darknet/src/tests.c

383 lines
12 KiB
C
Raw Normal View History

2013-11-04 23:11:01 +04:00
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "network.h"
#include "image.h"
#include "parser.h"
2013-11-13 22:50:38 +04:00
#include "data.h"
#include "matrix.h"
2013-12-03 04:41:40 +04:00
#include "utils.h"
2013-11-04 23:11:01 +04:00
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
void test_convolve()
{
image dog = load_image("dog.jpg");
//show_image_layers(dog, "Dog");
printf("dog channels %d\n", dog.c);
image kernel = make_random_image(3,3,dog.c);
image edge = make_image(dog.h, dog.w, 1);
int i;
clock_t start = clock(), end;
for(i = 0; i < 1000; ++i){
2013-12-03 04:41:40 +04:00
convolve(dog, kernel, 1, 0, edge, 1);
2013-11-04 23:11:01 +04:00
}
end = clock();
printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
show_image_layers(edge, "Test Convolve");
}
void test_color()
{
image dog = load_image("test_color.png");
show_image_layers(dog, "Test Color");
}
void test_convolutional_layer()
{
srand(0);
image dog = load_image("dog.jpg");
2013-11-04 23:11:01 +04:00
int i;
int n = 3;
2013-11-04 23:11:01 +04:00
int stride = 1;
int size = 3;
2013-11-13 22:50:38 +04:00
convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
2013-11-04 23:11:01 +04:00
char buff[256];
for(i = 0; i < n; ++i) {
sprintf(buff, "Kernel %d", i);
show_image(layer.kernels[i], buff);
}
2013-11-13 22:50:38 +04:00
forward_convolutional_layer(layer, dog.data);
2013-11-04 23:11:01 +04:00
2013-11-13 22:50:38 +04:00
image output = get_convolutional_image(layer);
maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
forward_maxpool_layer(mlayer, layer.output);
2013-11-04 23:11:01 +04:00
2013-11-13 22:50:38 +04:00
show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
2013-11-04 23:11:01 +04:00
}
2013-12-03 04:41:40 +04:00
void verify_convolutional_layer()
{
srand(0);
int i;
int n = 1;
int stride = 1;
int size = 3;
double eps = .00000001;
image test = make_random_image(5,5, 1);
convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
image out = get_convolutional_image(layer);
double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
forward_convolutional_layer(layer, test.data);
image base = copy_image(out);
for(i = 0; i < test.h*test.w*test.c; ++i){
test.data[i] += eps;
forward_convolutional_layer(layer, test.data);
image partial = copy_image(out);
subtract_image(partial, base);
scale_image(partial, 1/eps);
jacobian[i] = partial.data;
test.data[i] -= eps;
}
double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
image in_delta = make_image(test.h, test.w, test.c);
image out_delta = get_convolutional_delta(layer);
for(i = 0; i < out.h*out.w*out.c; ++i){
out_delta.data[i] = 1;
backward_convolutional_layer2(layer, test.data, in_delta.data);
image partial = copy_image(in_delta);
jacobian2[i] = partial.data;
out_delta.data[i] = 0;
}
int j;
double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
for(i = 0; i < test.h*test.w*test.c; ++i){
for(j =0 ; j < out.h*out.w*out.c; ++j){
j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
}
}
image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
show_image(mj1, "forward jacobian");
show_image(mj2, "backward jacobian");
}
2013-11-04 23:11:01 +04:00
void test_load()
{
image dog = load_image("dog.jpg");
show_image(dog, "Test Load");
show_image_layers(dog, "Test Load");
}
void test_upsample()
{
image dog = load_image("dog.jpg");
int n = 3;
image up = make_image(n*dog.h, n*dog.w, dog.c);
upsample_image(dog, n, up);
show_image(up, "Test Upsample");
show_image_layers(up, "Test Upsample");
}
void test_rotate()
{
int i;
image dog = load_image("dog.jpg");
clock_t start = clock(), end;
for(i = 0; i < 1001; ++i){
rotate_image(dog);
}
end = clock();
printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
show_image(dog, "Test Rotate");
image random = make_random_image(3,3,3);
show_image(random, "Test Rotate Random");
rotate_image(random);
show_image(random, "Test Rotate Random");
rotate_image(random);
show_image(random, "Test Rotate Random");
}
2013-11-13 22:50:38 +04:00
void test_parser()
{
2013-11-13 22:50:38 +04:00
network net = parse_network_cfg("test_parser.cfg");
double input[1];
int count = 0;
double avgerr = 0;
while(1){
double v = ((double)rand()/RAND_MAX);
double truth = v*v;
2013-11-13 22:50:38 +04:00
input[0] = v;
forward_network(net, input);
double *out = get_network_output(net);
2013-11-13 22:50:38 +04:00
double *delta = get_network_delta(net);
double err = pow((out[0]-truth),2.);
avgerr = .99 * avgerr + .01 * err;
//if(++count % 100000 == 0) printf("%f\n", avgerr);
2013-11-13 22:50:38 +04:00
if(++count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
delta[0] = truth - out[0];
learn_network(net, input);
update_network(net, .001);
}
2013-11-13 22:50:38 +04:00
}
2013-11-13 22:50:38 +04:00
void test_data()
{
2013-12-03 04:41:40 +04:00
char *labels[] = {"cat","dog"};
batch train = random_batch("train_paths.txt", 101,labels, 2);
2013-11-13 22:50:38 +04:00
show_image(train.images[0], "Test Data Loading");
show_image(train.images[100], "Test Data Loading");
show_image(train.images[10], "Test Data Loading");
free_batch(train);
}
2013-12-03 04:41:40 +04:00
void test_full()
{
2013-12-03 04:41:40 +04:00
network net = parse_network_cfg("full.cfg");
2013-11-13 22:50:38 +04:00
srand(0);
2013-12-03 04:41:40 +04:00
int i = 0;
char *labels[] = {"cat","dog"};
while(i++ < 1000 || 1){
batch train = random_batch("train_paths.txt", 1000, labels, 2);
2013-11-13 22:50:38 +04:00
train_network_batch(net, train);
free_batch(train);
2013-12-03 04:41:40 +04:00
printf("Round %d\n", i);
}
2013-11-13 22:50:38 +04:00
}
double error_network(network net, matrix m, double *truth)
{
int i;
int correct = 0;
for(i = 0; i < m.rows; ++i){
forward_network(net, m.vals[i]);
double *out = get_network_output(net);
double err = truth[i] - out[0];
if(fabs(err) < .5) ++correct;
}
return (double)correct/m.rows;
}
2013-12-03 04:41:40 +04:00
double **one_hot(double *a, int n, int k)
{
int i;
double **t = calloc(n, sizeof(double*));
for(i = 0; i < n; ++i){
t[i] = calloc(k, sizeof(double));
int index = (int)a[i];
t[i][index] = 1;
}
return t;
}
void test_nist()
{
network net = parse_network_cfg("nist.cfg");
matrix m = csv_to_matrix("images/nist_train.csv");
matrix ho = hold_out_matrix(&m, 3000);
double *truth_1d = pop_column(&m, 0);
double **truth = one_hot(truth_1d, m.rows, 10);
double *ho_truth_1d = pop_column(&ho, 0);
double **ho_truth = one_hot(ho_truth_1d, ho.rows, 10);
int i,j;
clock_t start = clock(), end;
int count = 0;
double lr = .0001;
while(++count <= 3000000){
//lr *= .99;
int index = 0;
int correct = 0;
for(i = 0; i < 1000; ++i){
index = rand()%m.rows;
normalize_array(m.vals[index], 28*28);
forward_network(net, m.vals[index]);
double *out = get_network_output(net);
double *delta = get_network_delta(net);
int max_i = 0;
double max = out[0];
for(j = 0; j < 10; ++j){
delta[j] = truth[index][j]-out[j];
if(out[j] > max){
max = out[j];
max_i = j;
}
}
if(truth[index][max_i]) ++correct;
learn_network(net, m.vals[index]);
update_network(net, lr);
}
print_network(net);
image input = double_to_image(28,28,1, m.vals[index]);
show_image(input, "Input");
image o = get_network_image(net);
show_image_collapsed(o, "Output");
visualize_network(net);
cvWaitKey(100);
//double test_acc = error_network(net, m, truth);
//double valid_acc = error_network(net, ho, ho_truth);
//printf("%f, %f\n", test_acc, valid_acc);
fprintf(stderr, "%5d: %f %f\n",count, (double)correct/1000, lr);
//if(valid_acc > .70) break;
}
end = clock();
printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
}
void test_kernel_update()
{
srand(0);
double delta[] = {.1};
double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
double kernel[] = {1,2,3,4,5,6,7,8,9};
convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, IDENTITY);
layer.kernels[0].data = kernel;
layer.delta = delta;
learn_convolutional_layer(layer, input);
print_image(layer.kernels[0]);
print_image(get_convolutional_delta(layer));
print_image(layer.kernel_updates[0]);
}
void test_random_classify()
2013-11-13 22:50:38 +04:00
{
2013-12-03 04:41:40 +04:00
network net = parse_network_cfg("connected.cfg");
2013-11-13 22:50:38 +04:00
matrix m = csv_to_matrix("train.csv");
matrix ho = hold_out_matrix(&m, 2500);
double *truth = pop_column(&m, 0);
double *ho_truth = pop_column(&ho, 0);
int i;
clock_t start = clock(), end;
int count = 0;
2013-11-13 22:50:38 +04:00
while(++count <= 300){
for(i = 0; i < m.rows; ++i){
int index = rand()%m.rows;
//image p = double_to_image(1690,1,1,m.vals[index]);
//normalize_image(p);
forward_network(net, m.vals[index]);
double *out = get_network_output(net);
double *delta = get_network_delta(net);
//printf("%f\n", out[0]);
delta[0] = truth[index] - out[0];
// printf("%f\n", delta[0]);
//printf("%f %f\n", truth[index], out[0]);
learn_network(net, m.vals[index]);
2013-12-03 04:41:40 +04:00
update_network(net, .00001);
2013-11-13 22:50:38 +04:00
}
double test_acc = error_network(net, m, truth);
double valid_acc = error_network(net, ho, ho_truth);
printf("%f, %f\n", test_acc, valid_acc);
fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
//if(valid_acc > .70) break;
}
end = clock();
FILE *fp = fopen("submission/out.txt", "w");
matrix test = csv_to_matrix("test.csv");
truth = pop_column(&test, 0);
for(i = 0; i < test.rows; ++i){
forward_network(net, test.vals[i]);
double *out = get_network_output(net);
2013-11-13 22:50:38 +04:00
if(fabs(out[0]) < .5) fprintf(fp, "0\n");
else fprintf(fp, "1\n");
}
fclose(fp);
printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
}
2013-12-03 04:41:40 +04:00
void test_random_preprocess()
2013-11-13 22:50:38 +04:00
{
2013-12-03 04:41:40 +04:00
FILE *file = fopen("train.csv", "w");
char *labels[] = {"cat","dog"};
2013-11-13 22:50:38 +04:00
int i,j,k;
srand(0);
2013-12-03 04:41:40 +04:00
network net = parse_network_cfg("convolutional.cfg");
2013-11-13 22:50:38 +04:00
for(i = 0; i < 100; ++i){
printf("%d\n", i);
2013-12-03 04:41:40 +04:00
batch part = get_batch("train_paths.txt", i, 100, labels, 2);
2013-11-13 22:50:38 +04:00
for(j = 0; j < part.n; ++j){
forward_network(net, part.images[j].data);
double *out = get_network_output(net);
fprintf(file, "%f", part.truth[j][0]);
for(k = 0; k < get_network_output_size(net); ++k){
fprintf(file, ",%f", out[k]);
}
fprintf(file, "\n");
}
free_batch(part);
}
}
2013-11-04 23:11:01 +04:00
int main()
{
2013-12-03 04:41:40 +04:00
//test_kernel_update();
//test_nist();
test_full();
//test_random_preprocess();
//test_random_classify();
2013-11-13 22:50:38 +04:00
//test_parser();
2013-11-04 23:11:01 +04:00
//test_backpropagate();
//test_ann();
2013-11-04 23:11:01 +04:00
//test_convolve();
//test_upsample();
//test_rotate();
//test_load();
//test_network();
2013-11-04 23:11:01 +04:00
//test_convolutional_layer();
2013-12-03 04:41:40 +04:00
//verify_convolutional_layer();
2013-11-04 23:11:01 +04:00
//test_color();
cvWaitKey(0);
return 0;
}