scripts and stuff

This commit is contained in:
Joseph Redmon 2015-07-20 15:11:01 -07:00
parent 9db618329a
commit 23c08be144
4 changed files with 66 additions and 8 deletions

View File

@ -199,6 +199,6 @@ activation=logistic
classes=20
coords=4
rescore=1
joint=1
objectness = 0
background=0
joint=0
objectness=1

56
scripts/voc_label.py Normal file
View File

@ -0,0 +1,56 @@
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
convert_annotation(year, image_id)
list_file.close()

View File

@ -51,6 +51,8 @@ void draw_detection(image im, float *box, int side, int objectness, char *label)
void train_detection(char *cfgfile, char *weightfile)
{
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
char *base = basecfg(cfgfile);
@ -71,7 +73,7 @@ void train_detection(char *cfgfile, char *weightfile)
int side = sqrt(get_detection_layer_locations(layer));
char **paths;
list *plist = get_paths("/home/pjreddie/data/voc/test/train.txt");
list *plist = get_paths(train_images);
int N = plist->size;
paths = (char **)list_to_array(plist);
@ -96,26 +98,26 @@ void train_detection(char *cfgfile, char *weightfile)
fprintf(stderr, "Starting second stage...\n");
net.learning_rate *= 10;
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_first_stage.weights", base);
sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
save_weights(net, buff);
}
if((i-1)*imgs <= 80*N && i*imgs > N*80){
fprintf(stderr, "Second stage done.\n");
net.learning_rate *= .1;
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_second_stage.weights", base);
sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
save_weights(net, buff);
return;
}
if(i%1000==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_final.weights",base);
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}