darknet/src/network_gpu.c

231 lines
7.3 KiB
C
Raw Normal View History

2014-11-06 01:49:58 +03:00
#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#ifdef GPU
2014-12-17 02:34:10 +03:00
cl_mem get_network_output_cl_layer(network net, int i);
cl_mem get_network_delta_cl_layer(network net, int i);
2014-11-06 01:49:58 +03:00
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
forward_cost_layer_gpu(layer, input, truth);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer_gpu(layer, input);
input = layer.output_cl;
}
2014-11-19 00:51:04 +03:00
else if(net.types[i] == DROPOUT){
if(!train) continue;
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer_gpu(layer, input);
2014-12-19 02:46:45 +03:00
input = layer.output_cl;
2014-11-19 00:51:04 +03:00
}
2014-12-16 22:40:05 +03:00
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
forward_crop_layer_gpu(layer, input);
input = layer.output_cl;
}
2014-11-06 01:49:58 +03:00
}
}
void backward_network_gpu(network net, cl_mem input)
{
int i;
cl_mem prev_input;
cl_mem prev_delta;
for(i = net.n-1; i >= 0; --i){
if(i == 0){
prev_input = input;
prev_delta = 0;
}else{
prev_input = get_network_output_cl_layer(net, i-1);
prev_delta = get_network_delta_cl_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2014-12-04 10:20:29 +03:00
backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
2014-11-06 01:49:58 +03:00
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
backward_maxpool_layer_gpu(layer, prev_delta);
}
2014-12-13 23:01:21 +03:00
else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i];
backward_dropout_layer_gpu(layer, prev_delta);
}
2014-11-06 01:49:58 +03:00
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
backward_softmax_layer_gpu(layer, prev_delta);
}
}
}
void update_network_gpu(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer_gpu(layer);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer_gpu(layer);
}
}
}
cl_mem get_network_output_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output_cl;
}
2014-12-16 22:40:05 +03:00
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
return layer.output_cl;
}
2014-11-06 01:49:58 +03:00
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output_cl;
2014-11-19 00:51:04 +03:00
} else if(net.types[i] == DROPOUT){
2014-12-19 02:46:45 +03:00
dropout_layer layer = *(dropout_layer *)net.layers[i];
return layer.output_cl;
2014-11-06 01:49:58 +03:00
}
return 0;
}
cl_mem get_network_delta_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta_cl;
2014-11-19 00:51:04 +03:00
} else if(net.types[i] == DROPOUT){
2014-12-19 02:46:45 +03:00
if(i == 0) return 0;
2014-11-19 00:51:04 +03:00
return get_network_delta_cl_layer(net, i-1);
2014-11-06 01:49:58 +03:00
}
return 0;
}
float train_network_datum_gpu(network net, float *x, float *y)
{
int x_size = get_network_input_size(net)*net.batch;
int y_size = get_network_output_size(net)*net.batch;
if(!*net.input_cl){
*net.input_cl = cl_make_array(x, x_size);
*net.truth_cl = cl_make_array(y, y_size);
}else{
cl_write_array(*net.input_cl, x, x_size);
cl_write_array(*net.truth_cl, y, y_size);
}
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
backward_network_gpu(net, *net.input_cl);
update_network_gpu(net);
float error = get_network_cost(net);
return error;
}
float *get_network_output_layer_gpu(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
pull_softmax_layer_output(layer);
return layer.output;
}
return 0;
}
float *get_network_output_gpu(network net)
{
int i;
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
return get_network_output_layer_gpu(net, i);
}
float *network_predict_gpu(network net, float *input)
{
2014-12-16 22:40:05 +03:00
2014-11-06 01:49:58 +03:00
int size = get_network_input_size(net) * net.batch;
cl_mem input_cl = cl_make_array(input, size);
forward_network_gpu(net, input_cl, 0, 0);
float *out = get_network_output_gpu(net);
clReleaseMemObject(input_cl);
return out;
}
#endif