mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
357 lines
11 KiB
C
357 lines
11 KiB
C
|
|
void test_load()
|
|
{
|
|
image dog = load_image("dog.jpg", 300, 400);
|
|
show_image(dog, "Test Load");
|
|
show_image_layers(dog, "Test Load");
|
|
}
|
|
|
|
void test_parser()
|
|
{
|
|
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
|
|
save_network(net, "cfg/trained_imagenet_smaller.cfg");
|
|
}
|
|
|
|
void test_init(char *cfgfile)
|
|
{
|
|
gpu_index = -1;
|
|
network net = parse_network_cfg(cfgfile);
|
|
set_batch_network(&net, 1);
|
|
srand(2222222);
|
|
int i = 0;
|
|
char *filename = "data/test.jpg";
|
|
|
|
image im = load_image_color(filename, 256, 256);
|
|
//z_normalize_image(im);
|
|
translate_image(im, -128);
|
|
scale_image(im, 1/128.);
|
|
float *X = im.data;
|
|
forward_network(net, X, 0, 1);
|
|
for(i = 0; i < net.n; ++i){
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
image output = get_convolutional_image(layer);
|
|
int size = output.h*output.w*output.c;
|
|
float v = variance_array(layer.output, size);
|
|
float m = mean_array(layer.output, size);
|
|
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
|
|
}
|
|
else if(net.types[i] == CONNECTED){
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
int size = layer.outputs;
|
|
float v = variance_array(layer.output, size);
|
|
float m = mean_array(layer.output, size);
|
|
printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
|
|
}
|
|
}
|
|
free_image(im);
|
|
}
|
|
void test_dog(char *cfgfile)
|
|
{
|
|
image im = load_image_color("data/dog.jpg", 256, 256);
|
|
translate_image(im, -128);
|
|
print_image(im);
|
|
float *X = im.data;
|
|
network net = parse_network_cfg(cfgfile);
|
|
set_batch_network(&net, 1);
|
|
network_predict(net, X);
|
|
image crop = get_network_image_layer(net, 0);
|
|
show_image(crop, "cropped");
|
|
print_image(crop);
|
|
show_image(im, "orig");
|
|
float * inter = get_network_output(net);
|
|
pm(1000, 1, inter);
|
|
cvWaitKey(0);
|
|
}
|
|
|
|
void test_voc_segment(char *cfgfile, char *weightfile)
|
|
{
|
|
network net = parse_network_cfg(cfgfile);
|
|
if(weightfile){
|
|
load_weights(&net, weightfile);
|
|
}
|
|
set_batch_network(&net, 1);
|
|
while(1){
|
|
char filename[256];
|
|
fgets(filename, 256, stdin);
|
|
strtok(filename, "\n");
|
|
image im = load_image_color(filename, 500, 500);
|
|
//resize_network(net, im.h, im.w, im.c);
|
|
translate_image(im, -128);
|
|
scale_image(im, 1/128.);
|
|
//float *predictions = network_predict(net, im.data);
|
|
network_predict(net, im.data);
|
|
free_image(im);
|
|
image output = get_network_image_layer(net, net.n-2);
|
|
show_image(output, "Segment Output");
|
|
cvWaitKey(0);
|
|
}
|
|
}
|
|
void test_visualize(char *filename)
|
|
{
|
|
network net = parse_network_cfg(filename);
|
|
visualize_network(net);
|
|
cvWaitKey(0);
|
|
}
|
|
|
|
void test_cifar10(char *cfgfile)
|
|
{
|
|
network net = parse_network_cfg(cfgfile);
|
|
data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
|
clock_t start = clock(), end;
|
|
float test_acc = network_accuracy_multi(net, test, 10);
|
|
end = clock();
|
|
printf("%f in %f Sec\n", test_acc, sec(end-start));
|
|
//visualize_network(net);
|
|
//cvWaitKey(0);
|
|
}
|
|
|
|
void train_cifar10(char *cfgfile)
|
|
{
|
|
srand(555555);
|
|
srand(time(0));
|
|
network net = parse_network_cfg(cfgfile);
|
|
data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
|
int count = 0;
|
|
int iters = 50000/net.batch;
|
|
data train = load_all_cifar10();
|
|
while(++count <= 10000){
|
|
clock_t time = clock();
|
|
float loss = train_network_sgd(net, train, iters);
|
|
|
|
if(count%10 == 0){
|
|
float test_acc = network_accuracy(net, test);
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
|
|
char buff[256];
|
|
sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
|
|
save_network(net, buff);
|
|
}else{
|
|
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
|
|
}
|
|
|
|
}
|
|
free_data(train);
|
|
}
|
|
|
|
void compare_nist(char *p1,char *p2)
|
|
{
|
|
srand(222222);
|
|
network n1 = parse_network_cfg(p1);
|
|
network n2 = parse_network_cfg(p2);
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
|
normalize_data_rows(test);
|
|
compare_networks(n1, n2, test);
|
|
}
|
|
|
|
void test_nist(char *path)
|
|
{
|
|
srand(222222);
|
|
network net = parse_network_cfg(path);
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
|
normalize_data_rows(test);
|
|
clock_t start = clock(), end;
|
|
float test_acc = network_accuracy(net, test);
|
|
end = clock();
|
|
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
|
|
}
|
|
|
|
void train_nist(char *cfgfile)
|
|
{
|
|
srand(222222);
|
|
// srand(time(0));
|
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
|
network net = parse_network_cfg(cfgfile);
|
|
int count = 0;
|
|
int iters = 6000/net.batch + 1;
|
|
while(++count <= 100){
|
|
clock_t start = clock(), end;
|
|
normalize_data_rows(train);
|
|
normalize_data_rows(test);
|
|
float loss = train_network_sgd(net, train, iters);
|
|
float test_acc = 0;
|
|
if(count%1 == 0) test_acc = network_accuracy(net, test);
|
|
end = clock();
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
|
|
}
|
|
free_data(train);
|
|
free_data(test);
|
|
char buff[256];
|
|
sprintf(buff, "%s.trained", cfgfile);
|
|
save_network(net, buff);
|
|
}
|
|
|
|
/*
|
|
void train_nist_distributed(char *address)
|
|
{
|
|
srand(time(0));
|
|
network net = parse_network_cfg("cfg/nist.client");
|
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
|
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
|
normalize_data_rows(train);
|
|
//normalize_data_rows(test);
|
|
int count = 0;
|
|
int iters = 50000/net.batch;
|
|
iters = 1000/net.batch + 1;
|
|
while(++count <= 2000){
|
|
clock_t start = clock(), end;
|
|
float loss = train_network_sgd(net, train, iters);
|
|
client_update(net, address);
|
|
end = clock();
|
|
//float test_acc = network_accuracy_gpu(net, test);
|
|
//float test_acc = 0;
|
|
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
|
|
}
|
|
}
|
|
*/
|
|
|
|
void test_ensemble()
|
|
{
|
|
int i;
|
|
srand(888888);
|
|
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
|
normalize_data_rows(d);
|
|
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
|
|
normalize_data_rows(test);
|
|
data train = d;
|
|
// data *split = split_data(d, 1, 10);
|
|
// data train = split[0];
|
|
// data test = split[1];
|
|
matrix prediction = make_matrix(test.y.rows, test.y.cols);
|
|
int n = 30;
|
|
for(i = 0; i < n; ++i){
|
|
int count = 0;
|
|
float lr = .0005;
|
|
float momentum = .9;
|
|
float decay = .01;
|
|
network net = parse_network_cfg("nist.cfg");
|
|
while(++count <= 15){
|
|
float acc = train_network_sgd(net, train, train.X.rows);
|
|
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
|
|
lr /= 2;
|
|
}
|
|
matrix partial = network_predict_data(net, test);
|
|
float acc = matrix_topk_accuracy(test.y, partial,1);
|
|
printf("Model Accuracy: %lf\n", acc);
|
|
matrix_add_matrix(partial, prediction);
|
|
acc = matrix_topk_accuracy(test.y, prediction,1);
|
|
printf("Current Ensemble Accuracy: %lf\n", acc);
|
|
free_matrix(partial);
|
|
}
|
|
float acc = matrix_topk_accuracy(test.y, prediction,1);
|
|
printf("Full Ensemble Accuracy: %lf\n", acc);
|
|
}
|
|
|
|
void visualize_cat()
|
|
{
|
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg");
|
|
image im = load_image_color("data/cat.png", 0, 0);
|
|
printf("Processing %dx%d image\n", im.h, im.w);
|
|
resize_network(net, im.h, im.w, im.c);
|
|
forward_network(net, im.data, 0, 0);
|
|
|
|
visualize_network(net);
|
|
cvWaitKey(0);
|
|
}
|
|
|
|
void test_correct_nist()
|
|
{
|
|
network net = parse_network_cfg("cfg/nist_conv.cfg");
|
|
srand(222222);
|
|
net = parse_network_cfg("cfg/nist_conv.cfg");
|
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
|
normalize_data_rows(train);
|
|
normalize_data_rows(test);
|
|
int count = 0;
|
|
int iters = 1000/net.batch;
|
|
|
|
while(++count <= 5){
|
|
clock_t start = clock(), end;
|
|
float loss = train_network_sgd(net, train, iters);
|
|
end = clock();
|
|
float test_acc = network_accuracy(net, test);
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
|
}
|
|
save_network(net, "cfg/nist_gpu.cfg");
|
|
|
|
gpu_index = -1;
|
|
count = 0;
|
|
srand(222222);
|
|
net = parse_network_cfg("cfg/nist_conv.cfg");
|
|
while(++count <= 5){
|
|
clock_t start = clock(), end;
|
|
float loss = train_network_sgd(net, train, iters);
|
|
end = clock();
|
|
float test_acc = network_accuracy(net, test);
|
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
|
}
|
|
save_network(net, "cfg/nist_cpu.cfg");
|
|
}
|
|
|
|
void test_correct_alexnet()
|
|
{
|
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
|
list *plist = get_paths("/data/imagenet/cls.train.list");
|
|
char **paths = (char **)list_to_array(plist);
|
|
printf("%d\n", plist->size);
|
|
clock_t time;
|
|
int count = 0;
|
|
network net;
|
|
|
|
srand(222222);
|
|
net = parse_network_cfg("cfg/net.cfg");
|
|
int imgs = net.batch;
|
|
|
|
count = 0;
|
|
while(++count <= 5){
|
|
time=clock();
|
|
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
|
|
normalize_data_rows(train);
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
|
|
free_data(train);
|
|
}
|
|
|
|
gpu_index = -1;
|
|
count = 0;
|
|
srand(222222);
|
|
net = parse_network_cfg("cfg/net.cfg");
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
while(++count <= 5){
|
|
time=clock();
|
|
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
|
|
normalize_data_rows(train);
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
time=clock();
|
|
float loss = train_network(net, train);
|
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
|
|
free_data(train);
|
|
}
|
|
}
|
|
|
|
/*
|
|
void run_server()
|
|
{
|
|
srand(time(0));
|
|
network net = parse_network_cfg("cfg/net.cfg");
|
|
set_batch_network(&net, 1);
|
|
server_update(net);
|
|
}
|
|
|
|
void test_client()
|
|
{
|
|
network net = parse_network_cfg("cfg/alexnet.client");
|
|
clock_t time=clock();
|
|
client_update(net, "localhost");
|
|
printf("1\n");
|
|
client_update(net, "localhost");
|
|
printf("2\n");
|
|
client_update(net, "localhost");
|
|
printf("3\n");
|
|
printf("Transfered: %lf seconds\n", sec(clock()-time));
|
|
}
|
|
*/
|