mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
route handles input images well....ish
This commit is contained in:
@@ -7,111 +7,117 @@
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
int convolutional_out_height(convolutional_layer layer)
|
||||
int convolutional_out_height(convolutional_layer l)
|
||||
{
|
||||
int h = layer.h;
|
||||
if (!layer.pad) h -= layer.size;
|
||||
int h = l.h;
|
||||
if (!l.pad) h -= l.size;
|
||||
else h -= 1;
|
||||
return h/layer.stride + 1;
|
||||
return h/l.stride + 1;
|
||||
}
|
||||
|
||||
int convolutional_out_width(convolutional_layer layer)
|
||||
int convolutional_out_width(convolutional_layer l)
|
||||
{
|
||||
int w = layer.w;
|
||||
if (!layer.pad) w -= layer.size;
|
||||
int w = l.w;
|
||||
if (!l.pad) w -= l.size;
|
||||
else w -= 1;
|
||||
return w/layer.stride + 1;
|
||||
return w/l.stride + 1;
|
||||
}
|
||||
|
||||
image get_convolutional_image(convolutional_layer layer)
|
||||
image get_convolutional_image(convolutional_layer l)
|
||||
{
|
||||
int h,w,c;
|
||||
h = convolutional_out_height(layer);
|
||||
w = convolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
h = convolutional_out_height(l);
|
||||
w = convolutional_out_width(l);
|
||||
c = l.n;
|
||||
return float_to_image(w,h,c,l.output);
|
||||
}
|
||||
|
||||
image get_convolutional_delta(convolutional_layer layer)
|
||||
image get_convolutional_delta(convolutional_layer l)
|
||||
{
|
||||
int h,w,c;
|
||||
h = convolutional_out_height(layer);
|
||||
w = convolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
h = convolutional_out_height(l);
|
||||
w = convolutional_out_width(l);
|
||||
c = l.n;
|
||||
return float_to_image(w,h,c,l.delta);
|
||||
}
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
|
||||
convolutional_layer l = {0};
|
||||
l.type = CONVOLUTIONAL;
|
||||
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->n = n;
|
||||
layer->batch = batch;
|
||||
layer->stride = stride;
|
||||
layer->size = size;
|
||||
layer->pad = pad;
|
||||
l.h = h;
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.n = n;
|
||||
l.batch = batch;
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
l.pad = pad;
|
||||
|
||||
layer->filters = calloc(c*n*size*size, sizeof(float));
|
||||
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
l.filters = calloc(c*n*size*size, sizeof(float));
|
||||
l.filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
|
||||
layer->biases = calloc(n, sizeof(float));
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
l.biases = calloc(n, sizeof(float));
|
||||
l.bias_updates = calloc(n, sizeof(float));
|
||||
float scale = 1./sqrt(size*size*c);
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = 2*scale*rand_uniform() - scale;
|
||||
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
|
||||
for(i = 0; i < n; ++i){
|
||||
layer->biases[i] = scale;
|
||||
l.biases[i] = scale;
|
||||
}
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
int out_h = convolutional_out_height(l);
|
||||
int out_w = convolutional_out_width(l);
|
||||
l.out_h = out_h;
|
||||
l.out_w = out_w;
|
||||
l.out_c = n;
|
||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||
l.inputs = l.w * l.h * l.c;
|
||||
|
||||
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
|
||||
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
|
||||
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
|
||||
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, n);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
|
||||
l.biases_gpu = cuda_make_array(l.biases, n);
|
||||
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
|
||||
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
|
||||
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
||||
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
|
||||
void resize_convolutional_layer(convolutional_layer *l, int h, int w)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
l->h = h;
|
||||
l->w = w;
|
||||
int out_h = convolutional_out_height(*l);
|
||||
int out_w = convolutional_out_width(*l);
|
||||
|
||||
layer->col_image = realloc(layer->col_image,
|
||||
out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
||||
layer->output = realloc(layer->output,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
layer->delta = realloc(layer->delta,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
l->col_image = realloc(l->col_image,
|
||||
out_h*out_w*l->size*l->size*l->c*sizeof(float));
|
||||
l->output = realloc(l->output,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
l->delta = realloc(l->delta,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
cuda_free(layer->col_image_gpu);
|
||||
cuda_free(layer->delta_gpu);
|
||||
cuda_free(layer->output_gpu);
|
||||
cuda_free(l->col_image_gpu);
|
||||
cuda_free(l->delta_gpu);
|
||||
cuda_free(l->output_gpu);
|
||||
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
|
||||
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
|
||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
||||
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -138,104 +144,104 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
|
||||
}
|
||||
|
||||
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network_state state)
|
||||
void forward_convolutional_layer(const convolutional_layer l, network_state state)
|
||||
{
|
||||
int out_h = convolutional_out_height(layer);
|
||||
int out_w = convolutional_out_width(layer);
|
||||
int out_h = convolutional_out_height(l);
|
||||
int out_w = convolutional_out_width(l);
|
||||
int i;
|
||||
|
||||
bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
|
||||
bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = out_h*out_w;
|
||||
|
||||
float *a = layer.filters;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
float *a = l.filters;
|
||||
float *b = l.col_image;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(state.input, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_cpu(state.input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
c += n*m;
|
||||
state.input += layer.c*layer.h*layer.w;
|
||||
state.input += l.c*l.h*l.w;
|
||||
}
|
||||
activate_array(layer.output, m*n*layer.batch, layer.activation);
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, network_state state)
|
||||
void backward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
int m = l.n;
|
||||
int n = l.size*l.size*l.c;
|
||||
int k = convolutional_out_height(l)*
|
||||
convolutional_out_width(l);
|
||||
|
||||
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
|
||||
backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
|
||||
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
|
||||
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
|
||||
|
||||
if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
float *a = layer.delta + i*m*k;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.filter_updates;
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *a = l.delta + i*m*k;
|
||||
float *b = l.col_image;
|
||||
float *c = l.filter_updates;
|
||||
|
||||
float *im = state.input+i*layer.c*layer.h*layer.w;
|
||||
float *im = state.input+i*l.c*l.h*l.w;
|
||||
|
||||
im2col_cpu(im, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
im2col_cpu(im, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
|
||||
if(state.delta){
|
||||
a = layer.filters;
|
||||
b = layer.delta + i*m*k;
|
||||
c = layer.col_image;
|
||||
a = l.filters;
|
||||
b = l.delta + i*m*k;
|
||||
c = l.col_image;
|
||||
|
||||
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
|
||||
|
||||
col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
|
||||
col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.n, momentum, layer.bias_updates, 1);
|
||||
int size = l.size*l.size*l.c*l.n;
|
||||
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.n, momentum, l.bias_updates, 1);
|
||||
|
||||
axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
|
||||
axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
|
||||
scal_cpu(size, momentum, layer.filter_updates, 1);
|
||||
axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
|
||||
axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
|
||||
scal_cpu(size, momentum, l.filter_updates, 1);
|
||||
}
|
||||
|
||||
|
||||
image get_convolutional_filter(convolutional_layer layer, int i)
|
||||
image get_convolutional_filter(convolutional_layer l, int i)
|
||||
{
|
||||
int h = layer.size;
|
||||
int w = layer.size;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.filters+i*h*w*c);
|
||||
int h = l.size;
|
||||
int w = l.size;
|
||||
int c = l.c;
|
||||
return float_to_image(w,h,c,l.filters+i*h*w*c);
|
||||
}
|
||||
|
||||
image *get_filters(convolutional_layer layer)
|
||||
image *get_filters(convolutional_layer l)
|
||||
{
|
||||
image *filters = calloc(layer.n, sizeof(image));
|
||||
image *filters = calloc(l.n, sizeof(image));
|
||||
int i;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
||||
for(i = 0; i < l.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(l, i));
|
||||
}
|
||||
return filters;
|
||||
}
|
||||
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
|
||||
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
|
||||
{
|
||||
image *single_filters = get_filters(layer);
|
||||
show_images(single_filters, layer.n, window);
|
||||
image *single_filters = get_filters(l);
|
||||
show_images(single_filters, l.n, window);
|
||||
|
||||
image delta = get_convolutional_image(layer);
|
||||
image delta = get_convolutional_image(l);
|
||||
image dc = collapse_image_layers(delta, 1);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s: Output", window);
|
||||
|
||||
Reference in New Issue
Block a user