|
|
|
@ -6,26 +6,36 @@ written by Adafruit Industries
|
|
|
|
|
|
|
|
|
|
#include "DHT.h"
|
|
|
|
|
|
|
|
|
|
#define MIN_INTERVAL 2000
|
|
|
|
|
|
|
|
|
|
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
|
|
|
|
|
_pin = pin;
|
|
|
|
|
_type = type;
|
|
|
|
|
_firstreading = true;
|
|
|
|
|
#ifdef __AVR
|
|
|
|
|
_bit = digitalPinToBitMask(pin);
|
|
|
|
|
_port = digitalPinToPort(pin);
|
|
|
|
|
#endif
|
|
|
|
|
_maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for
|
|
|
|
|
// reading pulses from DHT sensor.
|
|
|
|
|
// Note that count is now ignored as the DHT reading algorithm adjusts itself
|
|
|
|
|
// basd on the speed of the processor.
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DHT::begin(void) {
|
|
|
|
|
// set up the pins!
|
|
|
|
|
pinMode(_pin, INPUT);
|
|
|
|
|
digitalWrite(_pin, HIGH);
|
|
|
|
|
_lastreadtime = 0;
|
|
|
|
|
pinMode(_pin, INPUT_PULLUP);
|
|
|
|
|
// Using this value makes sure that millis() - lastreadtime will be
|
|
|
|
|
// >= MIN_INTERVAL right away. Note that this assignment wraps around,
|
|
|
|
|
// but so will the subtraction.
|
|
|
|
|
_lastreadtime = -MIN_INTERVAL;
|
|
|
|
|
DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//boolean S == Scale. True == Fahrenheit; False == Celcius
|
|
|
|
|
float DHT::readTemperature(bool S) {
|
|
|
|
|
float DHT::readTemperature(bool S, bool force) {
|
|
|
|
|
float f = NAN;
|
|
|
|
|
|
|
|
|
|
if (read()) {
|
|
|
|
|
if (read(force)) {
|
|
|
|
|
switch (_type) {
|
|
|
|
|
case DHT11:
|
|
|
|
|
f = data[2];
|
|
|
|
@ -38,7 +48,7 @@ float DHT::readTemperature(bool S) {
|
|
|
|
|
f = data[2] & 0x7F;
|
|
|
|
|
f *= 256;
|
|
|
|
|
f += data[3];
|
|
|
|
|
f /= 10;
|
|
|
|
|
f *= 0.1;
|
|
|
|
|
if (data[2] & 0x80) {
|
|
|
|
|
f *= -1;
|
|
|
|
|
}
|
|
|
|
@ -52,14 +62,14 @@ float DHT::readTemperature(bool S) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float DHT::convertCtoF(float c) {
|
|
|
|
|
return c * 9 / 5 + 32;
|
|
|
|
|
return c * 1.8 + 32;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float DHT::convertFtoC(float f) {
|
|
|
|
|
return (f - 32) * 5 / 9;
|
|
|
|
|
return (f - 32) * 0.55555;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float DHT::readHumidity(void) {
|
|
|
|
|
float DHT::readHumidity(bool force) {
|
|
|
|
|
float f = NAN;
|
|
|
|
|
if (read()) {
|
|
|
|
|
switch (_type) {
|
|
|
|
@ -71,7 +81,7 @@ float DHT::readHumidity(void) {
|
|
|
|
|
f = data[0];
|
|
|
|
|
f *= 256;
|
|
|
|
|
f += data[1];
|
|
|
|
|
f /= 10;
|
|
|
|
|
f *= 0.1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -80,23 +90,17 @@ float DHT::readHumidity(void) {
|
|
|
|
|
|
|
|
|
|
//boolean isFahrenheit: True == Fahrenheit; False == Celcius
|
|
|
|
|
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
|
|
|
|
|
// Adapted from equation at: https://github.com/adafruit/DHT-sensor-library/issues/9 and
|
|
|
|
|
// Wikipedia: http://en.wikipedia.org/wiki/Heat_index
|
|
|
|
|
if (!isFahrenheit) {
|
|
|
|
|
// Celsius heat index calculation.
|
|
|
|
|
return -8.784695 +
|
|
|
|
|
1.61139411 * temperature +
|
|
|
|
|
2.338549 * percentHumidity +
|
|
|
|
|
-0.14611605 * temperature*percentHumidity +
|
|
|
|
|
-0.01230809 * pow(temperature, 2) +
|
|
|
|
|
-0.01642482 * pow(percentHumidity, 2) +
|
|
|
|
|
0.00221173 * pow(temperature, 2) * percentHumidity +
|
|
|
|
|
0.00072546 * temperature*pow(percentHumidity, 2) +
|
|
|
|
|
-0.00000358 * pow(temperature, 2) * pow(percentHumidity, 2);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Fahrenheit heat index calculation.
|
|
|
|
|
return -42.379 +
|
|
|
|
|
// Using both Rothfusz and Steadman's equations
|
|
|
|
|
// http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
|
|
|
|
|
float hi;
|
|
|
|
|
|
|
|
|
|
if (!isFahrenheit)
|
|
|
|
|
temperature = convertCtoF(temperature);
|
|
|
|
|
|
|
|
|
|
hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) + (percentHumidity * 0.094));
|
|
|
|
|
|
|
|
|
|
if (hi > 79) {
|
|
|
|
|
hi = -42.379 +
|
|
|
|
|
2.04901523 * temperature +
|
|
|
|
|
10.14333127 * percentHumidity +
|
|
|
|
|
-0.22475541 * temperature*percentHumidity +
|
|
|
|
@ -105,22 +109,25 @@ float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFah
|
|
|
|
|
0.00122874 * pow(temperature, 2) * percentHumidity +
|
|
|
|
|
0.00085282 * temperature*pow(percentHumidity, 2) +
|
|
|
|
|
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
|
|
|
|
|
|
|
|
|
|
if((percentHumidity < 13) && (temperature >= 80.0) && (temperature <= 112.0))
|
|
|
|
|
hi -= ((13.0 - percentHumidity) * 0.25) * sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
|
|
|
|
|
|
|
|
|
|
else if((percentHumidity > 85.0) && (temperature >= 80.0) && (temperature <= 87.0))
|
|
|
|
|
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return isFahrenheit ? hi : convertFtoC(hi);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
boolean DHT::read(void) {
|
|
|
|
|
boolean DHT::read(bool force) {
|
|
|
|
|
// Check if sensor was read less than two seconds ago and return early
|
|
|
|
|
// to use last reading.
|
|
|
|
|
uint32_t currenttime = millis();
|
|
|
|
|
if (currenttime < _lastreadtime) {
|
|
|
|
|
// ie there was a rollover
|
|
|
|
|
_lastreadtime = 0;
|
|
|
|
|
}
|
|
|
|
|
if (!_firstreading && ((currenttime - _lastreadtime) < 2000)) {
|
|
|
|
|
if (!force && ((currenttime - _lastreadtime) < 2000)) {
|
|
|
|
|
return _lastresult; // return last correct measurement
|
|
|
|
|
}
|
|
|
|
|
_firstreading = false;
|
|
|
|
|
_lastreadtime = millis();
|
|
|
|
|
_lastreadtime = currenttime;
|
|
|
|
|
|
|
|
|
|
// Reset 40 bits of received data to zero.
|
|
|
|
|
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
|
|
|
|
@ -138,48 +145,54 @@ boolean DHT::read(void) {
|
|
|
|
|
digitalWrite(_pin, LOW);
|
|
|
|
|
delay(20);
|
|
|
|
|
|
|
|
|
|
// Turn off interrupts temporarily because the next sections are timing critical
|
|
|
|
|
// and we don't want any interruptions.
|
|
|
|
|
noInterrupts();
|
|
|
|
|
uint32_t cycles[80];
|
|
|
|
|
{
|
|
|
|
|
// Turn off interrupts temporarily because the next sections are timing critical
|
|
|
|
|
// and we don't want any interruptions.
|
|
|
|
|
InterruptLock lock;
|
|
|
|
|
|
|
|
|
|
// End the start signal by setting data line high for 40 microseconds.
|
|
|
|
|
digitalWrite(_pin, HIGH);
|
|
|
|
|
delayMicroseconds(40);
|
|
|
|
|
// End the start signal by setting data line high for 40 microseconds.
|
|
|
|
|
digitalWrite(_pin, HIGH);
|
|
|
|
|
delayMicroseconds(40);
|
|
|
|
|
|
|
|
|
|
// Now start reading the data line to get the value from the DHT sensor.
|
|
|
|
|
pinMode(_pin, INPUT);
|
|
|
|
|
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
|
|
|
|
|
// Now start reading the data line to get the value from the DHT sensor.
|
|
|
|
|
pinMode(_pin, INPUT_PULLUP);
|
|
|
|
|
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
|
|
|
|
|
|
|
|
|
|
// First expect a low signal for ~80 microseconds followed by a high signal
|
|
|
|
|
// for ~80 microseconds again.
|
|
|
|
|
if (expectPulse(LOW) == 0) {
|
|
|
|
|
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
|
|
|
|
|
_lastresult = false;
|
|
|
|
|
return _lastresult;
|
|
|
|
|
}
|
|
|
|
|
if (expectPulse(HIGH) == 0) {
|
|
|
|
|
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
|
|
|
|
|
_lastresult = false;
|
|
|
|
|
return _lastresult;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
|
|
|
|
|
// microsecond low pulse followed by a variable length high pulse. If the
|
|
|
|
|
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
|
|
|
|
|
// then it's a 1. We measure the cycle count of the initial 50us low pulse
|
|
|
|
|
// and use that to compare to the cycle count of the high pulse to determine
|
|
|
|
|
// if the bit is a 0 (high state cycle count < low state cycle count), or a
|
|
|
|
|
// 1 (high state cycle count > low state cycle count).
|
|
|
|
|
for (int i=0; i<40; ++i) {
|
|
|
|
|
uint32_t lowCycles = expectPulse(LOW);
|
|
|
|
|
if (lowCycles == 0) {
|
|
|
|
|
DEBUG_PRINTLN(F("Timeout waiting for bit low pulse."));
|
|
|
|
|
// First expect a low signal for ~80 microseconds followed by a high signal
|
|
|
|
|
// for ~80 microseconds again.
|
|
|
|
|
if (expectPulse(LOW) == 0) {
|
|
|
|
|
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
|
|
|
|
|
_lastresult = false;
|
|
|
|
|
return _lastresult;
|
|
|
|
|
}
|
|
|
|
|
uint32_t highCycles = expectPulse(HIGH);
|
|
|
|
|
if (highCycles == 0) {
|
|
|
|
|
DEBUG_PRINTLN(F("Timeout waiting for bit high pulse."));
|
|
|
|
|
if (expectPulse(HIGH) == 0) {
|
|
|
|
|
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
|
|
|
|
|
_lastresult = false;
|
|
|
|
|
return _lastresult;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
|
|
|
|
|
// microsecond low pulse followed by a variable length high pulse. If the
|
|
|
|
|
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
|
|
|
|
|
// then it's a 1. We measure the cycle count of the initial 50us low pulse
|
|
|
|
|
// and use that to compare to the cycle count of the high pulse to determine
|
|
|
|
|
// if the bit is a 0 (high state cycle count < low state cycle count), or a
|
|
|
|
|
// 1 (high state cycle count > low state cycle count). Note that for speed all
|
|
|
|
|
// the pulses are read into a array and then examined in a later step.
|
|
|
|
|
for (int i=0; i<80; i+=2) {
|
|
|
|
|
cycles[i] = expectPulse(LOW);
|
|
|
|
|
cycles[i+1] = expectPulse(HIGH);
|
|
|
|
|
}
|
|
|
|
|
} // Timing critical code is now complete.
|
|
|
|
|
|
|
|
|
|
// Inspect pulses and determine which ones are 0 (high state cycle count < low
|
|
|
|
|
// state cycle count), or 1 (high state cycle count > low state cycle count).
|
|
|
|
|
for (int i=0; i<40; ++i) {
|
|
|
|
|
uint32_t lowCycles = cycles[2*i];
|
|
|
|
|
uint32_t highCycles = cycles[2*i+1];
|
|
|
|
|
if ((lowCycles == 0) || (highCycles == 0)) {
|
|
|
|
|
DEBUG_PRINTLN(F("Timeout waiting for pulse."));
|
|
|
|
|
_lastresult = false;
|
|
|
|
|
return _lastresult;
|
|
|
|
|
}
|
|
|
|
@ -194,16 +207,13 @@ boolean DHT::read(void) {
|
|
|
|
|
// stored data.
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Re-enable interrupts, timing critical code is complete.
|
|
|
|
|
interrupts();
|
|
|
|
|
|
|
|
|
|
DEBUG_PRINTLN(F("Received:"));
|
|
|
|
|
DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
|
|
|
|
|
DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
|
|
|
|
|
DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
|
|
|
|
|
DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
|
|
|
|
|
DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
|
|
|
|
|
DEBUG_PRINTLN(data[0] + data[1] + data[2] + data[3], HEX);
|
|
|
|
|
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
|
|
|
|
|
|
|
|
|
|
// Check we read 40 bits and that the checksum matches.
|
|
|
|
|
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
|
|
|
|
@ -221,16 +231,29 @@ boolean DHT::read(void) {
|
|
|
|
|
// return a count of loop cycles spent at that level (this cycle count can be
|
|
|
|
|
// used to compare the relative time of two pulses). If more than a millisecond
|
|
|
|
|
// ellapses without the level changing then the call fails with a 0 response.
|
|
|
|
|
// This is adapted from Arduino's pulseInLong function (which is only available
|
|
|
|
|
// in the very latest IDE versions):
|
|
|
|
|
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
|
|
|
|
|
uint32_t DHT::expectPulse(bool level) {
|
|
|
|
|
uint32_t count = 0;
|
|
|
|
|
uint32_t end = micros() + 1000;
|
|
|
|
|
// Loop while counting cycles until the level changes.
|
|
|
|
|
while (digitalRead(_pin) == level) {
|
|
|
|
|
count++;
|
|
|
|
|
if (micros() >= end) {
|
|
|
|
|
// Exceeded timeout waiting for level to change, fail.
|
|
|
|
|
return 0;
|
|
|
|
|
// On AVR platforms use direct GPIO port access as it's much faster and better
|
|
|
|
|
// for catching pulses that are 10's of microseconds in length:
|
|
|
|
|
#ifdef __AVR
|
|
|
|
|
uint8_t portState = level ? _bit : 0;
|
|
|
|
|
while ((*portInputRegister(_port) & _bit) == portState) {
|
|
|
|
|
if (count++ >= _maxcycles) {
|
|
|
|
|
return 0; // Exceeded timeout, fail.
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266
|
|
|
|
|
// right now, perhaps bugs in direct port access functions?).
|
|
|
|
|
#else
|
|
|
|
|
while (digitalRead(_pin) == level) {
|
|
|
|
|
if (count++ >= _maxcycles) {
|
|
|
|
|
return 0; // Exceeded timeout, fail.
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|