darknet/cfg/yolo.cfg

205 lines
1.9 KiB
INI
Raw Normal View History

2015-05-20 20:06:42 +03:00
[net]
2015-06-16 21:45:40 +03:00
batch=64
subdivisions=64
2015-05-20 20:06:42 +03:00
height=448
width=448
channels=3
learning_rate=0.01
momentum=0.9
decay=0.0005
[crop]
crop_width=448
crop_height=448
flip=0
angle=0
saturation = 2
exposure = 2
[convolutional]
filters=64
size=7
stride=2
pad=1
activation=ramp
[convolutional]
filters=192
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=1024
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=ramp
[convolutional]
size=3
stride=1
pad=1
filters=1024
activation=ramp
[convolutional]
size=3
stride=2
pad=1
filters=1024
activation=ramp
[convolutional]
size=3
stride=1
pad=1
filters=1024
activation=ramp
2015-06-09 21:17:46 +03:00
[convolutional]
size=3
stride=1
pad=1
filters=1024
activation=ramp
2015-05-20 20:06:42 +03:00
[connected]
output=4096
activation=ramp
[dropout]
probability=.5
[connected]
output=1225
activation=logistic
[detection]
classes=20
coords=4
2015-06-10 10:11:41 +03:00
rescore=0
2015-07-21 00:56:53 +03:00
joint=0
objectness=1