2013-11-04 23:11:01 +04:00
|
|
|
#include "connected_layer.h"
|
|
|
|
#include "convolutional_layer.h"
|
|
|
|
#include "maxpool_layer.h"
|
|
|
|
#include "network.h"
|
|
|
|
#include "image.h"
|
2013-11-07 04:09:41 +04:00
|
|
|
#include "parser.h"
|
2013-11-13 22:50:38 +04:00
|
|
|
#include "data.h"
|
|
|
|
#include "matrix.h"
|
2013-12-03 04:41:40 +04:00
|
|
|
#include "utils.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
|
|
|
#include <time.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
void test_convolve()
|
|
|
|
{
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
//show_image_layers(dog, "Dog");
|
|
|
|
printf("dog channels %d\n", dog.c);
|
|
|
|
image kernel = make_random_image(3,3,dog.c);
|
|
|
|
image edge = make_image(dog.h, dog.w, 1);
|
|
|
|
int i;
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
for(i = 0; i < 1000; ++i){
|
2013-12-03 04:41:40 +04:00
|
|
|
convolve(dog, kernel, 1, 0, edge, 1);
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
|
|
show_image_layers(edge, "Test Convolve");
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_color()
|
|
|
|
{
|
|
|
|
image dog = load_image("test_color.png");
|
|
|
|
show_image_layers(dog, "Test Color");
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_convolutional_layer()
|
|
|
|
{
|
|
|
|
srand(0);
|
2013-11-06 22:37:37 +04:00
|
|
|
image dog = load_image("dog.jpg");
|
2013-11-04 23:11:01 +04:00
|
|
|
int i;
|
2013-11-06 22:37:37 +04:00
|
|
|
int n = 3;
|
2013-11-04 23:11:01 +04:00
|
|
|
int stride = 1;
|
2013-11-06 22:37:37 +04:00
|
|
|
int size = 3;
|
2013-11-13 22:50:38 +04:00
|
|
|
convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
|
2013-11-04 23:11:01 +04:00
|
|
|
char buff[256];
|
|
|
|
for(i = 0; i < n; ++i) {
|
|
|
|
sprintf(buff, "Kernel %d", i);
|
|
|
|
show_image(layer.kernels[i], buff);
|
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_convolutional_layer(layer, dog.data);
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_convolutional_image(layer);
|
|
|
|
maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
|
|
|
|
forward_maxpool_layer(mlayer, layer.output);
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void verify_convolutional_layer()
|
|
|
|
{
|
|
|
|
srand(0);
|
|
|
|
int i;
|
|
|
|
int n = 1;
|
|
|
|
int stride = 1;
|
|
|
|
int size = 3;
|
|
|
|
double eps = .00000001;
|
|
|
|
image test = make_random_image(5,5, 1);
|
|
|
|
convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
|
|
|
|
image out = get_convolutional_image(layer);
|
|
|
|
double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
|
|
|
|
|
|
|
|
forward_convolutional_layer(layer, test.data);
|
|
|
|
image base = copy_image(out);
|
|
|
|
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){
|
|
|
|
test.data[i] += eps;
|
|
|
|
forward_convolutional_layer(layer, test.data);
|
|
|
|
image partial = copy_image(out);
|
|
|
|
subtract_image(partial, base);
|
|
|
|
scale_image(partial, 1/eps);
|
|
|
|
jacobian[i] = partial.data;
|
|
|
|
test.data[i] -= eps;
|
|
|
|
}
|
|
|
|
double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
|
|
|
|
image in_delta = make_image(test.h, test.w, test.c);
|
|
|
|
image out_delta = get_convolutional_delta(layer);
|
|
|
|
for(i = 0; i < out.h*out.w*out.c; ++i){
|
|
|
|
out_delta.data[i] = 1;
|
|
|
|
backward_convolutional_layer2(layer, test.data, in_delta.data);
|
|
|
|
image partial = copy_image(in_delta);
|
|
|
|
jacobian2[i] = partial.data;
|
|
|
|
out_delta.data[i] = 0;
|
|
|
|
}
|
|
|
|
int j;
|
|
|
|
double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
|
|
|
|
double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
|
|
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){
|
|
|
|
for(j =0 ; j < out.h*out.w*out.c; ++j){
|
|
|
|
j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
|
|
|
|
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
|
|
|
|
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
|
|
|
|
image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
|
|
|
|
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
|
|
|
|
show_image(mj1, "forward jacobian");
|
|
|
|
show_image(mj2, "backward jacobian");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
void test_load()
|
|
|
|
{
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
show_image(dog, "Test Load");
|
|
|
|
show_image_layers(dog, "Test Load");
|
|
|
|
}
|
|
|
|
void test_upsample()
|
|
|
|
{
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
int n = 3;
|
|
|
|
image up = make_image(n*dog.h, n*dog.w, dog.c);
|
|
|
|
upsample_image(dog, n, up);
|
|
|
|
show_image(up, "Test Upsample");
|
|
|
|
show_image_layers(up, "Test Upsample");
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_rotate()
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
for(i = 0; i < 1001; ++i){
|
|
|
|
rotate_image(dog);
|
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
|
|
show_image(dog, "Test Rotate");
|
|
|
|
|
|
|
|
image random = make_random_image(3,3,3);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
rotate_image(random);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
rotate_image(random);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void test_parser()
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2013-11-13 22:50:38 +04:00
|
|
|
network net = parse_network_cfg("test_parser.cfg");
|
|
|
|
double input[1];
|
2013-11-06 22:37:37 +04:00
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
double avgerr = 0;
|
|
|
|
while(1){
|
|
|
|
double v = ((double)rand()/RAND_MAX);
|
|
|
|
double truth = v*v;
|
2013-11-13 22:50:38 +04:00
|
|
|
input[0] = v;
|
|
|
|
forward_network(net, input);
|
2013-11-06 22:37:37 +04:00
|
|
|
double *out = get_network_output(net);
|
2013-11-13 22:50:38 +04:00
|
|
|
double *delta = get_network_delta(net);
|
2013-11-06 22:37:37 +04:00
|
|
|
double err = pow((out[0]-truth),2.);
|
|
|
|
avgerr = .99 * avgerr + .01 * err;
|
|
|
|
//if(++count % 100000 == 0) printf("%f\n", avgerr);
|
2013-11-13 22:50:38 +04:00
|
|
|
if(++count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
|
|
|
|
delta[0] = truth - out[0];
|
|
|
|
learn_network(net, input);
|
2013-11-06 22:37:37 +04:00
|
|
|
update_network(net, .001);
|
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void test_data()
|
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
char *labels[] = {"cat","dog"};
|
|
|
|
batch train = random_batch("train_paths.txt", 101,labels, 2);
|
2013-11-13 22:50:38 +04:00
|
|
|
show_image(train.images[0], "Test Data Loading");
|
|
|
|
show_image(train.images[100], "Test Data Loading");
|
|
|
|
show_image(train.images[10], "Test Data Loading");
|
|
|
|
free_batch(train);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void test_full()
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
network net = parse_network_cfg("full.cfg");
|
2013-11-13 22:50:38 +04:00
|
|
|
srand(0);
|
2013-12-03 04:41:40 +04:00
|
|
|
int i = 0;
|
|
|
|
char *labels[] = {"cat","dog"};
|
|
|
|
while(i++ < 1000 || 1){
|
|
|
|
batch train = random_batch("train_paths.txt", 1000, labels, 2);
|
2013-11-13 22:50:38 +04:00
|
|
|
train_network_batch(net, train);
|
|
|
|
free_batch(train);
|
2013-12-03 04:41:40 +04:00
|
|
|
printf("Round %d\n", i);
|
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
double error_network(network net, matrix m, double *truth)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int correct = 0;
|
|
|
|
for(i = 0; i < m.rows; ++i){
|
|
|
|
forward_network(net, m.vals[i]);
|
|
|
|
double *out = get_network_output(net);
|
|
|
|
double err = truth[i] - out[0];
|
|
|
|
if(fabs(err) < .5) ++correct;
|
|
|
|
}
|
|
|
|
return (double)correct/m.rows;
|
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
double **one_hot(double *a, int n, int k)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
double **t = calloc(n, sizeof(double*));
|
|
|
|
for(i = 0; i < n; ++i){
|
|
|
|
t[i] = calloc(k, sizeof(double));
|
|
|
|
int index = (int)a[i];
|
|
|
|
t[i][index] = 1;
|
|
|
|
}
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_nist()
|
|
|
|
{
|
|
|
|
network net = parse_network_cfg("nist.cfg");
|
|
|
|
matrix m = csv_to_matrix("images/nist_train.csv");
|
|
|
|
matrix ho = hold_out_matrix(&m, 3000);
|
|
|
|
double *truth_1d = pop_column(&m, 0);
|
|
|
|
double **truth = one_hot(truth_1d, m.rows, 10);
|
|
|
|
double *ho_truth_1d = pop_column(&ho, 0);
|
|
|
|
double **ho_truth = one_hot(ho_truth_1d, ho.rows, 10);
|
|
|
|
int i,j;
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
int count = 0;
|
|
|
|
double lr = .0001;
|
|
|
|
while(++count <= 3000000){
|
|
|
|
//lr *= .99;
|
|
|
|
int index = 0;
|
|
|
|
int correct = 0;
|
|
|
|
for(i = 0; i < 1000; ++i){
|
|
|
|
index = rand()%m.rows;
|
|
|
|
normalize_array(m.vals[index], 28*28);
|
|
|
|
forward_network(net, m.vals[index]);
|
|
|
|
double *out = get_network_output(net);
|
|
|
|
double *delta = get_network_delta(net);
|
|
|
|
int max_i = 0;
|
|
|
|
double max = out[0];
|
|
|
|
for(j = 0; j < 10; ++j){
|
|
|
|
delta[j] = truth[index][j]-out[j];
|
|
|
|
if(out[j] > max){
|
|
|
|
max = out[j];
|
|
|
|
max_i = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(truth[index][max_i]) ++correct;
|
|
|
|
learn_network(net, m.vals[index]);
|
|
|
|
update_network(net, lr);
|
|
|
|
}
|
|
|
|
print_network(net);
|
|
|
|
image input = double_to_image(28,28,1, m.vals[index]);
|
|
|
|
show_image(input, "Input");
|
|
|
|
image o = get_network_image(net);
|
|
|
|
show_image_collapsed(o, "Output");
|
|
|
|
visualize_network(net);
|
|
|
|
cvWaitKey(100);
|
|
|
|
//double test_acc = error_network(net, m, truth);
|
|
|
|
//double valid_acc = error_network(net, ho, ho_truth);
|
|
|
|
//printf("%f, %f\n", test_acc, valid_acc);
|
|
|
|
fprintf(stderr, "%5d: %f %f\n",count, (double)correct/1000, lr);
|
|
|
|
//if(valid_acc > .70) break;
|
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_kernel_update()
|
|
|
|
{
|
|
|
|
srand(0);
|
|
|
|
double delta[] = {.1};
|
|
|
|
double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
|
|
|
|
double kernel[] = {1,2,3,4,5,6,7,8,9};
|
|
|
|
convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, IDENTITY);
|
|
|
|
layer.kernels[0].data = kernel;
|
|
|
|
layer.delta = delta;
|
|
|
|
learn_convolutional_layer(layer, input);
|
|
|
|
print_image(layer.kernels[0]);
|
|
|
|
print_image(get_convolutional_delta(layer));
|
|
|
|
print_image(layer.kernel_updates[0]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_random_classify()
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
network net = parse_network_cfg("connected.cfg");
|
2013-11-13 22:50:38 +04:00
|
|
|
matrix m = csv_to_matrix("train.csv");
|
|
|
|
matrix ho = hold_out_matrix(&m, 2500);
|
|
|
|
double *truth = pop_column(&m, 0);
|
|
|
|
double *ho_truth = pop_column(&ho, 0);
|
|
|
|
int i;
|
|
|
|
clock_t start = clock(), end;
|
2013-11-07 04:09:41 +04:00
|
|
|
int count = 0;
|
2013-11-13 22:50:38 +04:00
|
|
|
while(++count <= 300){
|
|
|
|
for(i = 0; i < m.rows; ++i){
|
|
|
|
int index = rand()%m.rows;
|
|
|
|
//image p = double_to_image(1690,1,1,m.vals[index]);
|
|
|
|
//normalize_image(p);
|
|
|
|
forward_network(net, m.vals[index]);
|
|
|
|
double *out = get_network_output(net);
|
|
|
|
double *delta = get_network_delta(net);
|
|
|
|
//printf("%f\n", out[0]);
|
|
|
|
delta[0] = truth[index] - out[0];
|
|
|
|
// printf("%f\n", delta[0]);
|
|
|
|
//printf("%f %f\n", truth[index], out[0]);
|
|
|
|
learn_network(net, m.vals[index]);
|
2013-12-03 04:41:40 +04:00
|
|
|
update_network(net, .00001);
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
|
|
|
double test_acc = error_network(net, m, truth);
|
|
|
|
double valid_acc = error_network(net, ho, ho_truth);
|
|
|
|
printf("%f, %f\n", test_acc, valid_acc);
|
|
|
|
fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
|
|
|
|
//if(valid_acc > .70) break;
|
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
FILE *fp = fopen("submission/out.txt", "w");
|
|
|
|
matrix test = csv_to_matrix("test.csv");
|
|
|
|
truth = pop_column(&test, 0);
|
|
|
|
for(i = 0; i < test.rows; ++i){
|
|
|
|
forward_network(net, test.vals[i]);
|
2013-11-07 04:09:41 +04:00
|
|
|
double *out = get_network_output(net);
|
2013-11-13 22:50:38 +04:00
|
|
|
if(fabs(out[0]) < .5) fprintf(fp, "0\n");
|
|
|
|
else fprintf(fp, "1\n");
|
|
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
|
|
}
|
|
|
|
|
2013-12-03 04:41:40 +04:00
|
|
|
void test_random_preprocess()
|
2013-11-13 22:50:38 +04:00
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
FILE *file = fopen("train.csv", "w");
|
|
|
|
char *labels[] = {"cat","dog"};
|
2013-11-13 22:50:38 +04:00
|
|
|
int i,j,k;
|
|
|
|
srand(0);
|
2013-12-03 04:41:40 +04:00
|
|
|
network net = parse_network_cfg("convolutional.cfg");
|
2013-11-13 22:50:38 +04:00
|
|
|
for(i = 0; i < 100; ++i){
|
|
|
|
printf("%d\n", i);
|
2013-12-03 04:41:40 +04:00
|
|
|
batch part = get_batch("train_paths.txt", i, 100, labels, 2);
|
2013-11-13 22:50:38 +04:00
|
|
|
for(j = 0; j < part.n; ++j){
|
|
|
|
forward_network(net, part.images[j].data);
|
|
|
|
double *out = get_network_output(net);
|
|
|
|
fprintf(file, "%f", part.truth[j][0]);
|
|
|
|
for(k = 0; k < get_network_output_size(net); ++k){
|
|
|
|
fprintf(file, ",%f", out[k]);
|
|
|
|
}
|
|
|
|
fprintf(file, "\n");
|
|
|
|
}
|
|
|
|
free_batch(part);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
int main()
|
|
|
|
{
|
2013-12-03 04:41:40 +04:00
|
|
|
//test_kernel_update();
|
|
|
|
//test_nist();
|
|
|
|
test_full();
|
|
|
|
//test_random_preprocess();
|
|
|
|
//test_random_classify();
|
2013-11-13 22:50:38 +04:00
|
|
|
//test_parser();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_backpropagate();
|
2013-11-07 04:09:41 +04:00
|
|
|
//test_ann();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_convolve();
|
|
|
|
//test_upsample();
|
|
|
|
//test_rotate();
|
|
|
|
//test_load();
|
2013-11-06 22:37:37 +04:00
|
|
|
//test_network();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_convolutional_layer();
|
2013-12-03 04:41:40 +04:00
|
|
|
//verify_convolutional_layer();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_color();
|
|
|
|
cvWaitKey(0);
|
|
|
|
return 0;
|
|
|
|
}
|