2015-08-14 21:45:11 +03:00
|
|
|
#include "network.h"
|
|
|
|
#include "detection_layer.h"
|
|
|
|
#include "cost_layer.h"
|
|
|
|
#include "utils.h"
|
|
|
|
#include "parser.h"
|
|
|
|
#include "box.h"
|
|
|
|
|
|
|
|
#ifdef OPENCV
|
|
|
|
#include "opencv2/highgui/highgui_c.h"
|
|
|
|
#endif
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
2015-11-27 00:45:12 +03:00
|
|
|
image voc_labels[20];
|
2015-08-14 21:45:11 +03:00
|
|
|
|
|
|
|
void train_yolo(char *cfgfile, char *weightfile)
|
|
|
|
{
|
2016-01-19 02:40:14 +03:00
|
|
|
char *train_images = "/data/voc/train.txt";
|
2015-08-14 21:45:11 +03:00
|
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
|
|
srand(time(0));
|
|
|
|
data_seed = time(0);
|
|
|
|
char *base = basecfg(cfgfile);
|
|
|
|
printf("%s\n", base);
|
|
|
|
float avg_loss = -1;
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
2015-11-09 22:31:39 +03:00
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
|
|
int imgs = net.batch*net.subdivisions;
|
2015-09-05 03:52:44 +03:00
|
|
|
int i = *net.seen/imgs;
|
2015-11-09 22:31:39 +03:00
|
|
|
data train, buffer;
|
2015-08-14 21:45:11 +03:00
|
|
|
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
layer l = net.layers[net.n - 1];
|
|
|
|
|
|
|
|
int side = l.side;
|
|
|
|
int classes = l.classes;
|
|
|
|
float jitter = l.jitter;
|
2015-08-14 21:45:11 +03:00
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
list *plist = get_paths(train_images);
|
|
|
|
//int N = plist->size;
|
|
|
|
char **paths = (char **)list_to_array(plist);
|
2015-08-14 21:45:11 +03:00
|
|
|
|
2015-08-25 04:27:42 +03:00
|
|
|
load_args args = {0};
|
|
|
|
args.w = net.w;
|
|
|
|
args.h = net.h;
|
|
|
|
args.paths = paths;
|
|
|
|
args.n = imgs;
|
|
|
|
args.m = plist->size;
|
|
|
|
args.classes = classes;
|
2015-11-09 22:31:39 +03:00
|
|
|
args.jitter = jitter;
|
2015-08-25 04:27:42 +03:00
|
|
|
args.num_boxes = side;
|
|
|
|
args.d = &buffer;
|
2015-11-09 22:31:39 +03:00
|
|
|
args.type = REGION_DATA;
|
2015-08-25 04:27:42 +03:00
|
|
|
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
clock_t time;
|
2015-11-09 22:31:39 +03:00
|
|
|
//while(i*imgs < N*120){
|
2015-09-09 22:48:40 +03:00
|
|
|
while(get_current_batch(net) < net.max_batches){
|
2015-08-14 21:45:11 +03:00
|
|
|
i += 1;
|
|
|
|
time=clock();
|
|
|
|
pthread_join(load_thread, 0);
|
|
|
|
train = buffer;
|
2015-08-25 04:27:42 +03:00
|
|
|
load_thread = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
2015-11-09 22:31:39 +03:00
|
|
|
|
2015-08-14 21:45:11 +03:00
|
|
|
time=clock();
|
|
|
|
float loss = train_network(net, train);
|
|
|
|
if (avg_loss < 0) avg_loss = loss;
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
2015-11-14 23:34:17 +03:00
|
|
|
if(i%1000==0 || i == 600){
|
2015-08-14 21:45:11 +03:00
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
free_data(train);
|
|
|
|
}
|
|
|
|
char buff[256];
|
2015-11-09 22:31:39 +03:00
|
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
2015-08-14 21:45:11 +03:00
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
|
2015-08-14 21:45:11 +03:00
|
|
|
{
|
2015-11-09 22:31:39 +03:00
|
|
|
int i,j,n;
|
|
|
|
//int per_cell = 5*num+classes;
|
|
|
|
for (i = 0; i < side*side; ++i){
|
|
|
|
int row = i / side;
|
|
|
|
int col = i % side;
|
|
|
|
for(n = 0; n < num; ++n){
|
|
|
|
int index = i*num + n;
|
|
|
|
int p_index = side*side*classes + i*num + n;
|
|
|
|
float scale = predictions[p_index];
|
|
|
|
int box_index = side*side*(classes + num) + (i*num + n)*4;
|
|
|
|
boxes[index].x = (predictions[box_index + 0] + col) / side * w;
|
|
|
|
boxes[index].y = (predictions[box_index + 1] + row) / side * h;
|
|
|
|
boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
|
|
|
|
boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
int class_index = i*classes;
|
|
|
|
float prob = scale*predictions[class_index+j];
|
|
|
|
probs[index][j] = (prob > thresh) ? prob : 0;
|
|
|
|
}
|
|
|
|
if(only_objectness){
|
|
|
|
probs[index][0] = scale;
|
|
|
|
}
|
2015-08-14 21:45:11 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
|
2015-08-14 21:45:11 +03:00
|
|
|
{
|
|
|
|
int i, j;
|
2015-11-09 22:31:39 +03:00
|
|
|
for(i = 0; i < total; ++i){
|
2015-08-14 21:45:11 +03:00
|
|
|
float xmin = boxes[i].x - boxes[i].w/2.;
|
|
|
|
float xmax = boxes[i].x + boxes[i].w/2.;
|
|
|
|
float ymin = boxes[i].y - boxes[i].h/2.;
|
|
|
|
float ymax = boxes[i].y + boxes[i].h/2.;
|
|
|
|
|
|
|
|
if (xmin < 0) xmin = 0;
|
|
|
|
if (ymin < 0) ymin = 0;
|
|
|
|
if (xmax > w) xmax = w;
|
|
|
|
if (ymax > h) ymax = h;
|
|
|
|
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
|
|
|
|
xmin, ymin, xmax, ymax);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void validate_yolo(char *cfgfile, char *weightfile)
|
|
|
|
{
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
set_batch_network(&net, 1);
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
|
|
srand(time(0));
|
|
|
|
|
|
|
|
char *base = "results/comp4_det_test_";
|
2015-11-14 23:34:17 +03:00
|
|
|
list *plist = get_paths("data/voc.2007.test");
|
|
|
|
//list *plist = get_paths("data/voc.2012.test");
|
2015-08-14 21:45:11 +03:00
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
layer l = net.layers[net.n-1];
|
|
|
|
int classes = l.classes;
|
|
|
|
int square = l.sqrt;
|
|
|
|
int side = l.side;
|
2015-08-14 21:45:11 +03:00
|
|
|
|
|
|
|
int j;
|
|
|
|
FILE **fps = calloc(classes, sizeof(FILE *));
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
char buff[1024];
|
2015-11-09 22:31:39 +03:00
|
|
|
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
|
2015-08-14 21:45:11 +03:00
|
|
|
fps[j] = fopen(buff, "w");
|
|
|
|
}
|
2015-11-09 22:31:39 +03:00
|
|
|
box *boxes = calloc(side*side*l.n, sizeof(box));
|
|
|
|
float **probs = calloc(side*side*l.n, sizeof(float *));
|
|
|
|
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
2015-08-14 21:45:11 +03:00
|
|
|
|
|
|
|
int m = plist->size;
|
|
|
|
int i=0;
|
|
|
|
int t;
|
|
|
|
|
|
|
|
float thresh = .001;
|
|
|
|
int nms = 1;
|
|
|
|
float iou_thresh = .5;
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
int nthreads = 2;
|
2015-08-14 21:45:11 +03:00
|
|
|
image *val = calloc(nthreads, sizeof(image));
|
|
|
|
image *val_resized = calloc(nthreads, sizeof(image));
|
|
|
|
image *buf = calloc(nthreads, sizeof(image));
|
|
|
|
image *buf_resized = calloc(nthreads, sizeof(image));
|
|
|
|
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
2015-08-25 04:27:42 +03:00
|
|
|
|
|
|
|
load_args args = {0};
|
|
|
|
args.w = net.w;
|
|
|
|
args.h = net.h;
|
|
|
|
args.type = IMAGE_DATA;
|
|
|
|
|
2015-08-14 21:45:11 +03:00
|
|
|
for(t = 0; t < nthreads; ++t){
|
2015-08-25 04:27:42 +03:00
|
|
|
args.path = paths[i+t];
|
|
|
|
args.im = &buf[t];
|
|
|
|
args.resized = &buf_resized[t];
|
|
|
|
thr[t] = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
}
|
|
|
|
time_t start = time(0);
|
|
|
|
for(i = nthreads; i < m+nthreads; i += nthreads){
|
|
|
|
fprintf(stderr, "%d\n", i);
|
|
|
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
|
|
|
pthread_join(thr[t], 0);
|
|
|
|
val[t] = buf[t];
|
|
|
|
val_resized[t] = buf_resized[t];
|
|
|
|
}
|
|
|
|
for(t = 0; t < nthreads && i+t < m; ++t){
|
2015-08-25 04:27:42 +03:00
|
|
|
args.path = paths[i+t];
|
|
|
|
args.im = &buf[t];
|
|
|
|
args.resized = &buf_resized[t];
|
|
|
|
thr[t] = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
}
|
|
|
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
|
|
|
char *path = paths[i+t-nthreads];
|
|
|
|
char *id = basecfg(path);
|
|
|
|
float *X = val_resized[t].data;
|
|
|
|
float *predictions = network_predict(net, X);
|
|
|
|
int w = val[t].w;
|
|
|
|
int h = val[t].h;
|
2015-11-09 22:31:39 +03:00
|
|
|
convert_yolo_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
|
|
|
|
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
|
|
|
|
print_yolo_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
|
2015-08-14 21:45:11 +03:00
|
|
|
free(id);
|
|
|
|
free_image(val[t]);
|
|
|
|
free_image(val_resized[t]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
|
|
|
}
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
void validate_yolo_recall(char *cfgfile, char *weightfile)
|
|
|
|
{
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
set_batch_network(&net, 1);
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
|
|
srand(time(0));
|
|
|
|
|
|
|
|
char *base = "results/comp4_det_test_";
|
2015-11-09 23:06:54 +03:00
|
|
|
list *plist = get_paths("data/voc.2007.test");
|
2015-11-09 22:31:39 +03:00
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
|
|
|
|
layer l = net.layers[net.n-1];
|
|
|
|
int classes = l.classes;
|
|
|
|
int square = l.sqrt;
|
|
|
|
int side = l.side;
|
|
|
|
|
|
|
|
int j, k;
|
|
|
|
FILE **fps = calloc(classes, sizeof(FILE *));
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
char buff[1024];
|
|
|
|
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
|
|
|
|
fps[j] = fopen(buff, "w");
|
|
|
|
}
|
|
|
|
box *boxes = calloc(side*side*l.n, sizeof(box));
|
|
|
|
float **probs = calloc(side*side*l.n, sizeof(float *));
|
|
|
|
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
|
|
|
|
|
|
|
int m = plist->size;
|
|
|
|
int i=0;
|
|
|
|
|
|
|
|
float thresh = .001;
|
|
|
|
float iou_thresh = .5;
|
2015-12-14 22:57:10 +03:00
|
|
|
float nms = 0;
|
2015-11-09 22:31:39 +03:00
|
|
|
|
|
|
|
int total = 0;
|
|
|
|
int correct = 0;
|
|
|
|
int proposals = 0;
|
|
|
|
float avg_iou = 0;
|
|
|
|
|
|
|
|
for(i = 0; i < m; ++i){
|
|
|
|
char *path = paths[i];
|
|
|
|
image orig = load_image_color(path, 0, 0);
|
|
|
|
image sized = resize_image(orig, net.w, net.h);
|
|
|
|
char *id = basecfg(path);
|
|
|
|
float *predictions = network_predict(net, sized.data);
|
|
|
|
convert_yolo_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
|
2015-12-14 22:57:10 +03:00
|
|
|
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
|
2015-11-09 22:31:39 +03:00
|
|
|
|
|
|
|
char *labelpath = find_replace(path, "images", "labels");
|
|
|
|
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
|
|
|
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
|
|
|
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
|
|
|
|
|
|
|
int num_labels = 0;
|
|
|
|
box_label *truth = read_boxes(labelpath, &num_labels);
|
|
|
|
for(k = 0; k < side*side*l.n; ++k){
|
|
|
|
if(probs[k][0] > thresh){
|
|
|
|
++proposals;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (j = 0; j < num_labels; ++j) {
|
|
|
|
++total;
|
|
|
|
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
|
|
|
|
float best_iou = 0;
|
|
|
|
for(k = 0; k < side*side*l.n; ++k){
|
|
|
|
float iou = box_iou(boxes[k], t);
|
|
|
|
if(probs[k][0] > thresh && iou > best_iou){
|
|
|
|
best_iou = iou;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
avg_iou += best_iou;
|
|
|
|
if(best_iou > iou_thresh){
|
|
|
|
++correct;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
|
|
|
|
free(id);
|
|
|
|
free_image(orig);
|
|
|
|
free_image(sized);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-08-14 21:45:11 +03:00
|
|
|
void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
|
|
|
|
{
|
|
|
|
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
2015-11-09 22:31:39 +03:00
|
|
|
detection_layer l = net.layers[net.n-1];
|
2015-08-14 21:45:11 +03:00
|
|
|
set_batch_network(&net, 1);
|
|
|
|
srand(2222222);
|
|
|
|
clock_t time;
|
2015-09-24 00:13:43 +03:00
|
|
|
char buff[256];
|
|
|
|
char *input = buff;
|
2015-11-09 22:31:39 +03:00
|
|
|
int j;
|
|
|
|
float nms=.5;
|
|
|
|
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
|
|
|
|
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
|
|
|
|
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
2015-08-14 21:45:11 +03:00
|
|
|
while(1){
|
|
|
|
if(filename){
|
|
|
|
strncpy(input, filename, 256);
|
|
|
|
} else {
|
|
|
|
printf("Enter Image Path: ");
|
|
|
|
fflush(stdout);
|
2015-09-24 00:13:43 +03:00
|
|
|
input = fgets(input, 256, stdin);
|
|
|
|
if(!input) return;
|
2015-08-14 21:45:11 +03:00
|
|
|
strtok(input, "\n");
|
|
|
|
}
|
|
|
|
image im = load_image_color(input,0,0);
|
|
|
|
image sized = resize_image(im, net.w, net.h);
|
|
|
|
float *X = sized.data;
|
|
|
|
time=clock();
|
|
|
|
float *predictions = network_predict(net, X);
|
|
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
2015-11-09 22:31:39 +03:00
|
|
|
convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
|
|
|
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
2016-01-28 23:30:38 +03:00
|
|
|
//draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
|
|
|
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, 0, 20);
|
2015-11-14 23:34:17 +03:00
|
|
|
show_image(im, "predictions");
|
2016-01-28 23:30:38 +03:00
|
|
|
save_image(im, "predictions");
|
2015-11-09 22:31:39 +03:00
|
|
|
|
|
|
|
show_image(sized, "resized");
|
2015-08-14 21:45:11 +03:00
|
|
|
free_image(im);
|
|
|
|
free_image(sized);
|
|
|
|
#ifdef OPENCV
|
|
|
|
cvWaitKey(0);
|
|
|
|
cvDestroyAllWindows();
|
|
|
|
#endif
|
|
|
|
if (filename) break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-11-09 22:31:39 +03:00
|
|
|
/*
|
|
|
|
#ifdef OPENCV
|
|
|
|
image ipl_to_image(IplImage* src);
|
|
|
|
#include "opencv2/highgui/highgui_c.h"
|
|
|
|
#include "opencv2/imgproc/imgproc_c.h"
|
|
|
|
|
|
|
|
void demo_swag(char *cfgfile, char *weightfile, float thresh)
|
|
|
|
{
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
detection_layer layer = net.layers[net.n-1];
|
|
|
|
CvCapture *capture = cvCaptureFromCAM(-1);
|
|
|
|
set_batch_network(&net, 1);
|
|
|
|
srand(2222222);
|
|
|
|
while(1){
|
|
|
|
IplImage* frame = cvQueryFrame(capture);
|
|
|
|
image im = ipl_to_image(frame);
|
|
|
|
cvReleaseImage(&frame);
|
|
|
|
rgbgr_image(im);
|
|
|
|
|
|
|
|
image sized = resize_image(im, net.w, net.h);
|
|
|
|
float *X = sized.data;
|
|
|
|
float *predictions = network_predict(net, X);
|
|
|
|
draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
|
|
|
|
free_image(im);
|
|
|
|
free_image(sized);
|
|
|
|
cvWaitKey(10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void demo_swag(char *cfgfile, char *weightfile, float thresh){}
|
|
|
|
#endif
|
|
|
|
*/
|
|
|
|
|
2015-11-17 22:00:04 +03:00
|
|
|
void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index);
|
2015-11-09 22:31:39 +03:00
|
|
|
#ifndef GPU
|
2015-11-17 22:00:04 +03:00
|
|
|
void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index)
|
|
|
|
{
|
|
|
|
fprintf(stderr, "Darknet must be compiled with CUDA for YOLO demo.\n");
|
|
|
|
}
|
2015-11-09 22:31:39 +03:00
|
|
|
#endif
|
|
|
|
|
2015-08-14 21:45:11 +03:00
|
|
|
void run_yolo(int argc, char **argv)
|
|
|
|
{
|
2015-11-27 00:39:33 +03:00
|
|
|
int i;
|
|
|
|
for(i = 0; i < 20; ++i){
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "data/labels/%s.png", voc_names[i]);
|
|
|
|
voc_labels[i] = load_image_color(buff, 0, 0);
|
|
|
|
}
|
|
|
|
|
2015-08-14 21:45:11 +03:00
|
|
|
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
2015-11-17 22:00:04 +03:00
|
|
|
int cam_index = find_int_arg(argc, argv, "-c", 0);
|
2015-08-14 21:45:11 +03:00
|
|
|
if(argc < 4){
|
|
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *cfg = argv[3];
|
|
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
|
|
char *filename = (argc > 5) ? argv[5]: 0;
|
|
|
|
if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
|
2015-11-09 22:31:39 +03:00
|
|
|
else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
|
2015-11-17 22:00:04 +03:00
|
|
|
else if(0==strcmp(argv[2], "demo")) demo_yolo(cfg, weights, thresh, cam_index);
|
2015-08-14 21:45:11 +03:00
|
|
|
}
|