darknet/src/old.c

357 lines
11 KiB
C
Raw Normal View History

2015-03-06 21:49:03 +03:00
void test_load()
{
image dog = load_image("dog.jpg", 300, 400);
show_image(dog, "Test Load");
show_image_layers(dog, "Test Load");
}
void test_parser()
{
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
save_network(net, "cfg/trained_imagenet_smaller.cfg");
}
void test_init(char *cfgfile)
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char *filename = "data/test.jpg";
image im = load_image_color(filename, 256, 256);
//z_normalize_image(im);
translate_image(im, -128);
scale_image(im, 1/128.);
float *X = im.data;
forward_network(net, X, 0, 1);
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
image output = get_convolutional_image(layer);
int size = output.h*output.w*output.c;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
int size = layer.outputs;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
}
}
free_image(im);
}
void test_dog(char *cfgfile)
{
image im = load_image_color("data/dog.jpg", 256, 256);
translate_image(im, -128);
print_image(im);
float *X = im.data;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
network_predict(net, X);
image crop = get_network_image_layer(net, 0);
show_image(crop, "cropped");
print_image(crop);
show_image(im, "orig");
float * inter = get_network_output(net);
pm(1000, 1, inter);
cvWaitKey(0);
}
void test_voc_segment(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
while(1){
char filename[256];
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 500, 500);
//resize_network(net, im.h, im.w, im.c);
translate_image(im, -128);
scale_image(im, 1/128.);
//float *predictions = network_predict(net, im.data);
network_predict(net, im.data);
free_image(im);
image output = get_network_image_layer(net, net.n-2);
show_image(output, "Segment Output");
cvWaitKey(0);
}
}
void test_visualize(char *filename)
{
network net = parse_network_cfg(filename);
visualize_network(net);
cvWaitKey(0);
}
void test_cifar10(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
clock_t start = clock(), end;
float test_acc = network_accuracy_multi(net, test, 10);
end = clock();
printf("%f in %f Sec\n", test_acc, sec(end-start));
//visualize_network(net);
//cvWaitKey(0);
}
void train_cifar10(char *cfgfile)
{
srand(555555);
srand(time(0));
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
int count = 0;
int iters = 50000/net.batch;
data train = load_all_cifar10();
while(++count <= 10000){
clock_t time = clock();
float loss = train_network_sgd(net, train, iters);
if(count%10 == 0){
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
save_network(net, buff);
}else{
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
}
}
free_data(train);
}
void compare_nist(char *p1,char *p2)
{
srand(222222);
network n1 = parse_network_cfg(p1);
network n2 = parse_network_cfg(p2);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
compare_networks(n1, n2, test);
}
void test_nist(char *path)
{
srand(222222);
network net = parse_network_cfg(path);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
clock_t start = clock(), end;
float test_acc = network_accuracy(net, test);
end = clock();
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
void train_nist(char *cfgfile)
{
srand(222222);
// srand(time(0));
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
network net = parse_network_cfg(cfgfile);
int count = 0;
int iters = 6000/net.batch + 1;
while(++count <= 100){
clock_t start = clock(), end;
normalize_data_rows(train);
normalize_data_rows(test);
float loss = train_network_sgd(net, train, iters);
float test_acc = 0;
if(count%1 == 0) test_acc = network_accuracy(net, test);
end = clock();
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
free_data(train);
free_data(test);
char buff[256];
sprintf(buff, "%s.trained", cfgfile);
save_network(net, buff);
}
/*
void train_nist_distributed(char *address)
{
srand(time(0));
network net = parse_network_cfg("cfg/nist.client");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
//normalize_data_rows(test);
int count = 0;
int iters = 50000/net.batch;
iters = 1000/net.batch + 1;
while(++count <= 2000){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
client_update(net, address);
end = clock();
//float test_acc = network_accuracy_gpu(net, test);
//float test_acc = 0;
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
}
}
*/
void test_ensemble()
{
int i;
srand(888888);
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
normalize_data_rows(d);
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
normalize_data_rows(test);
data train = d;
// data *split = split_data(d, 1, 10);
// data train = split[0];
// data test = split[1];
matrix prediction = make_matrix(test.y.rows, test.y.cols);
int n = 30;
for(i = 0; i < n; ++i){
int count = 0;
float lr = .0005;
float momentum = .9;
float decay = .01;
network net = parse_network_cfg("nist.cfg");
while(++count <= 15){
float acc = train_network_sgd(net, train, train.X.rows);
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
lr /= 2;
}
matrix partial = network_predict_data(net, test);
float acc = matrix_topk_accuracy(test.y, partial,1);
printf("Model Accuracy: %lf\n", acc);
matrix_add_matrix(partial, prediction);
acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Current Ensemble Accuracy: %lf\n", acc);
free_matrix(partial);
}
float acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Full Ensemble Accuracy: %lf\n", acc);
}
void visualize_cat()
{
network net = parse_network_cfg("cfg/voc_imagenet.cfg");
image im = load_image_color("data/cat.png", 0, 0);
printf("Processing %dx%d image\n", im.h, im.w);
resize_network(net, im.h, im.w, im.c);
forward_network(net, im.data, 0, 0);
visualize_network(net);
cvWaitKey(0);
}
void test_correct_nist()
{
network net = parse_network_cfg("cfg/nist_conv.cfg");
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
normalize_data_rows(test);
int count = 0;
int iters = 1000/net.batch;
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_gpu.cfg");
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_cpu.cfg");
}
void test_correct_alexnet()
{
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
int count = 0;
network net;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
int imgs = net.batch;
count = 0;
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
}
/*
void run_server()
{
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_batch_network(&net, 1);
server_update(net);
}
void test_client()
{
network net = parse_network_cfg("cfg/alexnet.client");
clock_t time=clock();
client_update(net, "localhost");
printf("1\n");
client_update(net, "localhost");
printf("2\n");
client_update(net, "localhost");
printf("3\n");
printf("Transfered: %lf seconds\n", sec(clock()-time));
}
*/