mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
checkpoint
This commit is contained in:
parent
b13ad6d5fd
commit
d407bffde9
1
Makefile
1
Makefile
@ -14,6 +14,7 @@ endif
|
||||
|
||||
UNAME = $(shell uname)
|
||||
OPTS=-Ofast -flto
|
||||
#OPTS=-O3
|
||||
ifeq ($(UNAME), Darwin)
|
||||
COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||
ifeq ($(GPU), 1)
|
||||
|
@ -128,7 +128,7 @@ void activate_array_ongpu(cl_mem x, int n, ACTIVATION a)
|
||||
|
||||
size_t gsize = n;
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, &gsize, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, &gsize, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
@ -158,7 +158,7 @@ void gradient_array_ongpu(cl_mem x, int n, ACTIVATION a, cl_mem delta)
|
||||
|
||||
size_t gsize = n;
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, &gsize, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, &gsize, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
#endif
|
||||
|
@ -87,7 +87,7 @@ void axpy_ongpu_offset(int N, float ALPHA, cl_mem X, int OFFX, int INCX, cl_mem
|
||||
|
||||
const size_t global_size[] = {N};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
}
|
||||
@ -113,7 +113,7 @@ void copy_ongpu_offset(int N, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY,
|
||||
|
||||
const size_t global_size[] = {N};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
void scal_ongpu(int N, float ALPHA, cl_mem X, int INCX)
|
||||
@ -131,7 +131,7 @@ void scal_ongpu(int N, float ALPHA, cl_mem X, int INCX)
|
||||
|
||||
const size_t global_size[] = {N};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
#endif
|
||||
|
40
src/cnn.c
40
src/cnn.c
@ -265,10 +265,8 @@ void test_rotate()
|
||||
|
||||
void test_parser()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/test_parser.cfg");
|
||||
save_network(net, "cfg/test_parser_1.cfg");
|
||||
network net2 = parse_network_cfg("cfg/test_parser_1.cfg");
|
||||
save_network(net2, "cfg/test_parser_2.cfg");
|
||||
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
|
||||
save_network(net, "cfg/trained_imagenet_smaller.cfg");
|
||||
}
|
||||
|
||||
void test_data()
|
||||
@ -294,7 +292,8 @@ void train_asirra()
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network_data_gpu(net, train, imgs);
|
||||
//float loss = train_network_data(net, train, imgs);
|
||||
float loss = 0;
|
||||
printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time));
|
||||
free_data(train);
|
||||
if(i%10==0){
|
||||
@ -309,7 +308,8 @@ void train_asirra()
|
||||
void train_imagenet()
|
||||
{
|
||||
float avg_loss = 1;
|
||||
network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_nin_2680.cfg");
|
||||
network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_2280.cfg");
|
||||
//network net = parse_network_cfg("cfg/imagenet2.cfg");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
srand(time(0));
|
||||
@ -335,7 +335,7 @@ void train_imagenet()
|
||||
free_data(train);
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_nin_%d.cfg", i);
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
}
|
||||
@ -408,7 +408,7 @@ void test_imagenet()
|
||||
char filename[256];
|
||||
int indexes[10];
|
||||
while(1){
|
||||
gets(filename);
|
||||
fgets(filename, 256, stdin);
|
||||
image im = load_image_color(filename, 256, 256);
|
||||
z_normalize_image(im);
|
||||
printf("%d %d %d\n", im.h, im.w, im.c);
|
||||
@ -548,35 +548,16 @@ void train_nist()
|
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
||||
translate_data_rows(train, -144);
|
||||
//scale_data_rows(train, 1./128);
|
||||
translate_data_rows(test, -144);
|
||||
//scale_data_rows(test, 1./128);
|
||||
//randomize_data(train);
|
||||
int count = 0;
|
||||
//clock_t start = clock(), end;
|
||||
int iters = 10000/net.batch;
|
||||
int iters = 50000/net.batch;
|
||||
while(++count <= 2000){
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, iters);
|
||||
end = clock();
|
||||
float test_acc = network_accuracy(net, test);
|
||||
//float test_acc = 0;
|
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
||||
/*printf("%f %f %f %f %f\n", mean_array(get_network_output_layer(net,0), 100),
|
||||
mean_array(get_network_output_layer(net,1), 100),
|
||||
mean_array(get_network_output_layer(net,2), 100),
|
||||
mean_array(get_network_output_layer(net,3), 100),
|
||||
mean_array(get_network_output_layer(net,4), 100));
|
||||
*/
|
||||
//save_network(net, "cfg/nist_final2.cfg");
|
||||
|
||||
//printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
|
||||
//end = clock();
|
||||
//printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
||||
//start=end;
|
||||
//lr *= .5;
|
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
|
||||
}
|
||||
//save_network(net, "cfg/nist_basic_trained.cfg");
|
||||
}
|
||||
|
||||
void test_ensemble()
|
||||
@ -1052,6 +1033,7 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
if(0==strcmp(argv[1], "train")) train_imagenet();
|
||||
else if(0==strcmp(argv[1], "asirra")) train_asirra();
|
||||
else if(0==strcmp(argv[1], "nist")) train_nist();
|
||||
else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
|
||||
else if(0==strcmp(argv[1], "test_correct")) test_gpu_net();
|
||||
else if(0==strcmp(argv[1], "test")) test_imagenet();
|
||||
|
@ -82,7 +82,7 @@ void col2im_ongpu(cl_mem data_col, int batch,
|
||||
|
||||
size_t global_size = channels*height*width*batch;
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0,
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0,
|
||||
&global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
@ -9,7 +9,6 @@
|
||||
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
int i;
|
||||
connected_layer *layer = calloc(1, sizeof(connected_layer));
|
||||
|
||||
@ -51,6 +50,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
return layer;
|
||||
}
|
||||
|
||||
|
@ -304,7 +304,7 @@ void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
|
||||
|
||||
const size_t global_size[] = {layer.n};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
@ -338,7 +338,7 @@ void bias_output_gpu(const convolutional_layer layer)
|
||||
|
||||
const size_t global_size[] = {layer.n*size, layer.batch};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
@ -400,7 +400,6 @@ void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl
|
||||
|
||||
gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
|
||||
}
|
||||
//cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch);
|
||||
|
||||
if(delta_cl){
|
||||
m = layer.size*layer.size*layer.c;
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "mini_blas.h"
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
@ -36,11 +37,12 @@ void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth)
|
||||
{
|
||||
if (!truth) return;
|
||||
|
||||
|
||||
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1);
|
||||
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1);
|
||||
|
||||
cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs);
|
||||
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
|
||||
//printf("%f\n", *layer.output);
|
||||
}
|
||||
|
||||
void backward_cost_layer_gpu(const cost_layer layer, cl_mem input, cl_mem delta)
|
||||
|
@ -19,6 +19,12 @@ list *get_paths(char *filename)
|
||||
return lines;
|
||||
}
|
||||
|
||||
void fill_truth_det(char *path, float *truth)
|
||||
{
|
||||
find_replace(path, "imgs", "det");
|
||||
find_replace(path, ".JPEG", ".txt");
|
||||
}
|
||||
|
||||
void fill_truth(char *path, char **labels, int k, float *truth)
|
||||
{
|
||||
int i;
|
||||
@ -83,7 +89,6 @@ void free_data(data d)
|
||||
|
||||
data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w)
|
||||
{
|
||||
clock_t time = clock();
|
||||
list *plist = get_paths(filename);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int start = part*plist->size/total;
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "dropout_layer.h"
|
||||
#include "stdlib.h"
|
||||
#include "stdio.h"
|
||||
#include "utils.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
|
||||
{
|
||||
@ -9,6 +10,10 @@ dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
|
||||
layer->probability = probability;
|
||||
layer->inputs = inputs;
|
||||
layer->batch = batch;
|
||||
#ifdef GPU
|
||||
layer->rand = calloc(inputs*batch, sizeof(float));
|
||||
layer->rand_cl = cl_make_array(layer->rand, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
|
||||
@ -16,7 +21,7 @@ void forward_dropout_layer(dropout_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch * layer.inputs; ++i){
|
||||
if((float)rand()/RAND_MAX < layer.probability) input[i] = 0;
|
||||
if(rand_uniform() < layer.probability) input[i] = 0;
|
||||
else input[i] /= (1-layer.probability);
|
||||
}
|
||||
}
|
||||
@ -24,3 +29,38 @@ void backward_dropout_layer(dropout_layer layer, float *input, float *delta)
|
||||
{
|
||||
// Don't do shit LULZ
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
cl_kernel get_dropout_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/dropout_layer.cl", "forward", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input)
|
||||
{
|
||||
int j;
|
||||
int size = layer.inputs*layer.batch;
|
||||
for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform();
|
||||
cl_write_array(layer.rand_cl, layer.rand, layer.inputs*layer.batch);
|
||||
|
||||
cl_kernel kernel = get_dropout_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {size};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
#endif
|
||||
|
@ -1,15 +1,23 @@
|
||||
#ifndef DROPOUT_LAYER_H
|
||||
#define DROPOUT_LAYER_H
|
||||
#include "opencl.h"
|
||||
|
||||
typedef struct{
|
||||
int batch;
|
||||
int inputs;
|
||||
float probability;
|
||||
#ifdef GPU
|
||||
float *rand;
|
||||
cl_mem rand_cl;
|
||||
#endif
|
||||
} dropout_layer;
|
||||
|
||||
dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
|
||||
|
||||
void forward_dropout_layer(dropout_layer layer, float *input);
|
||||
void backward_dropout_layer(dropout_layer layer, float *input, float *delta);
|
||||
#ifdef GPU
|
||||
void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -18,6 +18,7 @@ void forward_freeweight_layer(freeweight_layer layer, float *input)
|
||||
input[i] *= 2.*((float)rand()/RAND_MAX);
|
||||
}
|
||||
}
|
||||
|
||||
void backward_freeweight_layer(freeweight_layer layer, float *input, float *delta)
|
||||
{
|
||||
// Don't do shit LULZ
|
||||
|
@ -214,7 +214,7 @@ void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
const size_t global_size[] = {ceil((float)N/BLOCK)*BLOCK, ceil((float)M/BLOCK)*BLOCK};
|
||||
const size_t local_size[] = {BLOCK, BLOCK};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
#endif
|
||||
}
|
||||
@ -368,6 +368,7 @@ void test_gpu_blas()
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
*/
|
||||
time_ongpu(0,0,512,256,1152);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
@ -377,6 +378,7 @@ void test_gpu_blas()
|
||||
time_ongpu(1,0,4096,1200,128);
|
||||
time_ongpu(1,0,1200,128,4096);
|
||||
|
||||
test_gpu_accuracy(0,0,512,256,1152);
|
||||
test_gpu_accuracy(0,0,131,4093,1199);
|
||||
test_gpu_accuracy(0,1,131,4093,1199);
|
||||
test_gpu_accuracy(1,0,131,4093,1199);
|
||||
|
@ -106,7 +106,7 @@ void im2col_ongpu(cl_mem data_im, int batch,
|
||||
|
||||
size_t global_size = batch*channels_col*height_col*width_col;
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0,
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0,
|
||||
&global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
@ -132,7 +132,7 @@ void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input)
|
||||
|
||||
const size_t global_size[] = {h*w*c*layer.batch};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
@ -166,7 +166,7 @@ void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta)
|
||||
|
||||
const size_t global_size[] = {layer.h*layer.w*layer.c*layer.batch};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
|
@ -53,6 +53,7 @@ void time_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
|
||||
void test_blas()
|
||||
{
|
||||
|
||||
time_random_matrix(0,0,100,100,100);
|
||||
time_random_matrix(1,0,100,100,100);
|
||||
time_random_matrix(0,1,100,100,100);
|
||||
|
@ -476,25 +476,11 @@ void visualize_network(network net)
|
||||
}
|
||||
}
|
||||
|
||||
void top_predictions(network net, int n, int *index)
|
||||
void top_predictions(network net, int k, int *index)
|
||||
{
|
||||
int i,j;
|
||||
int k = get_network_output_size(net);
|
||||
int size = get_network_output_size(net);
|
||||
float *out = get_network_output(net);
|
||||
float thresh = FLT_MAX;
|
||||
for(i = 0; i < n; ++i){
|
||||
float max = -FLT_MAX;
|
||||
int max_i = -1;
|
||||
for(j = 0; j < k; ++j){
|
||||
float val = out[j];
|
||||
if(val > max && val < thresh){
|
||||
max = val;
|
||||
max_i = j;
|
||||
}
|
||||
}
|
||||
index[i] = max_i;
|
||||
thresh = max;
|
||||
}
|
||||
top_k(out, size, k, index);
|
||||
}
|
||||
|
||||
|
||||
|
@ -22,7 +22,9 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
{
|
||||
//printf("start\n");
|
||||
int i;
|
||||
// printf("Truth: %f\n", cl_checksum(truth, 1000*net.batch));
|
||||
for(i = 0; i < net.n; ++i){
|
||||
//printf("Truth %i: %f\n", i, cl_checksum(truth, 1000*net.batch));
|
||||
//clock_t time = clock();
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
@ -48,6 +50,11 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
forward_softmax_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
if(!train) continue;
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
forward_dropout_layer_gpu(layer, input);
|
||||
}
|
||||
//printf("%d %f\n", i, sec(clock()-time));
|
||||
/*
|
||||
else if(net.types[i] == CROP){
|
||||
@ -134,6 +141,8 @@ cl_mem get_network_output_cl_layer(network net, int i)
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
return get_network_output_cl_layer(net, i-1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -155,6 +164,8 @@ cl_mem get_network_delta_cl_layer(network net, int i)
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
return get_network_delta_cl_layer(net, i-1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -173,14 +184,18 @@ float train_network_datum_gpu(network net, float *x, float *y)
|
||||
}
|
||||
//printf("trans %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
|
||||
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
|
||||
|
||||
//printf("forw %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
backward_network_gpu(net, *net.input_cl);
|
||||
//printf("back %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
|
||||
update_network_gpu(net);
|
||||
float error = get_network_cost(net);
|
||||
|
||||
//printf("updt %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
return error;
|
||||
|
24
src/opencl.c
24
src/opencl.c
@ -11,14 +11,16 @@
|
||||
|
||||
#include "opencl.h"
|
||||
#include "utils.h"
|
||||
#include "activations.h"
|
||||
|
||||
cl_info cl = {0};
|
||||
|
||||
void check_error(cl_info info)
|
||||
{
|
||||
clFinish(cl.queue);
|
||||
// clFinish(cl.queue);
|
||||
if (info.error != CL_SUCCESS) {
|
||||
printf("\n Error number %d", info.error);
|
||||
abort();
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
@ -72,6 +74,8 @@ cl_info cl_init()
|
||||
printf(" DEVICE_MAX_CLOCK_FREQUENCY = %u\n", (unsigned int)buf_uint);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(buf_ulong), &buf_ulong, NULL);
|
||||
printf(" DEVICE_GLOBAL_MEM_SIZE = %llu\n", (unsigned long long)buf_ulong);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(buf_ulong), &buf_ulong, NULL);
|
||||
printf(" DEVICE_MAX_MEM_ALLOC_SIZE = %llu\n", (unsigned long long)buf_ulong);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(buf_ulong), &buf_ulong, NULL);
|
||||
printf(" DEVICE_MAX_WORK_GROUP_SIZE = %llu\n", (unsigned long long)buf_ulong);
|
||||
cl_uint items;
|
||||
@ -151,21 +155,31 @@ cl_kernel get_kernel(char *filename, char *kernelname, char *options)
|
||||
void cl_read_array(cl_mem mem, float *x, int n)
|
||||
{
|
||||
cl_setup();
|
||||
clEnqueueReadBuffer(cl.queue, mem, CL_TRUE, 0, sizeof(float)*n,x,0,0,0);
|
||||
cl.error = clEnqueueReadBuffer(cl.queue, mem, CL_TRUE, 0, sizeof(float)*n,x,0,0,0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
float cl_checksum(cl_mem mem, int n)
|
||||
{
|
||||
|
||||
float *x = calloc(n, sizeof(float));
|
||||
cl_read_array(mem, x, n);
|
||||
float sum = sum_array(x, n);
|
||||
free(x);
|
||||
return sum;
|
||||
}
|
||||
|
||||
void cl_write_array(cl_mem mem, float *x, int n)
|
||||
{
|
||||
cl_setup();
|
||||
clEnqueueWriteBuffer(cl.queue, mem, CL_TRUE, 0,sizeof(float)*n,x,0,0,0);
|
||||
cl.error = clEnqueueWriteBuffer(cl.queue, mem, CL_TRUE, 0,sizeof(float)*n,x,0,0,0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void cl_copy_array(cl_mem src, cl_mem dst, int n)
|
||||
{
|
||||
cl_setup();
|
||||
clEnqueueCopyBuffer(cl.queue, src, dst, 0, 0, sizeof(float)*n,0,0,0);
|
||||
cl.error = clEnqueueCopyBuffer(cl.queue, src, dst, 0, 0, sizeof(float)*n,0,0,0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
@ -179,6 +193,7 @@ cl_mem cl_sub_array(cl_mem src, int offset, int size)
|
||||
return sub;
|
||||
}
|
||||
|
||||
|
||||
cl_mem cl_make_array(float *x, int n)
|
||||
{
|
||||
cl_setup();
|
||||
@ -186,6 +201,7 @@ cl_mem cl_make_array(float *x, int n)
|
||||
CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
|
||||
sizeof(float)*n, x, &cl.error);
|
||||
check_error(cl);
|
||||
activate_array_ongpu(mem, n, LINEAR);
|
||||
return mem;
|
||||
}
|
||||
|
||||
|
@ -28,5 +28,6 @@ cl_mem cl_make_array(float *x, int n);
|
||||
cl_mem cl_make_int_array(int *x, int n);
|
||||
void cl_copy_array(cl_mem src, cl_mem dst, int n);
|
||||
cl_mem cl_sub_array(cl_mem src, int offset, int size);
|
||||
float cl_checksum(cl_mem mem, int n);
|
||||
#endif
|
||||
#endif
|
||||
|
@ -81,7 +81,7 @@ void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
|
||||
|
||||
const size_t global_size[] = {layer.batch};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
/*
|
||||
|
39
src/utils.c
39
src/utils.c
@ -1,14 +1,51 @@
|
||||
#include "utils.h"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
char *find_replace(char *str, char *orig, char *rep)
|
||||
{
|
||||
static char buffer[4096];
|
||||
char *p;
|
||||
|
||||
if(!(p = strstr(str, orig))) // Is 'orig' even in 'str'?
|
||||
return str;
|
||||
|
||||
strncpy(buffer, str, p-str); // Copy characters from 'str' start to 'orig' st$
|
||||
buffer[p-str] = '\0';
|
||||
|
||||
sprintf(buffer+(p-str), "%s%s", rep, p+strlen(orig));
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
float sec(clock_t clocks)
|
||||
{
|
||||
return (float)clocks/CLOCKS_PER_SEC;
|
||||
}
|
||||
|
||||
void top_k(float *a, int n, int k, int *index)
|
||||
{
|
||||
int i,j;
|
||||
float thresh = FLT_MAX;
|
||||
for(i = 0; i < k; ++i){
|
||||
float max = -FLT_MAX;
|
||||
int max_i = -1;
|
||||
for(j = 0; j < n; ++j){
|
||||
float val = a[j];
|
||||
if(val > max && val < thresh){
|
||||
max = val;
|
||||
max_i = j;
|
||||
}
|
||||
}
|
||||
index[i] = max_i;
|
||||
thresh = max;
|
||||
}
|
||||
}
|
||||
|
||||
void error(char *s)
|
||||
{
|
||||
fprintf(stderr, "Error: %s\n", s);
|
||||
|
@ -4,11 +4,13 @@
|
||||
#include <time.h>
|
||||
#include "list.h"
|
||||
|
||||
char *find_replace(char *str, char *orig, char *rep);
|
||||
void error(char *s);
|
||||
void malloc_error();
|
||||
void file_error(char *s);
|
||||
void strip(char *s);
|
||||
void strip_char(char *s, char bad);
|
||||
void top_k(float *a, int n, int k, int *index);
|
||||
list *split_str(char *s, char delim);
|
||||
char *fgetl(FILE *fp);
|
||||
list *parse_csv_line(char *line);
|
||||
|
Loading…
Reference in New Issue
Block a user