mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Some fixes to momentum
This commit is contained in:
parent
28e2115272
commit
a99050f0c8
@ -374,7 +374,7 @@ void train_detection_net()
|
||||
void train_imagenet_distributed(char *address)
|
||||
{
|
||||
float avg_loss = 1;
|
||||
srand(0);
|
||||
srand(time(0));
|
||||
network net = parse_network_cfg("cfg/alexnet.client");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
@ -412,11 +412,11 @@ void train_imagenet()
|
||||
{
|
||||
float avg_loss = 1;
|
||||
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
||||
srand(0);
|
||||
srand(time(0));
|
||||
network net = parse_network_cfg("cfg/alexnet.cfg");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
imgs=1;
|
||||
//imgs=1;
|
||||
int i = 0;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
@ -872,7 +872,7 @@ void test_correct_alexnet()
|
||||
|
||||
void run_server()
|
||||
{
|
||||
srand(0);
|
||||
srand(time(0));
|
||||
network net = parse_network_cfg("cfg/alexnet.server");
|
||||
server_update(net);
|
||||
}
|
||||
|
@ -24,22 +24,20 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||
float scale = 1./inputs;
|
||||
scale = .01;
|
||||
for(i = 0; i < inputs*outputs; ++i)
|
||||
layer->weights[i] = scale*2*(rand_uniform()-.5);
|
||||
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
//layer->bias_adapt = calloc(outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
for(i = 0; i < outputs; ++i){
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
layer->biases[i] = 1;
|
||||
for(i = 0; i < inputs*outputs; ++i){
|
||||
layer->weights[i] = scale*rand_normal();
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
for(i = 0; i < outputs; ++i){
|
||||
layer->biases[i] = .01;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
|
||||
layer->biases_cl = cl_make_array(layer->biases, outputs);
|
||||
|
||||
@ -48,7 +46,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
|
||||
layer->output_cl = cl_make_array(layer->output, outputs*batch);
|
||||
layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
|
||||
#endif
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
return layer;
|
||||
@ -59,7 +57,7 @@ void update_connected_layer(connected_layer layer)
|
||||
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
|
||||
|
||||
scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1);
|
||||
axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
|
||||
axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
|
||||
scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
|
||||
}
|
||||
@ -129,7 +127,7 @@ void update_connected_layer_gpu(connected_layer layer)
|
||||
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
|
||||
|
||||
scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
|
||||
pull_connected_layer(layer);
|
||||
@ -176,4 +174,4 @@ void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem de
|
||||
|
||||
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@ -64,10 +64,10 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
float scale = 1./(size*size*c);
|
||||
scale = .01;
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
|
||||
for(i = 0; i < n; ++i){
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
layer->biases[i] = .5;
|
||||
layer->biases[i] = .01;
|
||||
}
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
@ -204,7 +204,7 @@ void update_convolutional_layer(convolutional_layer layer)
|
||||
axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
|
||||
|
||||
scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
|
||||
axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
|
||||
axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
|
||||
scal_cpu(size, layer.momentum, layer.filter_updates, 1);
|
||||
}
|
||||
@ -409,7 +409,7 @@ void update_convolutional_layer_gpu(convolutional_layer layer)
|
||||
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
|
||||
|
||||
scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
|
||||
axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
|
||||
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
|
||||
scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
|
||||
pull_convolutional_layer(layer);
|
||||
|
@ -9,6 +9,7 @@
|
||||
|
||||
#include "mini_blas.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
#include "server.h"
|
||||
#include "connected_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
@ -82,7 +83,6 @@ void handle_connection(void *pointer)
|
||||
connection_info info = *(connection_info *) pointer;
|
||||
int fd = info.fd;
|
||||
network net = info.net;
|
||||
++*(info.counter);
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
@ -117,6 +117,8 @@ void handle_connection(void *pointer)
|
||||
}
|
||||
printf("Received updates\n");
|
||||
close(fd);
|
||||
++*(info.counter);
|
||||
if(*(info.counter)%10==0) save_network(net, "/home/pjreddie/imagenet_backup/alexnet.part");
|
||||
}
|
||||
|
||||
void server_update(network net)
|
||||
|
@ -262,10 +262,11 @@ int max_index(float *a, int n)
|
||||
|
||||
float rand_normal()
|
||||
{
|
||||
int n = 12;
|
||||
int i;
|
||||
float sum= 0;
|
||||
for(i = 0; i < 12; ++i) sum += (float)rand()/RAND_MAX;
|
||||
return sum-6.;
|
||||
for(i = 0; i < n; ++i) sum += (float)rand()/RAND_MAX;
|
||||
return sum-n/2.;
|
||||
}
|
||||
float rand_uniform()
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user