1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/builtin/map.v

449 lines
12 KiB
V
Raw Normal View History

2020-02-03 07:00:36 +03:00
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
2019-06-23 05:21:30 +03:00
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
2020-01-24 22:13:59 +03:00
2019-06-22 21:20:28 +03:00
module builtin
2020-02-20 22:04:06 +03:00
import (
strings
hash.wyhash
)
2020-01-24 22:13:59 +03:00
2020-03-19 08:52:34 +03:00
/*
2020-03-19 09:05:20 +03:00
This is a very fast hashmap implementation. It has several properties that in
combination makes it very fast. Here is a short explanation of each property.
2020-03-19 08:52:34 +03:00
After reading this you should have a basic understanding of how it works:
1. |Hash-function (Wyhash)|. Wyhash is the fastest hash-function passing SMHash-
er, so it was an easy choice.
2020-03-19 09:05:20 +03:00
2. |Open addressing (Robin Hood Hashing)|. With this method a hash collision is
2020-03-19 08:52:34 +03:00
resolved by probing. As opposed to linear probing, Robin Hood hashing has a sim-
ple but clever twist: As new keys are inserted, old keys are shifted around in a
way such that all keys stay reasonably close to the slot they originally hash to.
3. |Memory layout|. Key-value pairs are stored in a `DenseArray`, with an avera-
ge of roughly 6.25% unused memory, as opposed to most other dynamic array imple-
2020-03-19 09:05:20 +03:00
mentations with a growth factor of 1.5 or 2. The key-values keep their index in
the array - they are not probed. Instead, this implementation uses another array
"metas" storing "metas" (meta-data). Each Key-value has a corresponding meta. A
2020-03-19 08:52:34 +03:00
meta stores a reference to its key-value, and its index in "metas" is determined
2020-03-19 09:05:20 +03:00
by the hash of the key and probing. A meta also stores bits from the hash (for
faster rehashing etc.) and how far away it is from the index it was originally
2020-03-19 08:52:34 +03:00
hashed to (probe_count). probe_count is 0 if empty, 1 if not probed, 2 if probed
by 1.
meta (64 bit) = kv_index (32 bit) | probe_count (8 bits) | hashbits (24 bits)
metas = [meta, 0, meta, 0, meta, meta, meta, 0, ...]
key_values = [kv, kv, kv, kv, kv, ...]
2020-03-19 09:05:20 +03:00
4. |Power of two size array|. The size of metas is a power of two. This makes it
possible to find a bucket from a hash code you can use hash & (SIZE -1) instead
2020-03-19 08:52:34 +03:00
of abs(hash) % SIZE. Modulo is extremely expensive so using '&' is a big perfor-
mance improvement. The general concern with this is that you only use the lower
bits of the hash and can cause many collisions. This is solved by using very go-
2020-03-19 09:05:20 +03:00
od hash-function.
2020-03-19 08:52:34 +03:00
2020-03-19 09:05:20 +03:00
5. |Extra metas|. The hashmap keeps track of the highest probe_count. The trick
2020-03-19 08:52:34 +03:00
is to allocate extra metas > max(probe_count), so you never have to do any boun-
2020-03-19 09:05:20 +03:00
ds-checking because the extra metas ensures that an element will never go beyond
index the last index.
2020-03-19 08:52:34 +03:00
6. |Cached rehashing|. When the load_factor of the map exceeds the max_load_fac-
tor the size of metas is doubled and all the elements need to be "rehashed" to
2020-03-19 09:05:20 +03:00
find the index in the new array. Instead of rehashing complete, it simply uses
the hashbits stored in the meta.
2020-03-19 08:52:34 +03:00
*/
2020-01-24 22:13:59 +03:00
const (
2020-02-20 22:04:06 +03:00
// Number of bits from the hash stored for each entry
hashbits = 24
// Number of bits from the hash stored for rehasing
cached_hashbits = 16
// Initial log-number of buckets in the hashtable
init_log_capicity = 5
// Initial number of buckets in the hashtable
2020-03-19 08:52:34 +03:00
init_capicity = 1 << init_log_capicity
// Initial max load-factor
init_max_load_factor = 0.8
2020-03-19 09:05:20 +03:00
// Minimum Load-factor.
2020-03-19 08:52:34 +03:00
// Number is picked to make delete O(1) amortized
min_load_factor = 0.3
2020-02-20 22:04:06 +03:00
// Initial range cap
2020-03-19 08:52:34 +03:00
init_cap = init_capicity - 2
// Used for incrementing `extra_metas` when max
// probe count is too high, to avoid overflow
extra_metas_inc = 4
2020-02-20 22:04:06 +03:00
// Bitmask to select all the hashbits
hash_mask = u32(0x00FFFFFF)
// Used for incrementing the probe-count
2020-03-19 09:05:20 +03:00
probe_inc = u32(0x01000000)
2020-02-20 22:04:06 +03:00
// Bitmask for maximum probe count
max_probe = u32(0xFF000000)
2020-01-24 22:13:59 +03:00
)
2020-02-20 22:04:06 +03:00
struct KeyValue {
key string
2020-01-24 22:13:59 +03:00
mut:
2020-02-20 22:04:06 +03:00
value voidptr
2019-06-22 21:20:28 +03:00
}
// Dynamic array with very low growth factor
struct DenseArray {
mut:
data &KeyValue
cap u32
size u32
2020-03-19 08:52:34 +03:00
deletes u32
}
[inline]
fn new_dense_array() DenseArray {
unsafe {
return DenseArray {
data: &KeyValue(malloc(8 * sizeof(KeyValue)))
cap: 8
size: 0
deletes: 0
}
}
}
// Push element to array and return index
// The growth-factor is roughly 12.5 `(x + (x >> 3))`
[inline]
fn (d mut DenseArray) push(kv KeyValue) u32 {
if d.cap == d.size {
d.cap += d.cap >> 3
d.data = &KeyValue(C.realloc(d.data, sizeof(KeyValue) * d.cap))
}
push_index := d.size
d.data[push_index] = kv
d.size++
return push_index
}
// Move all zeros to the end of the array
// and resize array
fn (d mut DenseArray) zeros_to_end() {
mut count := u32(0)
for i in 0..d.size {
if d.data[i].key.str != 0 {
tmp := d.data[count]
d.data[count] = d.data[i]
d.data[i] = tmp
count++
}
}
count++
d.size = count
d.cap = if count < 8 {8} else {count}
d.data = &KeyValue(C.realloc(d.data, sizeof(KeyValue) * d.cap))
}
pub struct map {
// Byte size of value
value_bytes int
mut:
// Index of the highest index in the hashtable
cap u32
// Number of cached hashbits left for rehasing
window byte
// Used for right-shifting out used hashbits
shift byte
// Pointer to Key-value memory
key_values DenseArray
// Pointer to meta-data
metas &u32
// Measure that decides when to increase the capacity
max_load_factor f32
// Extra metas that allows for no ranging when incrementing
// index in the hashmap
extra_metas u32
pub mut:
// Number of key-values currently in the hashmap
size int
}
2020-02-20 22:04:06 +03:00
fn new_map(n, value_bytes int) map {
return map{
2020-01-24 22:13:59 +03:00
value_bytes: value_bytes
2020-03-19 08:52:34 +03:00
cap: init_cap
window: cached_hashbits
2020-03-19 08:52:34 +03:00
shift: init_log_capicity
key_values: new_dense_array()
metas: &u32(vcalloc(sizeof(u32) * (init_capicity + extra_metas_inc)))
max_load_factor: init_max_load_factor
extra_metas: extra_metas_inc
2020-01-24 22:13:59 +03:00
size: 0
2019-06-22 21:20:28 +03:00
}
}
2020-01-24 22:13:59 +03:00
fn new_map_init(n, value_bytes int, keys &string, values voidptr) map {
mut out := new_map(n, value_bytes)
for i in 0 .. n {
out.set(keys[i], values + i * value_bytes)
2019-08-03 10:44:08 +03:00
}
2020-01-24 22:13:59 +03:00
return out
2019-08-29 01:52:32 +03:00
}
2019-08-03 10:44:08 +03:00
2020-03-19 08:52:34 +03:00
[inline]
fn (m map) key_to_index(key string) (u64, u32) {
2020-02-20 22:04:06 +03:00
hash := wyhash.wyhash_c(key.str, u64(key.len), 0)
2020-03-19 08:52:34 +03:00
index := hash & m.cap
meta := u32(((hash>>m.shift) & hash_mask) | probe_inc)
return index, meta
}
[inline]
fn meta_less(metas &u32, i u64, m u32) (u64, u32){
mut index := i
mut meta := m
for meta < metas[index] {
index += 2
meta += probe_inc
2020-02-20 22:04:06 +03:00
}
2020-03-19 08:52:34 +03:00
return index, meta
}
[inline]
fn (m mut map) meta_greater(ms &u32, i u64, me u32, kvi u32) &u32 {
mut metas := ms
2020-03-19 09:05:20 +03:00
mut meta := me
2020-03-19 08:52:34 +03:00
mut index := i
mut kv_index := kvi
for metas[index] != 0 {
if meta > metas[index] {
tmp_meta := metas[index]
metas[index] = meta
meta = tmp_meta
tmp_index := metas[index + 1]
metas[index + 1] = kv_index
kv_index = tmp_index
2020-01-24 22:13:59 +03:00
}
2020-03-19 08:52:34 +03:00
index += 2
meta += probe_inc
2020-02-20 22:04:06 +03:00
}
2020-03-19 08:52:34 +03:00
metas[index] = meta
metas[index + 1] = kv_index
probe_count := (meta >> hashbits) - 1
if (probe_count << 1) == m.extra_metas {
m.extra_metas += extra_metas_inc
mem_size := (m.cap + 2 + m.extra_metas)
2020-03-19 09:05:20 +03:00
metas = &u32(C.realloc(metas, sizeof(u32) * mem_size))
C.memset(metas + mem_size - extra_metas_inc, 0, sizeof(u32) * extra_metas_inc)
2020-03-19 08:52:34 +03:00
// Should almost never happen
if probe_count == 252 {
panic("Probe overflow")
}
2020-03-19 09:05:20 +03:00
}
2020-03-19 08:52:34 +03:00
return metas
}
fn (m mut map) set(key string, value voidptr) {
load_factor := f32(m.size << 1) / f32(m.cap)
if load_factor > m.max_load_factor {
m.expand()
2020-02-20 22:30:34 +03:00
}
2020-03-19 08:52:34 +03:00
mut index, mut meta := m.key_to_index(key)
index, meta = meta_less(m.metas, index, meta)
// While we might have a match
for meta == m.metas[index] {
kv_index := m.metas[index + 1]
if key == m.key_values.data[kv_index].key {
C.memcpy(m.key_values.data[kv_index].value, value, m.value_bytes)
return
}
2020-03-19 08:52:34 +03:00
index += 2
meta += probe_inc
}
2020-03-19 08:52:34 +03:00
// Match not possible anymore
kv := KeyValue{
2020-03-19 09:05:20 +03:00
key: key
2020-03-19 08:52:34 +03:00
value: malloc(m.value_bytes)
}
2020-03-19 08:52:34 +03:00
C.memcpy(kv.value, value, m.value_bytes)
kv_index := m.key_values.push(kv)
m.metas = m.meta_greater(m.metas, index, meta, kv_index)
2020-02-20 22:04:06 +03:00
m.size++
}
2020-03-19 08:52:34 +03:00
// Doubles the size of the hashmap
2020-02-20 22:04:06 +03:00
fn (m mut map) expand() {
2020-03-19 08:52:34 +03:00
old_cap := m.cap
m.cap = ((m.cap + 2)<<1) - 2
// Check if any hashbits are left
2020-02-20 22:04:06 +03:00
if m.window == 0 {
m.shift += cached_hashbits
2020-03-19 08:52:34 +03:00
m.rehash()
2020-02-20 22:04:06 +03:00
m.window = cached_hashbits
2019-06-22 21:20:28 +03:00
}
2020-02-20 22:04:06 +03:00
else {
2020-03-19 08:52:34 +03:00
m.cached_rehash(old_cap)
2019-08-29 01:52:32 +03:00
}
2020-02-20 22:04:06 +03:00
m.window--
}
2020-03-19 08:52:34 +03:00
fn (m mut map) rehash() {
meta_bytes := sizeof(u32) * (m.cap + 2 + m.extra_metas)
m.metas = &u32(C.realloc(m.metas, meta_bytes))
C.memset(m.metas, 0, meta_bytes)
for i := u32(0); i < m.key_values.size; i++ {
if m.key_values.data[i].key.str == 0 {
continue
}
2020-03-19 08:52:34 +03:00
kv := m.key_values.data[i]
mut index, mut meta := m.key_to_index(kv.key)
index, meta = meta_less(m.metas, index, meta)
m.metas = m.meta_greater(m.metas, index, meta, i)
}
2019-08-29 01:52:32 +03:00
}
2020-03-19 08:52:34 +03:00
fn (m mut map) cached_rehash(old_cap u32) {
mut new_meta := &u32(vcalloc(sizeof(u32) * (m.cap + 2 + m.extra_metas)))
old_extra_metas := m.extra_metas
for i := 0; i <= old_cap + old_extra_metas; i += 2 {
if m.metas[i] == 0 {
continue
}
2020-03-19 08:52:34 +03:00
old_meta := m.metas[i]
old_probe_count := u64((old_meta>>hashbits) - 1) << 1
old_index := (i - old_probe_count) & (m.cap >> 1)
mut index := u64(old_index) | (old_meta << m.shift) & m.cap
mut meta := (old_meta & hash_mask) | probe_inc
index, meta = meta_less(new_meta, index, meta)
kv_index := m.metas[i + 1]
new_meta = m.meta_greater(new_meta, index, meta, kv_index)
}
2020-02-20 22:04:06 +03:00
unsafe{
2020-03-19 08:52:34 +03:00
free(m.metas)
2020-01-24 22:13:59 +03:00
}
2020-03-19 08:52:34 +03:00
m.metas = new_meta
}
2020-03-19 08:52:34 +03:00
[inline]
2020-02-20 22:04:06 +03:00
fn (m map) get(key string, out voidptr) bool {
2020-03-19 08:52:34 +03:00
mut index, mut meta := m.key_to_index(key)
index, meta = meta_less(m.metas, index, meta)
for meta == m.metas[index] {
kv_index := m.metas[index + 1]
if key == m.key_values.data[kv_index].key {
C.memcpy(out, m.key_values.data[kv_index].value, m.value_bytes)
2020-02-20 22:04:06 +03:00
return true
}
2020-03-19 08:52:34 +03:00
index += 2
meta += probe_inc
2020-01-24 22:13:59 +03:00
}
2020-02-20 22:04:06 +03:00
return false
}
2020-03-19 08:52:34 +03:00
[inline]
fn (m map) get2(key string) voidptr {
mut index, mut meta := m.key_to_index(key)
index, meta = meta_less(m.metas, index, meta)
for meta == m.metas[index] {
kv_index := m.metas[index + 1]
if key == m.key_values.data[kv_index].key {
out := malloc(m.value_bytes)
C.memcpy(out, m.key_values.data[kv_index].value, m.value_bytes)
return out
}
index += 2
meta += probe_inc
}
return voidptr(0)
}
2020-03-19 08:52:34 +03:00
[inline]
2020-02-20 22:04:06 +03:00
fn (m map) exists(key string) bool {
if m.value_bytes == 0 {
return false
}
2020-03-19 08:52:34 +03:00
mut index, mut meta := m.key_to_index(key)
index, meta = meta_less(m.metas, index, meta)
for meta == m.metas[index] {
kv_index := m.metas[index + 1]
if key == m.key_values.data[kv_index].key {
2020-02-20 22:04:06 +03:00
return true
}
2020-03-19 08:52:34 +03:00
index += 2
meta += probe_inc
}
2020-02-20 22:04:06 +03:00
return false
2019-12-30 08:57:56 +03:00
}
2020-03-19 08:52:34 +03:00
pub fn (m mut map) delete(key string) {
mut index, mut meta := m.key_to_index(key)
index, meta = meta_less(m.metas, index, meta)
// Perform backwards shifting
for meta == m.metas[index] {
kv_index := m.metas[index + 1]
if key == m.key_values.data[kv_index].key {
C.memset(&m.key_values.data[kv_index], 0, sizeof(KeyValue))
mut old_index := index
index += 2
mut cur_meta := m.metas[index]
mut cur_index := m.metas[index + 1]
for (cur_meta >> hashbits) > 1 {
m.metas[old_index] = cur_meta - probe_inc
m.metas[old_index + 1] = cur_index
old_index = index
index += 2
cur_meta = m.metas[index]
cur_index = m.metas[index + 1]
}
m.metas[old_index] = 0
m.size--
m.key_values.deletes++
if m.key_values.size <= 32 {return}
if (f32(m.key_values.size) / f32(m.key_values.deletes)) < 1 {
m.key_values.zeros_to_end()
m.rehash()
}
return
}
index += 2
meta += probe_inc
}
}
2020-01-24 22:13:59 +03:00
pub fn (m &map) keys() []string {
mut keys := [''].repeat(m.size)
2020-02-20 22:04:06 +03:00
if m.value_bytes == 0 {
2020-01-24 22:13:59 +03:00
return keys
2019-12-30 08:57:56 +03:00
}
2020-02-20 22:04:06 +03:00
mut j := 0
2020-03-19 08:52:34 +03:00
for i := u32(0); i < m.key_values.size; i++ {
if m.key_values.data[i].key.str == 0 {
continue
2020-02-20 22:04:06 +03:00
}
2020-03-19 08:52:34 +03:00
keys[j] = m.key_values.data[i].key
j++
2020-02-20 22:04:06 +03:00
}
2020-01-24 22:13:59 +03:00
return keys
}
2020-03-19 08:52:34 +03:00
pub fn (m map) free() {
unsafe {
free(m.metas)
free(m.key_values.data)
2020-01-24 22:13:59 +03:00
}
2019-07-23 23:57:06 +03:00
}
pub fn (m map) print() {
2020-02-20 22:04:06 +03:00
println('TODO')
2019-06-22 21:20:28 +03:00
}
pub fn (m map_string) str() string {
2019-07-14 12:01:32 +03:00
if m.size == 0 {
2019-06-22 21:20:28 +03:00
return '{}'
}
mut sb := strings.new_builder(50)
2019-08-29 01:52:32 +03:00
sb.writeln('{')
2020-01-24 22:13:59 +03:00
for key, val in m {
2019-08-29 01:52:32 +03:00
sb.writeln(' "$key" => "$val"')
2019-08-05 05:34:12 +03:00
}
2019-08-29 01:52:32 +03:00
sb.writeln('}')
return sb.str()
2020-03-19 09:05:20 +03:00
}