mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
204 lines
5.8 KiB
C
204 lines
5.8 KiB
C
#include "deconvolutional_layer.h"
|
|
#include "convolutional_layer.h"
|
|
#include "utils.h"
|
|
#include "im2col.h"
|
|
#include "col2im.h"
|
|
#include "blas.h"
|
|
#include "gemm.h"
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
|
|
int deconvolutional_out_height(deconvolutional_layer l)
|
|
{
|
|
int h = l.stride*(l.h - 1) + l.size;
|
|
return h;
|
|
}
|
|
|
|
int deconvolutional_out_width(deconvolutional_layer l)
|
|
{
|
|
int w = l.stride*(l.w - 1) + l.size;
|
|
return w;
|
|
}
|
|
|
|
int deconvolutional_out_size(deconvolutional_layer l)
|
|
{
|
|
return deconvolutional_out_height(l) * deconvolutional_out_width(l);
|
|
}
|
|
|
|
image get_deconvolutional_image(deconvolutional_layer l)
|
|
{
|
|
int h,w,c;
|
|
h = deconvolutional_out_height(l);
|
|
w = deconvolutional_out_width(l);
|
|
c = l.n;
|
|
return float_to_image(w,h,c,l.output);
|
|
}
|
|
|
|
image get_deconvolutional_delta(deconvolutional_layer l)
|
|
{
|
|
int h,w,c;
|
|
h = deconvolutional_out_height(l);
|
|
w = deconvolutional_out_width(l);
|
|
c = l.n;
|
|
return float_to_image(w,h,c,l.delta);
|
|
}
|
|
|
|
deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
|
{
|
|
int i;
|
|
deconvolutional_layer l = {0};
|
|
l.type = DECONVOLUTIONAL;
|
|
|
|
l.h = h;
|
|
l.w = w;
|
|
l.c = c;
|
|
l.n = n;
|
|
l.batch = batch;
|
|
l.stride = stride;
|
|
l.size = size;
|
|
|
|
l.filters = calloc(c*n*size*size, sizeof(float));
|
|
l.filter_updates = calloc(c*n*size*size, sizeof(float));
|
|
|
|
l.biases = calloc(n, sizeof(float));
|
|
l.bias_updates = calloc(n, sizeof(float));
|
|
float scale = 1./sqrt(size*size*c);
|
|
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_normal();
|
|
for(i = 0; i < n; ++i){
|
|
l.biases[i] = scale;
|
|
}
|
|
int out_h = deconvolutional_out_height(l);
|
|
int out_w = deconvolutional_out_width(l);
|
|
|
|
l.out_h = out_h;
|
|
l.out_w = out_w;
|
|
l.out_c = n;
|
|
l.outputs = l.out_w * l.out_h * l.out_c;
|
|
l.inputs = l.w * l.h * l.c;
|
|
|
|
l.col_image = calloc(h*w*size*size*n, sizeof(float));
|
|
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
|
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
|
|
|
#ifdef GPU
|
|
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
|
|
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
|
|
|
|
l.biases_gpu = cuda_make_array(l.biases, n);
|
|
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
|
|
|
|
l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n);
|
|
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
|
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
|
#endif
|
|
|
|
l.activation = activation;
|
|
|
|
fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
|
|
|
return l;
|
|
}
|
|
|
|
void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w)
|
|
{
|
|
l->h = h;
|
|
l->w = w;
|
|
int out_h = deconvolutional_out_height(*l);
|
|
int out_w = deconvolutional_out_width(*l);
|
|
|
|
l->col_image = realloc(l->col_image,
|
|
out_h*out_w*l->size*l->size*l->c*sizeof(float));
|
|
l->output = realloc(l->output,
|
|
l->batch*out_h * out_w * l->n*sizeof(float));
|
|
l->delta = realloc(l->delta,
|
|
l->batch*out_h * out_w * l->n*sizeof(float));
|
|
#ifdef GPU
|
|
cuda_free(l->col_image_gpu);
|
|
cuda_free(l->delta_gpu);
|
|
cuda_free(l->output_gpu);
|
|
|
|
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
|
|
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
|
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
|
#endif
|
|
}
|
|
|
|
void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state)
|
|
{
|
|
int i;
|
|
int out_h = deconvolutional_out_height(l);
|
|
int out_w = deconvolutional_out_width(l);
|
|
int size = out_h*out_w;
|
|
|
|
int m = l.size*l.size*l.n;
|
|
int n = l.h*l.w;
|
|
int k = l.c;
|
|
|
|
bias_output(l.output, l.biases, l.batch, l.n, size);
|
|
|
|
for(i = 0; i < l.batch; ++i){
|
|
float *a = l.filters;
|
|
float *b = state.input + i*l.c*l.h*l.w;
|
|
float *c = l.col_image;
|
|
|
|
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
|
|
|
col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
|
|
}
|
|
activate_array(l.output, l.batch*l.n*size, l.activation);
|
|
}
|
|
|
|
void backward_deconvolutional_layer(deconvolutional_layer l, network_state state)
|
|
{
|
|
float alpha = 1./l.batch;
|
|
int out_h = deconvolutional_out_height(l);
|
|
int out_w = deconvolutional_out_width(l);
|
|
int size = out_h*out_w;
|
|
int i;
|
|
|
|
gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta);
|
|
backward_bias(l.bias_updates, l.delta, l.batch, l.n, size);
|
|
|
|
if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
|
|
|
|
for(i = 0; i < l.batch; ++i){
|
|
int m = l.c;
|
|
int n = l.size*l.size*l.n;
|
|
int k = l.h*l.w;
|
|
|
|
float *a = state.input + i*m*n;
|
|
float *b = l.col_image;
|
|
float *c = l.filter_updates;
|
|
|
|
im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w,
|
|
l.size, l.stride, 0, b);
|
|
gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
|
|
|
|
if(state.delta){
|
|
int m = l.c;
|
|
int n = l.h*l.w;
|
|
int k = l.size*l.size*l.n;
|
|
|
|
float *a = l.filters;
|
|
float *b = l.col_image;
|
|
float *c = state.delta + i*n*m;
|
|
|
|
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
|
}
|
|
}
|
|
}
|
|
|
|
void update_deconvolutional_layer(deconvolutional_layer l, float learning_rate, float momentum, float decay)
|
|
{
|
|
int size = l.size*l.size*l.c*l.n;
|
|
axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1);
|
|
scal_cpu(l.n, momentum, l.bias_updates, 1);
|
|
|
|
axpy_cpu(size, -decay, l.filters, 1, l.filter_updates, 1);
|
|
axpy_cpu(size, learning_rate, l.filter_updates, 1, l.filters, 1);
|
|
scal_cpu(size, momentum, l.filter_updates, 1);
|
|
}
|
|
|
|
|
|
|