darknet/src/network.c

166 lines
4.9 KiB
C
Raw Normal View History

2013-11-04 23:11:01 +04:00
#include "network.h"
#include "image.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
network make_network(int n)
{
network net;
net.n = n;
net.layers = calloc(net.n, sizeof(void *));
net.types = calloc(net.n, sizeof(LAYER_TYPE));
return net;
}
2013-11-04 23:11:01 +04:00
void run_network(image input, network net)
{
int i;
double *input_d = input.data;
2013-11-04 23:11:01 +04:00
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
run_convolutional_layer(input, layer);
input = layer.output;
input_d = layer.output.data;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
run_connected_layer(input_d, layer);
input_d = layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
run_maxpool_layer(input, layer);
input = layer.output;
input_d = layer.output.data;
}
}
}
void update_network(network net, double step)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer(layer, step);
}
else if(net.types[i] == MAXPOOL){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer(layer, step);
}
}
}
void learn_network(image input, network net)
{
int i;
image prev;
double *prev_p;
for(i = net.n-1; i >= 0; --i){
if(i == 0){
prev = input;
prev_p = prev.data;
} else if(net.types[i-1] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i-1];
prev = layer.output;
prev_p = prev.data;
} else if(net.types[i-1] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i-1];
prev = layer.output;
prev_p = prev.data;
} else if(net.types[i-1] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i-1];
prev_p = layer.output;
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
learn_convolutional_layer(prev, layer);
}
else if(net.types[i] == MAXPOOL){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
learn_connected_layer(prev_p, layer);
}
}
}
double *get_network_output_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output.data;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output.data;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
}
return 0;
}
int get_network_output_size_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output.h*layer.output.w*layer.output.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output.h*layer.output.w*layer.output.c;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.outputs;
}
return 0;
}
double *get_network_output(network net)
{
int i = net.n-1;
return get_network_output_layer(net, i);
}
image get_network_image_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
}
return make_image(0,0,0);
}
2013-11-04 23:11:01 +04:00
image get_network_image(network net)
{
int i;
for(i = net.n-1; i >= 0; --i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
}
}
return make_image(1,1,1);
}