mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
route handles input images well....ish
This commit is contained in:
@ -9,99 +9,97 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
connected_layer *layer = calloc(1, sizeof(connected_layer));
|
||||
connected_layer l = {0};
|
||||
l.type = CONNECTED;
|
||||
|
||||
layer->inputs = inputs;
|
||||
layer->outputs = outputs;
|
||||
layer->batch=batch;
|
||||
l.inputs = inputs;
|
||||
l.outputs = outputs;
|
||||
l.batch=batch;
|
||||
|
||||
layer->output = calloc(batch*outputs, sizeof(float*));
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
l.output = calloc(batch*outputs, sizeof(float*));
|
||||
l.delta = calloc(batch*outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
l.weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
l.bias_updates = calloc(outputs, sizeof(float));
|
||||
|
||||
layer->weight_prev = calloc(inputs*outputs, sizeof(float));
|
||||
layer->bias_prev = calloc(outputs, sizeof(float));
|
||||
|
||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
l.weights = calloc(inputs*outputs, sizeof(float));
|
||||
l.biases = calloc(outputs, sizeof(float));
|
||||
|
||||
|
||||
float scale = 1./sqrt(inputs);
|
||||
for(i = 0; i < inputs*outputs; ++i){
|
||||
layer->weights[i] = 2*scale*rand_uniform() - scale;
|
||||
l.weights[i] = 2*scale*rand_uniform() - scale;
|
||||
}
|
||||
|
||||
for(i = 0; i < outputs; ++i){
|
||||
layer->biases[i] = scale;
|
||||
l.biases[i] = scale;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs);
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, outputs);
|
||||
l.weights_gpu = cuda_make_array(l.weights, inputs*outputs);
|
||||
l.biases_gpu = cuda_make_array(l.biases, outputs);
|
||||
|
||||
layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs);
|
||||
l.weight_updates_gpu = cuda_make_array(l.weight_updates, inputs*outputs);
|
||||
l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs);
|
||||
|
||||
layer->output_gpu = cuda_make_array(layer->output, outputs*batch);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch);
|
||||
l.output_gpu = cuda_make_array(l.output, outputs*batch);
|
||||
l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
l.activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
axpy_cpu(layer.outputs, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.outputs, momentum, layer.bias_updates, 1);
|
||||
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
|
||||
|
||||
axpy_cpu(layer.inputs*layer.outputs, -decay*batch, layer.weights, 1, layer.weight_updates, 1);
|
||||
axpy_cpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates, 1, layer.weights, 1);
|
||||
scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1);
|
||||
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
|
||||
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
|
||||
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
|
||||
}
|
||||
|
||||
void forward_connected_layer(connected_layer layer, network_state state)
|
||||
void forward_connected_layer(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
|
||||
}
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
int m = l.batch;
|
||||
int k = l.inputs;
|
||||
int n = l.outputs;
|
||||
float *a = state.input;
|
||||
float *b = layer.weights;
|
||||
float *c = layer.output;
|
||||
float *b = l.weights;
|
||||
float *c = l.output;
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
|
||||
activate_array(l.output, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer(connected_layer layer, network_state state)
|
||||
void backward_connected_layer(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
|
||||
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
int m = l.inputs;
|
||||
int k = l.batch;
|
||||
int n = l.outputs;
|
||||
float *a = state.input;
|
||||
float *b = layer.delta;
|
||||
float *c = layer.weight_updates;
|
||||
float *b = l.delta;
|
||||
float *c = l.weight_updates;
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
n = layer.inputs;
|
||||
m = l.batch;
|
||||
k = l.outputs;
|
||||
n = l.inputs;
|
||||
|
||||
a = layer.delta;
|
||||
b = layer.weights;
|
||||
a = l.delta;
|
||||
b = l.weights;
|
||||
c = state.delta;
|
||||
|
||||
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
@ -109,69 +107,69 @@ void backward_connected_layer(connected_layer layer, network_state state)
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_connected_layer(connected_layer layer)
|
||||
void pull_connected_layer(connected_layer l)
|
||||
{
|
||||
cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
|
||||
cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs);
|
||||
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
|
||||
cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
||||
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
|
||||
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
||||
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
||||
}
|
||||
|
||||
void push_connected_layer(connected_layer layer)
|
||||
void push_connected_layer(connected_layer l)
|
||||
{
|
||||
cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
|
||||
cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs);
|
||||
cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
|
||||
cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
||||
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
|
||||
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
||||
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
||||
}
|
||||
|
||||
void update_connected_layer_gpu(connected_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
axpy_ongpu(layer.outputs, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
||||
scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1);
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(layer.inputs*layer.outputs, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1);
|
||||
axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
|
||||
}
|
||||
|
||||
void forward_connected_layer_gpu(connected_layer layer, network_state state)
|
||||
void forward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
|
||||
}
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
int m = l.batch;
|
||||
int k = l.inputs;
|
||||
int n = l.outputs;
|
||||
float * a = state.input;
|
||||
float * b = layer.weights_gpu;
|
||||
float * c = layer.output_gpu;
|
||||
float * b = l.weights_gpu;
|
||||
float * c = l.output_gpu;
|
||||
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer layer, network_state state)
|
||||
void backward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1);
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
int m = l.inputs;
|
||||
int k = l.batch;
|
||||
int n = l.outputs;
|
||||
float * a = state.input;
|
||||
float * b = layer.delta_gpu;
|
||||
float * c = layer.weight_updates_gpu;
|
||||
float * b = l.delta_gpu;
|
||||
float * c = l.weight_updates_gpu;
|
||||
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
n = layer.inputs;
|
||||
m = l.batch;
|
||||
k = l.outputs;
|
||||
n = l.inputs;
|
||||
|
||||
a = layer.delta_gpu;
|
||||
b = layer.weights_gpu;
|
||||
a = l.delta_gpu;
|
||||
b = l.weights_gpu;
|
||||
c = state.delta;
|
||||
|
||||
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
|
Reference in New Issue
Block a user