mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Some fixes to momentum
This commit is contained in:
@ -24,22 +24,20 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||
float scale = 1./inputs;
|
||||
scale = .01;
|
||||
for(i = 0; i < inputs*outputs; ++i)
|
||||
layer->weights[i] = scale*2*(rand_uniform()-.5);
|
||||
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
//layer->bias_adapt = calloc(outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
for(i = 0; i < outputs; ++i){
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
layer->biases[i] = 1;
|
||||
for(i = 0; i < inputs*outputs; ++i){
|
||||
layer->weights[i] = scale*rand_normal();
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
for(i = 0; i < outputs; ++i){
|
||||
layer->biases[i] = .01;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
|
||||
layer->biases_cl = cl_make_array(layer->biases, outputs);
|
||||
|
||||
@ -48,7 +46,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
|
||||
layer->output_cl = cl_make_array(layer->output, outputs*batch);
|
||||
layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
|
||||
#endif
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
return layer;
|
||||
@ -59,7 +57,7 @@ void update_connected_layer(connected_layer layer)
|
||||
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
|
||||
|
||||
scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1);
|
||||
axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
|
||||
axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
|
||||
scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
|
||||
}
|
||||
@ -129,7 +127,7 @@ void update_connected_layer_gpu(connected_layer layer)
|
||||
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
|
||||
|
||||
scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
|
||||
pull_connected_layer(layer);
|
||||
@ -176,4 +174,4 @@ void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem de
|
||||
|
||||
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user