types are declared with ?Type:

struct User {
	id   int
	name string
}

struct Repo {
	users []User
}

fn (r Repo) find_user_by_id(id int) ?User {
	for user in r.users {
		if user.id == id {
			// V automatically wraps this into an option type
			return user
		}
	}
	return error('User $id not found')
}

fn main() {
	repo := Repo{
		users: [User{1, 'Andrew'}, User{2, 'Bob'}, User{10, 'Charles'}]
	}
	user := repo.find_user_by_id(10) or { // Option types must be handled by `or` blocks
		return
	}
	println(user.id) // "10"
	println(user.name) // "Charles"
}

V combines Option and Result into one type, so you don't need to decide which one to use.

The amount of work required to "upgrade" a function to an optional function is minimal; you have to add a ? to the return type and return an error when something goes wrong.

If you don't need to return an error message, you can simply return none (this is a more efficient equivalent of return error("")).

This is the primary mechanism for error handling in V. They are still values, like in Go, but the advantage is that errors can't be unhandled, and handling them is a lot less verbose. Unlike other languages, V does not handle exceptions with throw/try/catch blocks.

err is defined inside an or block and is set to the string message passed to the error() function. err is empty if none was returned.

user := repo.find_user_by_id(7) or {
	println(err) // "User 7 not found"
	return
}

Handling optionals

There are four ways of handling an optional. The first method is to propagate the error:

import net.http

fn f(url string) ?string {
	resp := http.get(url) ?
	return resp.text
}

http.get returns ?http.Response. Because ? follows the call, the error will be propagated to the caller of f. When using ? after a function call producing an optional, the enclosing function must return an optional as well. If error propagation is used in the main() function it will panic instead, since the error cannot be propagated any further.

The body of f is essentially a condensed version of:

    resp := http.get(url) or { return err }
    return resp.text

The second method is to break from execution early:

user := repo.find_user_by_id(7) or { return }

Here, you can either call panic() or exit(), which will stop the execution of the entire program, or use a control flow statement (return, break, continue, etc) to break from the current block. Note that break and continue can only be used inside a for loop.

V does not have a way to forcibly "unwrap" an optional (as other languages do, for instance Rust's unwrap() or Swift's !). To do this, use or { panic(err.msg) } instead.


The third method is to provide a default value at the end of the or block. In case of an error, that value would be assigned instead, so it must have the same type as the content of the Option being handled.

fn do_something(s string) ?string {
	if s == 'foo' {
		return 'foo'
	}
	return error('invalid string') // Could be `return none` as well
}

a := do_something('foo') or { 'default' } // a will be 'foo'
b := do_something('bar') or { 'default' } // b will be 'default'
println(a)
println(b)

The fourth method is to use if unwrapping:

import net.http

if resp := http.get('https://google.com') {
	println(resp.text) // resp is a http.Response, not an optional
} else {
	println(err)
}

Above, http.get returns a ?http.Response. resp is only in scope for the first if branch. err is only in scope for the else branch.

Generics


struct Repo<T> {
    db DB
}

struct User {
	id   int
	name string
}

struct Post {
	id   int
	user_id int
	title string
	body string
}

fn new_repo<T>(db DB) Repo<T> {
    return Repo<T>{db: db}
}

// This is a generic function. V will generate it for every type it's used with.
fn (r Repo<T>) find_by_id(id int) ?T {
    table_name := T.name // in this example getting the name of the type gives us the table name
    return r.db.query_one<T>('select * from $table_name where id = ?', id)
}

db := new_db()
users_repo := new_repo<User>(db) // returns Repo<User>
posts_repo := new_repo<Post>(db) // returns Repo<Post>
user := users_repo.find_by_id(1)? // find_by_id<User>
post := posts_repo.find_by_id(1)? // find_by_id<Post>

Currently generic function definitions must declare their type parameters, but in future V will infer generic type parameters from single-letter type names in runtime parameter types. This is why find_by_id can omit <T>, because the receiver argument r uses a generic type T.

Another example:

fn compare<T>(a T, b T) int {
	if a < b {
		return -1
	}
	if a > b {
		return 1
	}
	return 0
}

// compare<int>
println(compare(1, 0)) // Outputs: 1
println(compare(1, 1)) //          0
println(compare(1, 2)) //         -1
// compare<string>
println(compare('1', '0')) // Outputs: 1
println(compare('1', '1')) //          0
println(compare('1', '2')) //         -1
// compare<f64>
println(compare(1.1, 1.0)) // Outputs: 1
println(compare(1.1, 1.1)) //          0
println(compare(1.1, 1.2)) //         -1

Concurrency

Spawning Concurrent Tasks

V's model of concurrency is very similar to Go's. To run foo() concurrently in a different thread, just call it with go foo():

import math

fn p(a f64, b f64) { // ordinary function without return value
	c := math.sqrt(a * a + b * b)
	println(c)
}

fn main() {
	go p(3, 4)
	// p will be run in parallel thread
}

Sometimes it is necessary to wait until a parallel thread has finished. This can be done by assigning a handle to the started thread and calling the wait() method to this handle later:

import math

fn p(a f64, b f64) { // ordinary function without return value
	c := math.sqrt(a * a + b * b)
	println(c) // prints `5`
}

fn main() {
	h := go p(3, 4)
	// p() runs in parallel thread
	h.wait()
	// p() has definitely finished
}

This approach can also be used to get a return value from a function that is run in a parallel thread. There is no need to modify the function itself to be able to call it concurrently.

import math { sqrt }

fn get_hypot(a f64, b f64) f64 { //       ordinary function returning a value
	c := sqrt(a * a + b * b)
	return c
}

fn main() {
	g := go get_hypot(54.06, 2.08) // spawn thread and get handle to it
	h1 := get_hypot(2.32, 16.74) //   do some other calculation here
	h2 := g.wait() //                 get result from spawned thread
	println('Results: $h1, $h2') //   prints `Results: 16.9, 54.1`
}

If there is a large number of tasks, it might be easier to manage them using an array of threads.

import time

fn task(id int, duration int) {
	println('task $id begin')
	time.sleep(duration * time.millisecond)
	println('task $id end')
}

fn main() {
	mut threads := []thread{}
	threads << go task(1, 500)
	threads << go task(2, 900)
	threads << go task(3, 100)
	threads.wait()
	println('done')
}

// Output:
// task 1 begin
// task 2 begin
// task 3 begin
// task 3 end
// task 1 end
// task 2 end
// done

Additionally for threads that return the same type, calling wait() on the thread array will return all computed values.

fn expensive_computing(i int) int {
	return i * i
}

fn main() {
	mut threads := []thread int{}
	for i in 1 .. 10 {
		threads << go expensive_computing(i)
	}
	// Join all tasks
	r := threads.wait()
	println('All jobs finished: $r')
}

// Output: All jobs finished: [1, 4, 9, 16, 25, 36, 49, 64, 81]

Channels

Channels are the preferred way to communicate between coroutines. V's channels work basically like those in Go. You can push objects into a channel on one end and pop objects from the other end. Channels can be buffered or unbuffered and it is possible to select from multiple channels.

Syntax and Usage

Channels have the type chan objtype. An optional buffer length can specified as the cap property in the declaration:

ch := chan int{} // unbuffered - "synchronous"
ch2 := chan f64{cap: 100} // buffer length 100

Channels do not have to be declared as mut. The buffer length is not part of the type but a property of the individual channel object. Channels can be passed to coroutines like normal variables:

fn f(ch chan int) {
	// ...
}

fn main() {
	ch := chan int{}
	go f(ch)
	// ...
}

Objects can be pushed to channels using the arrow operator. The same operator can be used to pop objects from the other end:

ch := chan int{}
ch2 := chan f64{}
n := 5
x := 7.3
ch <- n
// push
ch2 <- x
mut y := f64(0.0)
m := <-ch // pop creating new variable
y = <-ch2 // pop into existing variable

A channel can be closed to indicate that no further objects can be pushed. Any attempt to do so will then result in a runtime panic (with the exception of select and try_push() - see below). Attempts to pop will return immediately if the associated channel has been closed and the buffer is empty. This situation can be handled using an or branch (see Handling Optionals).

ch := chan int{}
ch2 := chan f64{}
// ...
ch.close()
// ...
m := <-ch or {
    println('channel has been closed')
}

// propagate error
y := <-ch2 ?

Channel Select

The select command allows monitoring several channels at the same time without noticeable CPU load. It consists of a list of possible transfers and associated branches of statements - similar to the match command:

import time
fn main () {
  c := chan f64{}
  ch := chan f64{}
  ch2 := chan f64{}
  ch3 := chan f64{}
  mut b := 0.0
  // ...
  select {
    a := <-ch {
        // do something with `a`
    }
    b = <-ch2 {
        // do something with predeclared variable `b`
    }
    ch3 <- c {
        // do something if `c` was sent
    }
    > 500 * time.millisecond {
        // do something if no channel has become ready within 0.5s
    }
  }
}

The timeout branch is optional. If it is absent select waits for an unlimited amount of time. It is also possible to proceed immediately if no channel is ready in the moment select is called by adding an else { ... } branch. else and > timeout are mutually exclusive.

The select command can be used as an expression of type bool that becomes false if all channels are closed:

if select {
    ch <- a {
        // ...
    }
} {
    // channel was open
} else {
    // channel is closed
}

Special Channel Features

For special purposes there are some builtin properties and methods:

struct Abc {
	x int
}

a := 2.13
ch := chan f64{}
res := ch.try_push(a) // try to perform `ch <- a`
println(res)
l := ch.len // number of elements in queue
c := ch.cap // maximum queue length
is_closed := ch.closed // bool flag - has `ch` been closed
println(l)
println(c)
mut b := Abc{}
ch2 := chan Abc{}
res2 := ch2.try_pop(b) // try to perform `b = <-ch2`

The try_push/pop() methods will return immediately with one of the results .success, .not_ready or .closed - dependent on whether the object has been transferred or the reason why not. Usage of these methods and properties in production is not recommended - algorithms based on them are often subject to race conditions. Especially .len and .closed should not be used to make decisions. Use or branches, error propagation or select instead (see Syntax and Usage and Channel Select above).

Shared Objects

Data can be exchanged between a coroutine and the calling thread via a shared variable. Such variables should be created as shared and passed to the coroutine as such, too. The underlying struct contains a hidden mutex that allows locking concurrent access using rlock for read-only and lock for read/write access.

struct St {
mut:
	x int // data to shared
}

fn (shared b St) g() {
	lock b {
		// read/modify/write b.x
	}
}

fn main() {
	shared a := St{
		x: 10
	}
	go a.g()
	// ...
	rlock a {
		// read a.x
	}
}

Shared variables must be structs, arrays or maps.

Decoding JSON

import json

struct Foo {
	x int
}

struct User {
	name string
	age  int
	// Use the `skip` attribute to skip certain fields
	foo Foo [skip]
	// If the field name is different in JSON, it can be specified
	last_name string [json: lastName]
}

data := '{ "name": "Frodo", "lastName": "Baggins", "age": 25 }'
user := json.decode(User, data) or {
	eprintln('Failed to decode json')
	return
}
println(user.name)
println(user.last_name)
println(user.age)
// You can also decode JSON arrays:
sfoos := '[{"x":123},{"x":456}]'
foos := json.decode([]Foo, sfoos) ?
println(foos[0].x)
println(foos[1].x)

Because of the ubiquitous nature of JSON, support for it is built directly into V.

The json.decode function takes two arguments: the first is the type into which the JSON value should be decoded and the second is a string containing the JSON data.

V generates code for JSON encoding and decoding. No runtime reflection is used. This results in much better performance.

Testing

Asserts

fn foo(mut v []int) {
	v[0] = 1
}

mut v := [20]
foo(mut v)
assert v[0] < 4

An assert statement checks that its expression evaluates to true. If an assert fails, the program will abort. Asserts should only be used to detect programming errors. When an assert fails it is reported to stderr, and the values on each side of a comparison operator (such as <, ==) will be printed when possible. This is useful to easily find an unexpected value. Assert statements can be used in any function.

Test files

// hello.v
module main

fn hello() string {
	return 'Hello world'
}

fn main() {
	println(hello())
}
module main
// hello_test.v
fn test_hello() {
    assert hello() == 'Hello world'
}

To run the test above, use v hello_test.v. This will check that the function hello is producing the correct output. V executes all test functions in the file.

  • All test functions have to be inside a test file whose name ends in _test.v.
  • Test function names must begin with test_ to mark them for execution.
  • Normal functions can also be defined in test files, and should be called manually. Other symbols can also be defined in test files e.g. types.
  • There are two kinds of tests: external and internal.
  • Internal tests must declare their module, just like all other .v files from the same module. Internal tests can even call private functions in the same module.
  • External tests must import the modules which they test. They do not have access to the private functions/types of the modules. They can test only the external/public API that a module provides.

In the example above, test_hello is an internal test, that can call the private function hello() because hello_test.v has module main, just like hello.v, i.e. both are part of the same module. Note also that since module main is a regular module like the others, internal tests can be used to test private functions in your main program .v files too.

You can also define special test functions in a test file:

  • testsuite_begin which will be run before all other test functions.
  • testsuite_end which will be run after all other test functions.

Running tests

To run test functions in an individual test file, use v foo_test.v.

To test an entire module, use v test mymodule. You can also use v test . to test everything inside your current folder (and subfolders). You can pass the -stats option to see more details about the individual tests run.

Memory management

V avoids doing unnecessary allocations in the first place by using value types, string buffers, promoting a simple abstraction-free code style.

Most objects (~90-100%) are freed by V's autofree engine: the compiler inserts necessary free calls automatically during compilation. Remaining small percentage of objects is freed via reference counting.

The developer doesn't need to change anything in their code. "It just works", like in Python, Go, or Java, except there's no heavy GC tracing everything or expensive RC for each object.

For developers willing to have more low level control, autofree can be disabled with -manualfree, or by adding a [manualfree] on each function that wants manage its memory manually.

Note: right now autofree is hidden behind the -autofree flag. It will be enabled by default in V 0.3. If autofree is not used, V programs will leak memory.

For example:

import strings

fn draw_text(s string, x int, y int) {
	// ...
}

fn draw_scene() {
	// ...
	name1 := 'abc'
	name2 := 'def ghi'
	draw_text('hello $name1', 10, 10)
	draw_text('hello $name2', 100, 10)
	draw_text(strings.repeat(`X`, 10000), 10, 50)
	// ...
}

The strings don't escape draw_text, so they are cleaned up when the function exits.

In fact, the first two calls won't result in any allocations at all. These two strings are small, V will use a preallocated buffer for them.

struct User {
	name string
}

fn test() []int {
	number := 7 // stack variable
	user := User{} // struct allocated on stack
	numbers := [1, 2, 3] // array allocated on heap, will be freed as the function exits
	println(number)
	println(user)
	println(numbers)
	numbers2 := [4, 5, 6] // array that's being returned, won't be freed here
	return numbers2
}

ORM

(This is still in an alpha state)

V has a built-in ORM (object-relational mapping) which supports SQLite, and will soon support MySQL, Postgres, MS SQL, and Oracle.

V's ORM provides a number of benefits:

  • One syntax for all SQL dialects. (Migrating between databases becomes much easier.)
  • Queries are constructed using V's syntax. (There's no need to learn another syntax.)
  • Safety. (All queries are automatically sanitised to prevent SQL injection.)
  • Compile time checks. (This prevents typos which can only be caught during runtime.)
  • Readability and simplicity. (You don't need to manually parse the results of a query and then manually construct objects from the parsed results.)
import sqlite

struct Customer {
	// struct name has to be the same as the table name (for now)
	id        int // a field named `id` of integer type must be the first field
	name      string
	nr_orders int
	country   string
}

db := sqlite.connect('customers.db') ?
// select count(*) from Customer
nr_customers := sql db {
	select count from Customer
}
println('number of all customers: $nr_customers')
// V syntax can be used to build queries
// db.select returns an array
uk_customers := sql db {
	select from Customer where country == 'uk' && nr_orders > 0
}
println(uk_customers.len)
for customer in uk_customers {
	println('$customer.id - $customer.name')
}
// by adding `limit 1` we tell V that there will be only one object
customer := sql db {
	select from Customer where id == 1 limit 1
}
println('$customer.id - $customer.name')
// insert a new customer
new_customer := Customer{
	name: 'Bob'
	nr_orders: 10
}
sql db {
	insert new_customer into Customer
}

For more examples, see vlib/orm/orm_test.v.

Writing Documentation

The way it works is very similar to Go. It's very simple: there's no need to write documentation separately for your code, vdoc will generate it from docstrings in the source code.

Documentation for each function/type/const must be placed right before the declaration:

// clearall clears all bits in the array
fn clearall() {
}

The comment must start with the name of the definition.

Sometimes one line isn't enough to explain what a function does, in that case comments should span to the documented function using single line comments:

// copy_all recursively copies all elements of the array by their value,
// if `dupes` is false all duplicate values are eliminated in the process.
fn copy_all(dupes bool) {
	// ...
}

By convention it is preferred that comments are written in present tense.

An overview of the module must be placed in the first comment right after the module's name.

To generate documentation use vdoc, for example v doc net.http.

Tools

v fmt

You don't need to worry about formatting your code or setting style guidelines. v fmt takes care of that:

v fmt file.v

It's recommended to set up your editor, so that v fmt -w runs on every save. A vfmt run is usually pretty cheap (takes <30ms).

Always run v fmt -w file.v before pushing your code.

Profiling

V has good support for profiling your programs: v -profile profile.txt run file.v That will produce a profile.txt file, which you can then analyze.

The generated profile.txt file will have lines with 4 columns: a) how many times a function was called b) how much time in total a function took (in ms) c) how much time on average, a call to a function took (in ns) d) the name of the v function

You can sort on column 3 (average time per function) using: sort -n -k3 profile.txt|tail

You can also use stopwatches to measure just portions of your code explicitly:

import time

fn main() {
	sw := time.new_stopwatch({})
	println('Hello world')
	println('Greeting the world took: ${sw.elapsed().nanoseconds()}ns')
}

Advanced Topics

Memory-unsafe code

Sometimes for efficiency you may want to write low-level code that can potentially corrupt memory or be vulnerable to security exploits. V supports writing such code, but not by default.

V requires that any potentially memory-unsafe operations are marked intentionally. Marking them also indicates to anyone reading the code that there could be memory-safety violations if there was a mistake.

Examples of potentially memory-unsafe operations are:

  • Pointer arithmetic
  • Pointer indexing
  • Conversion to pointer from an incompatible type
  • Calling certain C functions, e.g. free, strlen and strncmp.

To mark potentially memory-unsafe operations, enclose them in an unsafe block:

// allocate 2 uninitialized bytes & return a reference to them
mut p := unsafe { malloc(2) }
p[0] = `h` // Error: pointer indexing is only allowed in `unsafe` blocks
unsafe {
    p[0] = `h` // OK
    p[1] = `i`
}
p++ // Error: pointer arithmetic is only allowed in `unsafe` blocks
unsafe {
    p++ // OK
}
assert *p == `i`

Best practice is to avoid putting memory-safe expressions inside an unsafe block, so that the reason for using unsafe is as clear as possible. Generally any code you think is memory-safe should not be inside an unsafe block, so the compiler can verify it.

If you suspect your program does violate memory-safety, you have a head start on finding the cause: look at the unsafe blocks (and how they interact with surrounding code).

  • Note: This is work in progress.

Structs with reference fields

Structs with references require explicitly setting the initial value to a reference value unless the struct already defines its own initial value.

Zero-value references, or nil pointers, will NOT be supported in the future, for now data structures such as Linked Lists or Binary Trees that rely on reference fields that can use the value 0, understanding that it is unsafe, and that it can cause a panic.

struct Node {
	a &Node
	b &Node = 0 // Auto-initialized to nil, use with caution!
}

// Reference fields must be initialized unless an initial value is declared.
// Zero (0) is OK but use with caution, it's a nil pointer.
foo := Node{
	a: 0
}
bar := Node{
	a: &foo
}
baz := Node{
	a: 0
	b: 0
}
qux := Node{
	a: &foo
	b: &bar
}
println(baz)
println(qux)

sizeof and __offsetof

  • sizeof(Type) gives the size of a type in bytes.
  • __offsetof(Struct, field_name) gives the offset in bytes of a struct field.
struct Foo {
	a int
	b int
}

assert sizeof(Foo) == 8
assert __offsetof(Foo, a) == 0
assert __offsetof(Foo, b) == 4

Calling C from V

Example

#flag -lsqlite3
#include "sqlite3.h"
// See also the example from https://www.sqlite.org/quickstart.html
struct C.sqlite3 {
}

struct C.sqlite3_stmt {
}

type FnSqlite3Callback = fn (voidptr, int, &charptr, &charptr) int

fn C.sqlite3_open(charptr, &&C.sqlite3) int

fn C.sqlite3_close(&C.sqlite3) int

fn C.sqlite3_column_int(stmt &C.sqlite3_stmt, n int) int

// ... you can also just define the type of parameter and leave out the C. prefix
fn C.sqlite3_prepare_v2(&C.sqlite3, charptr, int, &&C.sqlite3_stmt, &charptr) int

fn C.sqlite3_step(&C.sqlite3_stmt)

fn C.sqlite3_finalize(&C.sqlite3_stmt)

fn C.sqlite3_exec(db &C.sqlite3, sql charptr, cb FnSqlite3Callback, cb_arg voidptr, emsg &charptr) int

fn C.sqlite3_free(voidptr)

fn my_callback(arg voidptr, howmany int, cvalues &charptr, cnames &charptr) int {
	unsafe {
		for i in 0 .. howmany {
			print('| ${cstring_to_vstring(cnames[i])}: ${cstring_to_vstring(cvalues[i]):20} ')
		}
	}
	println('|')
	return 0
}

fn main() {
	db := &C.sqlite3(0) // this means `sqlite3* db = 0`
	// passing a string literal to a C function call results in a C string, not a V string
	C.sqlite3_open('users.db', &db)
	// C.sqlite3_open(db_path.str, &db)
	query := 'select count(*) from users'
	stmt := &C.sqlite3_stmt(0)
	// NB: you can also use the `.str` field of a V string,
	// to get its C style zero terminated representation
	C.sqlite3_prepare_v2(db, query.str, -1, &stmt, 0)
	C.sqlite3_step(stmt)
	nr_users := C.sqlite3_column_int(stmt, 0)
	C.sqlite3_finalize(stmt)
	println('There are $nr_users users in the database.')
	//
	error_msg := charptr(0)
	query_all_users := 'select * from users'
	rc := C.sqlite3_exec(db, query_all_users.str, my_callback, 7, &error_msg)
	if rc != C.SQLITE_OK {
		eprintln(cstring_to_vstring(error_msg))
		C.sqlite3_free(error_msg)
	}
	C.sqlite3_close(db)
}

Passing C compilation flags

Add #flag directives to the top of your V files to provide C compilation flags like:

  • -I for adding C include files search paths
  • -l for adding C library names that you want to get linked
  • -L for adding C library files search paths
  • -D for setting compile time variables

You can (optionally) use different flags for different targets. Currently the linux, darwin , freebsd, and windows flags are supported.

NB: Each flag must go on its own line (for now)

#flag linux -lsdl2
#flag linux -Ivig
#flag linux -DCIMGUI_DEFINE_ENUMS_AND_STRUCTS=1
#flag linux -DIMGUI_DISABLE_OBSOLETE_FUNCTIONS=1
#flag linux -DIMGUI_IMPL_API=

In the console build command, you can use -cflags to pass custom flags to the backend C compiler. You can also use -cc to change the default C backend compiler. For example: -cc gcc-9 -cflags -fsanitize=thread.

You can also define a VFLAGS environment variable in your terminal to store your -cc and cflags settings, rather than including them in the build command each time.

#pkgconfig

Add #pkgconfig directive is used to tell the compiler which modules should be used for compiling and linking using the pkg-config files provided by the respective dependencies.

As long as backticks can't be used in #flag and spawning processes is not desirable for security and portability reasons, V uses its own pkgconfig library that is compatible with the standard freedesktop one.

If no flags are passed it will add --cflags and --libs, both lines below do the same:

#pkgconfig r_core
#pkgconfig --cflags --libs r_core

The .pc files are looked up into a hardcoded list of default pkg-config paths, the user can add extra paths by using the PKG_CONFIG_PATH environment variable. Multiple modules can be passed.

Including C code

You can also include C code directly in your V module. For example, let's say that your C code is located in a folder named 'c' inside your module folder. Then:

  • Put a v.mod file inside the toplevel folder of your module (if you created your module with v new you already have v.mod file). For example:
Module {
	name: 'mymodule',
	description: 'My nice module wraps a simple C library.',
	version: '0.0.1'
	dependencies: []
}
  • Add these lines to the top of your module:
#flag -I @VROOT/c
#flag @VROOT/c/implementation.o
#include "header.h"

NB: @VROOT will be replaced by V with the nearest parent folder, where there is a v.mod file. Any .v file beside or below the folder where the v.mod file is, can use #flag @VROOT/abc to refer to this folder. The @VROOT folder is also prepended to the module lookup path, so you can import other modules under your @VROOT, by just naming them.

The instructions above will make V look for an compiled .o file in your module folder/c/implementation.o. If V finds it, the .o file will get linked to the main executable, that used the module. If it does not find it, V assumes that there is a @VROOT/c/implementation.c file, and tries to compile it to a .o file, then will use that.

This allows you to have C code, that is contained in a V module, so that its distribution is easier. You can see a complete minimal example for using C code in a V wrapper module here: project_with_c_code. Another example, demonstrating passing structs from C to V and back again: interoperate between C to V to C.

C types

Ordinary zero terminated C strings can be converted to V strings with unsafe { charptr(cstring).vstring() } or if you know their length already with unsafe { charptr(cstring).vstring_with_len(len) }.

NB: The .vstring() and .vstring_with_len() methods do NOT create a copy of the cstring, so you should NOT free it after calling the method .vstring(). If you need to make a copy of the C string (some libc APIs like getenv pretty much require that, since they return pointers to internal libc memory), you can use cstring_to_vstring(cstring).

On Windows, C APIs often return so called wide strings (utf16 encoding). These can be converted to V strings with string_from_wide(&u16(cwidestring)) .

V has these types for easier interoperability with C:

  • voidptr for C's void*,
  • byteptr for C's byte* and
  • charptr for C's char*.
  • &charptr for C's char**

To cast a voidptr to a V reference, use user := &User(user_void_ptr).

voidptr can also be dereferenced into a V struct through casting: user := User(user_void_ptr).

an example of a module that calls C code from V

Debugging generated C code

To debug issues in the generated C code, you can pass these flags:

  • -g - produces a less optimized executable with more debug information in it. V will enforce line numbers from the .v files in the stacktraces, that the executable will produce on panic. It is usually better to pass -g, unless you are writing low level code, in which case use the next option -cg.
  • -cg - produces a less optimized executable with more debug information in it. The executable will use C source line numbers in this case. It is frequently used in combination with -keepc, so that you can inspect the generated C program in case of panic, or so that your debugger (gdb, lldb etc.) can show you the generated C source code.
  • -showcc - prints the C command that is used to build the program.
  • -show-c-output - prints the output, that your C compiler produced while compiling your program.
  • -keepc - do not delete the generated C source code file after a successful compilation. Also keep using the same file path, so it is more stable, and easier to keep opened in an editor/IDE.

For best debugging experience if you are writing a low level wrapper for an existing C library, you can pass several of these flags at the same time: v -keepc -cg -showcc yourprogram.v, then just run your debugger (gdb/lldb) or IDE on the produced executable yourprogram.

If you just want to inspect the generated C code, without further compilation, you can also use the -o flag (e.g. -o file.c). This will make V produce the file.c then stop.

If you want to see the generated C source code for just a single C function, for example main, you can use: -printfn main -o file.c.

To see a detailed list of all flags that V supports, use v help, v help build and v help build-c.

Conditional compilation

Compile time code

$ is used as a prefix for compile-time operations.

$if

// Support for multiple conditions in one branch
$if ios || android {
	println('Running on a mobile device!')
}
$if linux && x64 {
	println('64-bit Linux.')
}
// Usage as expression
os := $if windows { 'Windows' } $else { 'UNIX' }
println('Using $os')
// $else-$if branches
$if tinyc {
	println('tinyc')
} $else $if clang {
	println('clang')
} $else $if gcc {
	println('gcc')
} $else {
	println('different compiler')
}
$if test {
	println('testing')
}
// v -cg ...
$if debug {
	println('debugging')
}
// v -d option ...
$if option ? {
	println('custom option')
}

If you want an if to be evaluated at compile time it must be prefixed with a $ sign. Right now it can be used to detect an OS, compiler, platform or compilation options. $if debug is a special option like $if windows or $if x32. If you're using a custom ifdef, then you do need $if option ? {} and compile withv -d option. Full list of builtin options:

OS Compilers Platforms Other
windows, linux, macos gcc, tinyc amd64, aarch64 debug, test, js
mac, darwin, ios, clang, mingw x64, x32 glibc, prealloc
android,mach, dragonfly msvc little_endian no_bounds_checking
gnu, hpux, haiku, qnx cplusplus big_endian
solaris, linux_or_macos

$embed_file

module main
fn main() {
	embedded_file := $embed_file('v.png')
	mut fw := os.create('exported.png') or { panic(err.msg) }
	fw.write_bytes(embedded_file.data(), embedded_file.len)
	fw.close()
}

V can embed arbitrary files into the executable with the $embed_file(<path>) compile time call. Paths can be absolute or relative to the source file.

When you do not use -prod, the file will not be embedded. Instead, it will be loaded the first time your program calls f.data() at runtime, making it easier to change in external editor programs, without needing to recompile your executable.

When you compile with -prod, the file will be embedded inside your executable, increasing your binary size, but making it more self contained and thus easier to distribute. In this case, f.data() will cause no IO, and it will always return the same data.

$tmpl for embedding and parsing V template files

V has a simple template language for text and html templates, and they can easily be embedded via $tmpl('path/to/template.txt'):

fn build() string {
	name := 'Peter'
	age := 25
	numbers := [1, 2, 3]
	return $tmpl('1.txt')
}

fn main() {
	println(build())
}

1.txt:

name: @name

age: @age

numbers: @numbers

@for number in numbers
  @number
@end

output:

name: Peter

age: 25

numbers: [1, 2, 3]

1
2
3

$env

module main

fn main() {
	compile_time_env := $env('ENV_VAR')
	println(compile_time_env)
}

V can bring in values at compile time from environment variables. $env('ENV_VAR') can also be used in top-level #flag and #include statements: #flag linux -I $env('JAVA_HOME')/include.

Environment specific files

If a file has an environment-specific suffix, it will only be compiled for that environment.

  • .js.v => will be used only by the JS backend. These files can contain JS. code.
  • .c.v => will be used only by the C backend. These files can contain C. code.
  • .x64.v => will be used only by V's x64 backend.
  • _nix.c.v => will be used only on Unix systems (non Windows).
  • _${os}.c.v => will be used only on the specific os system. For example, _windows.c.v will be used only when compiling on Windows, or with -os windows.
  • _default.c.v => will be used only if there is NOT a more specific platform file. For example, if you have both file_linux.c.v and file_default.c.v, and you are compiling for linux, then only file_linux.c.v will be used, and file_default.c.v will be ignored.

Here is a more complete example: main.v:

module main
fn main() { println(message) }

main_default.c.v:

module main
const ( message = 'Hello world' )

main_linux.c.v:

module main
const ( message = 'Hello linux' )

main_windows.c.v:

module main
const ( message = 'Hello windows' )

With the example above:

  • when you compile for windows, you will get 'Hello windows'

  • when you compile for linux, you will get 'Hello linux'

  • when you compile for any other platform, you will get the non specific 'Hello world' message.

  • _d_customflag.v => will be used only if you pass -d customflag to V. That corresponds to $if customflag ? {}, but for a whole file, not just a single block. customflag should be a snake_case identifier, it can not contain arbitrary characters (only lower case latin letters + numbers + _). NB: a combinatorial _d_customflag_linux.c.v postfix will not work. If you do need a custom flag file, that has platform dependent code, use the postfix _d_customflag.v, and then use plaftorm dependent compile time conditional blocks inside it, i.e. $if linux {} etc.

Compile time pseudo variables

V also gives your code access to a set of pseudo string variables, that are substituted at compile time:

  • @FN => replaced with the name of the current V function
  • @METHOD => replaced with ReceiverType.MethodName
  • @MOD => replaced with the name of the current V module
  • @STRUCT => replaced with the name of the current V struct
  • @FILE => replaced with the path of the V source file
  • @LINE => replaced with the V line number where it appears (as a string).
  • @COLUMN => replaced with the column where it appears (as a string).
  • @VEXE => replaced with the path to the V compiler
  • @VHASH => replaced with the shortened commit hash of the V compiler (as a string).
  • @VMOD_FILE => replaced with the contents of the nearest v.mod file (as a string).

That allows you to do the following example, useful while debugging/logging/tracing your code:

eprintln('file: ' + @FILE + ' | line: ' + @LINE + ' | fn: ' + @MOD + '.' + @FN)

Another example, is if you want to embed the version/name from v.mod inside your executable:

import v.vmod
vm := vmod.decode( @VMOD_FILE ) or { panic(err.msg) }
eprintln('$vm.name $vm.version\n $vm.description')

Performance tuning

The generated C code is usually fast enough, when you compile your code with -prod. There are some situations though, where you may want to give additional hints to the compiler, so that it can further optimize some blocks of code.

NB: These are rarely needed, and should not be used, unless you profile your code, and then see that there are significant benefits for them. To cite gcc's documentation: "programmers are notoriously bad at predicting how their programs actually perform".

[inline] - you can tag functions with [inline], so the C compiler will try to inline them, which in some cases, may be beneficial for performance, but may impact the size of your executable.

[direct_array_access] - in functions tagged with [direct_array_access] the compiler will translate array operations directly into C array operations - omiting bounds checking. This may save a lot of time in a function that iterates over an array but at the cost of making the function unsafe - unless the boundaries will be checked by the user.

if _likely_(bool expression) { this hints the C compiler, that the passed boolean expression is very likely to be true, so it can generate assembly code, with less chance of branch misprediction. In the JS backend, that does nothing.

if _unlikely_(bool expression) { similar to _likely_(x), but it hints that the boolean expression is highly improbable. In the JS backend, that does nothing.

Compile-time reflection

Having built-in JSON support is nice, but V also allows you to create efficient serializers for any data format. V has compile-time if and for constructs:

// TODO: not fully implemented

struct User {
    name string
    age  int
}

// Note: T should be passed a struct name only
fn decode<T>(data string) T {
    mut result := T{}
    // compile-time `for` loop
    // T.fields gives an array of a field metadata type
    $for field in T.fields {
        $if field.typ is string {
            // $(string_expr) produces an identifier
            result.$(field.name) = get_string(data, field.name)
        } $else $if field.typ is int {
            result.$(field.name) = get_int(data, field.name)
        }
    }
    return result
}

// `decode<User>` generates:
fn decode_User(data string) User {
    mut result := User{}
    result.name = get_string(data, 'name')
    result.age = get_int(data, 'age')
    return result
}

Limited operator overloading

struct Vec {
	x int
	y int
}

fn (a Vec) str() string {
	return '{$a.x, $a.y}'
}

fn (a Vec) + (b Vec) Vec {
	return Vec{a.x + b.x, a.y + b.y}
}

fn (a Vec) - (b Vec) Vec {
	return Vec{a.x - b.x, a.y - b.y}
}

fn main() {
	a := Vec{2, 3}
	b := Vec{4, 5}
	mut c := Vec{1, 2}
	println(a + b) // "{6, 8}"
	println(a - b) // "{-2, -2}"
	c += a
	println(c) // "{3, 5}"
}

Operator overloading goes against V's philosophy of simplicity and predictability. But since scientific and graphical applications are among V's domains, operator overloading is an important feature to have in order to improve readability:

a.add(b).add(c.mul(d)) is a lot less readable than a + b + c * d.

To improve safety and maintainability, operator overloading is limited:

  • It's only possible to overload +, -, *, /, %, <, >, ==, !=, <=, >= operators.
  • == and != are self generated by the compiler but can be overriden.
  • Calling other functions inside operator functions is not allowed.
  • Operator functions can't modify their arguments.
  • When using < and == operators, the return type must be bool.
  • !=, >, <= and >= are auto generated when == and < are defined.
  • Both arguments must have the same type (just like with all operators in V).
  • Assignment operators (*=, +=, /=, etc) are auto generated when the operators are defined though they must return the same type.

Inline assembly

TODO: not implemented yet

fn main() {
    a := 10
    asm x64 {
        mov eax, [a]
        add eax, 10
        mov [a], eax
    }
}

Translating C to V

TODO: translating C to V will be available in V 0.3.

V can translate your C code to human readable V code and generate V wrappers on top of C libraries.

Let's create a simple program test.c first:

#include "stdio.h"

int main() {
	for (int i = 0; i < 10; i++) {
		printf("hello world\n");
	}
        return 0;
}

Run v translate test.c, and V will generate test.v:

fn main() {
	for i := 0; i < 10; i++ {
		println('hello world')
	}
}

To generate a wrapper on top of a C library use this command:

v wrapper c_code/libsodium/src/libsodium

This will generate a directory libsodium with a V module.

Example of a C2V generated libsodium wrapper:

https://github.com/medvednikov/libsodium


When should you translate C code and when should you simply call C code from V?

If you have well-written, well-tested C code, then of course you can always simply call this C code from V.

Translating it to V gives you several advantages:

  • If you plan to develop that code base, you now have everything in one language, which is much safer and easier to develop in than C.
  • Cross-compilation becomes a lot easier. You don't have to worry about it at all.
  • No more build flags and include files either.

Hot code reloading

module main

import time
import os

[live]
fn print_message() {
	println('Hello! Modify this message while the program is running.')
}

fn main() {
	for {
		print_message()
		time.sleep(500 * time.millisecond)
	}
}

Build this example with v -live message.v.

Functions that you want to be reloaded must have [live] attribute before their definition.

Right now it's not possible to modify types while the program is running.

More examples, including a graphical application: github.com/vlang/v/tree/master/examples/hot_code_reload.

Cross compilation

To cross compile your project simply run

v -os windows .

or

v -os linux .

(Cross compiling for macOS is temporarily not possible.)

If you don't have any C dependencies, that's all you need to do. This works even when compiling GUI apps using the ui module or graphical apps using gg.

You will need to install Clang, LLD linker, and download a zip file with libraries and include files for Windows and Linux. V will provide you with a link.

Cross-platform shell scripts in V

V can be used as an alternative to Bash to write deployment scripts, build scripts, etc.

The advantage of using V for this is the simplicity and predictability of the language, and cross-platform support. "V scripts" run on Unix-like systems as well as on Windows.

Use the .vsh file extension. It will make all functions in the os module global (so that you can use mkdir() instead of os.mkdir(), for example).

An example deploy.vsh:

#!/usr/bin/env -S v run
// The shebang above associates the file to V on Unix-like systems,
// so it can be run just by specifying the path to the file
// once it's made executable using `chmod +x`.

// Remove if build/ exits, ignore any errors if it doesn't
rmdir_all('build') or { }

// Create build/, never fails as build/ does not exist
mkdir('build') ?

// Move *.v files to build/
result := exec('mv *.v build/') ?
if result.exit_code != 0 {
	println(result.output)
}
// Similar to:
// files := ls('.') ?
// mut count := 0
// if files.len > 0 {
//     for file in files {
//         if file.ends_with('.v') {
//              mv(file, 'build/') or {
//                  println('err: $err')
//                  return
//              }
//         }
//         count++
//     }
// }
// if count == 0 {
//     println('No files')
// }

Now you can either compile this like a normal V program and get an executable you can deploy and run anywhere: v deploy.vsh && ./deploy

Or just run it more like a traditional Bash script: v run deploy.vsh

On Unix-like platforms, the file can be run directly after making it executable using chmod +x: ./deploy.vsh

Attributes

V has several attributes that modify the behavior of functions and structs.

An attribute is a compiler instruction specified inside [] right before a function/struct/enum declaration and applies only to the following declaration.

// Calling this function will result in a deprecation warning
[deprecated]
fn old_function() {
}

// This function's calls will be inlined.
[inline]
fn inlined_function() {
}

// The following struct must be allocated on the heap. Therefore, it can only be used as a
// reference (`&Window`) or inside another reference (`&OuterStruct{ Window{...} }`).
[heap]
struct Window {
}

// V will not generate this function and all its calls if the provided flag is false.
// To use a flag, use `v -d flag`
[if debug]
fn foo() {
}

fn bar() {
	foo() // will not be called if `-d debug` is not passed
}

// Calls to following function must be in unsafe{} blocks.
// Note that the code in the body of `risky_business()` will still be
// checked, unless you also wrap it in `unsafe {}` blocks.
// This is usefull, when you want to have an `[unsafe]` function that
// has checks before/after a certain unsafe operation, that will still
// benefit from V's safety features.
[unsafe]
fn risky_business() {
	// code that will be checked, perhaps checking pre conditions
	unsafe {
		// code that *will not be* checked, like pointer arithmetic,
		// accessing union fields, calling other `[unsafe]` fns, etc...
		// Usually, it is a good idea to try minimizing code wrapped
		// in unsafe{} as much as possible.
		// See also [Memory-unsafe code](#memory-unsafe-code)
	}
	// code that will be checked, perhaps checking post conditions and/or
	// keeping invariants
}

// V's autofree engine will not take care of memory management in this function.
// You will have the responsibility to free memory manually yourself in it.
[manualfree]
fn custom_allocations() {
}

// For C interop only, tells V that the following struct is defined with `typedef struct` in C
[typedef]
struct C.Foo {
}

// Used in Win32 API code when you need to pass callback function
[windows_stdcall]
fn C.DefWindowProc(hwnd int, msg int, lparam int, wparam int)

// Windows only:
// If a default graphics library is imported (ex. gg, ui), then the graphical window takes
// priority and no console window is created, effectively disabling println() statements.
// Use to explicity create console window. Valid before main() only.
[console]
fn main() {
}

Goto

V allows unconditionally jumping to a label with goto. The label name must be contained within the same function as the goto statement. A program may goto a label outside or deeper than the current scope. goto allows jumping past variable initialization or jumping back to code that accesses memory that has already been freed, so it requires unsafe.

if x {
	// ...
	if y {
		unsafe {
			goto my_label
		}
	}
	// ...
}
my_label:

goto should be avoided, particularly when for can be used instead. Labelled break/continue can be used to break out of a nested loop, and those do not risk violating memory-safety.

Appendices

Appendix I: Keywords

V has 41 reserved keywords (3 are literals):

as
asm
assert
atomic
break
const
continue
defer
else
embed
enum
false
fn
for
go
goto
if
import
in
interface
is
lock
match
module
mut
none
or
pub
return
rlock
select
shared
sizeof
static
struct
true
type
typeof
union
unsafe
__offsetof

See also Types.

Appendix II: Operators

This lists operators for primitive types only.

+    sum                    integers, floats, strings
-    difference             integers, floats
*    product                integers, floats
/    quotient               integers, floats
%    remainder              integers

~    bitwise NOT            integers
&    bitwise AND            integers
|    bitwise OR             integers
^    bitwise XOR            integers

!    logical NOT            bools
&&   logical AND            bools
||   logical OR             bools
!=   logical XOR            bools

<<   left shift             integer << unsigned integer
>>   right shift            integer >> unsigned integer


Precedence    Operator
    5             *  /  %  <<  >>  &
    4             +  -  |  ^
    3             ==  !=  <  <=  >  >=
    2             &&
    1             ||


Assignment Operators
+=   -=   *=   /=   %=
&=   |=   ^=
>>=  <<=