route handles input images well....ish

This commit is contained in:
Joseph Redmon
2015-05-11 13:46:49 -07:00
parent dc0d7bb8a8
commit 516f019ba6
31 changed files with 1250 additions and 1819 deletions

View File

@@ -7,111 +7,117 @@
#include <stdio.h>
#include <time.h>
int convolutional_out_height(convolutional_layer layer)
int convolutional_out_height(convolutional_layer l)
{
int h = layer.h;
if (!layer.pad) h -= layer.size;
int h = l.h;
if (!l.pad) h -= l.size;
else h -= 1;
return h/layer.stride + 1;
return h/l.stride + 1;
}
int convolutional_out_width(convolutional_layer layer)
int convolutional_out_width(convolutional_layer l)
{
int w = layer.w;
if (!layer.pad) w -= layer.size;
int w = l.w;
if (!l.pad) w -= l.size;
else w -= 1;
return w/layer.stride + 1;
return w/l.stride + 1;
}
image get_convolutional_image(convolutional_layer layer)
image get_convolutional_image(convolutional_layer l)
{
int h,w,c;
h = convolutional_out_height(layer);
w = convolutional_out_width(layer);
c = layer.n;
return float_to_image(w,h,c,layer.output);
h = convolutional_out_height(l);
w = convolutional_out_width(l);
c = l.n;
return float_to_image(w,h,c,l.output);
}
image get_convolutional_delta(convolutional_layer layer)
image get_convolutional_delta(convolutional_layer l)
{
int h,w,c;
h = convolutional_out_height(layer);
w = convolutional_out_width(layer);
c = layer.n;
return float_to_image(w,h,c,layer.delta);
h = convolutional_out_height(l);
w = convolutional_out_width(l);
c = l.n;
return float_to_image(w,h,c,l.delta);
}
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
{
int i;
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
convolutional_layer l = {0};
l.type = CONVOLUTIONAL;
layer->h = h;
layer->w = w;
layer->c = c;
layer->n = n;
layer->batch = batch;
layer->stride = stride;
layer->size = size;
layer->pad = pad;
l.h = h;
l.w = w;
l.c = c;
l.n = n;
l.batch = batch;
l.stride = stride;
l.size = size;
l.pad = pad;
layer->filters = calloc(c*n*size*size, sizeof(float));
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
l.filters = calloc(c*n*size*size, sizeof(float));
l.filter_updates = calloc(c*n*size*size, sizeof(float));
layer->biases = calloc(n, sizeof(float));
layer->bias_updates = calloc(n, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
float scale = 1./sqrt(size*size*c);
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = 2*scale*rand_uniform() - scale;
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
for(i = 0; i < n; ++i){
layer->biases[i] = scale;
l.biases[i] = scale;
}
int out_h = convolutional_out_height(*layer);
int out_w = convolutional_out_width(*layer);
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
l.out_h = out_h;
l.out_w = out_w;
l.out_c = n;
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = l.w * l.h * l.c;
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
#ifdef GPU
layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
layer->biases_gpu = cuda_make_array(layer->biases, n);
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
#endif
layer->activation = activation;
l.activation = activation;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
return layer;
return l;
}
void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
void resize_convolutional_layer(convolutional_layer *l, int h, int w)
{
layer->h = h;
layer->w = w;
int out_h = convolutional_out_height(*layer);
int out_w = convolutional_out_width(*layer);
l->h = h;
l->w = w;
int out_h = convolutional_out_height(*l);
int out_w = convolutional_out_width(*l);
layer->col_image = realloc(layer->col_image,
out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
layer->output = realloc(layer->output,
layer->batch*out_h * out_w * layer->n*sizeof(float));
layer->delta = realloc(layer->delta,
layer->batch*out_h * out_w * layer->n*sizeof(float));
l->col_image = realloc(l->col_image,
out_h*out_w*l->size*l->size*l->c*sizeof(float));
l->output = realloc(l->output,
l->batch*out_h * out_w * l->n*sizeof(float));
l->delta = realloc(l->delta,
l->batch*out_h * out_w * l->n*sizeof(float));
#ifdef GPU
cuda_free(layer->col_image_gpu);
cuda_free(layer->delta_gpu);
cuda_free(layer->output_gpu);
cuda_free(l->col_image_gpu);
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
#endif
}
@@ -138,104 +144,104 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
}
void forward_convolutional_layer(const convolutional_layer layer, network_state state)
void forward_convolutional_layer(const convolutional_layer l, network_state state)
{
int out_h = convolutional_out_height(layer);
int out_w = convolutional_out_width(layer);
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
int i;
bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
int m = layer.n;
int k = layer.size*layer.size*layer.c;
int m = l.n;
int k = l.size*l.size*l.c;
int n = out_h*out_w;
float *a = layer.filters;
float *b = layer.col_image;
float *c = layer.output;
float *a = l.filters;
float *b = l.col_image;
float *c = l.output;
for(i = 0; i < layer.batch; ++i){
im2col_cpu(state.input, layer.c, layer.h, layer.w,
layer.size, layer.stride, layer.pad, b);
for(i = 0; i < l.batch; ++i){
im2col_cpu(state.input, l.c, l.h, l.w,
l.size, l.stride, l.pad, b);
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
c += n*m;
state.input += layer.c*layer.h*layer.w;
state.input += l.c*l.h*l.w;
}
activate_array(layer.output, m*n*layer.batch, layer.activation);
activate_array(l.output, m*n*l.batch, l.activation);
}
void backward_convolutional_layer(convolutional_layer layer, network_state state)
void backward_convolutional_layer(convolutional_layer l, network_state state)
{
int i;
int m = layer.n;
int n = layer.size*layer.size*layer.c;
int k = convolutional_out_height(layer)*
convolutional_out_width(layer);
int m = l.n;
int n = l.size*l.size*l.c;
int k = convolutional_out_height(l)*
convolutional_out_width(l);
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
for(i = 0; i < layer.batch; ++i){
float *a = layer.delta + i*m*k;
float *b = layer.col_image;
float *c = layer.filter_updates;
for(i = 0; i < l.batch; ++i){
float *a = l.delta + i*m*k;
float *b = l.col_image;
float *c = l.filter_updates;
float *im = state.input+i*layer.c*layer.h*layer.w;
float *im = state.input+i*l.c*l.h*l.w;
im2col_cpu(im, layer.c, layer.h, layer.w,
layer.size, layer.stride, layer.pad, b);
im2col_cpu(im, l.c, l.h, l.w,
l.size, l.stride, l.pad, b);
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(state.delta){
a = layer.filters;
b = layer.delta + i*m*k;
c = layer.col_image;
a = l.filters;
b = l.delta + i*m*k;
c = l.col_image;
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
}
}
}
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
{
int size = layer.size*layer.size*layer.c*layer.n;
axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
scal_cpu(layer.n, momentum, layer.bias_updates, 1);
int size = l.size*l.size*l.c*l.n;
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.n, momentum, l.bias_updates, 1);
axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
scal_cpu(size, momentum, layer.filter_updates, 1);
axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
scal_cpu(size, momentum, l.filter_updates, 1);
}
image get_convolutional_filter(convolutional_layer layer, int i)
image get_convolutional_filter(convolutional_layer l, int i)
{
int h = layer.size;
int w = layer.size;
int c = layer.c;
return float_to_image(w,h,c,layer.filters+i*h*w*c);
int h = l.size;
int w = l.size;
int c = l.c;
return float_to_image(w,h,c,l.filters+i*h*w*c);
}
image *get_filters(convolutional_layer layer)
image *get_filters(convolutional_layer l)
{
image *filters = calloc(layer.n, sizeof(image));
image *filters = calloc(l.n, sizeof(image));
int i;
for(i = 0; i < layer.n; ++i){
filters[i] = copy_image(get_convolutional_filter(layer, i));
for(i = 0; i < l.n; ++i){
filters[i] = copy_image(get_convolutional_filter(l, i));
}
return filters;
}
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
{
image *single_filters = get_filters(layer);
show_images(single_filters, layer.n, window);
image *single_filters = get_filters(l);
show_images(single_filters, l.n, window);
image delta = get_convolutional_image(layer);
image delta = get_convolutional_image(l);
image dc = collapse_image_layers(delta, 1);
char buff[256];
sprintf(buff, "%s: Output", window);