2017-06-02 06:31:13 +03:00
|
|
|
#include "cost_layer.h"
|
|
|
|
#include "utils.h"
|
|
|
|
#include "cuda.h"
|
|
|
|
#include "blas.h"
|
2014-10-13 11:29:01 +04:00
|
|
|
#include <math.h>
|
2014-11-28 21:38:26 +03:00
|
|
|
#include <string.h>
|
2014-10-13 11:29:01 +04:00
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
2014-11-28 21:38:26 +03:00
|
|
|
COST_TYPE get_cost_type(char *s)
|
|
|
|
{
|
2017-06-18 23:05:37 +03:00
|
|
|
if (strcmp(s, "seg")==0) return SEG;
|
2014-11-28 21:38:26 +03:00
|
|
|
if (strcmp(s, "sse")==0) return SSE;
|
2015-05-07 00:08:16 +03:00
|
|
|
if (strcmp(s, "masked")==0) return MASKED;
|
2016-01-28 23:30:38 +03:00
|
|
|
if (strcmp(s, "smooth")==0) return SMOOTH;
|
2017-03-27 09:42:30 +03:00
|
|
|
if (strcmp(s, "L1")==0) return L1;
|
2016-01-28 23:30:38 +03:00
|
|
|
fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
|
2014-11-28 21:38:26 +03:00
|
|
|
return SSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *get_cost_string(COST_TYPE a)
|
|
|
|
{
|
|
|
|
switch(a){
|
2017-06-18 23:05:37 +03:00
|
|
|
case SEG:
|
|
|
|
return "seg";
|
2014-11-28 21:38:26 +03:00
|
|
|
case SSE:
|
|
|
|
return "sse";
|
2015-05-07 00:08:16 +03:00
|
|
|
case MASKED:
|
|
|
|
return "masked";
|
2016-01-28 23:30:38 +03:00
|
|
|
case SMOOTH:
|
|
|
|
return "smooth";
|
2017-03-27 09:42:30 +03:00
|
|
|
case L1:
|
|
|
|
return "L1";
|
2014-11-28 21:38:26 +03:00
|
|
|
}
|
|
|
|
return "sse";
|
|
|
|
}
|
|
|
|
|
2015-09-05 03:52:44 +03:00
|
|
|
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
|
2014-10-13 11:29:01 +04:00
|
|
|
{
|
2016-11-16 11:15:46 +03:00
|
|
|
fprintf(stderr, "cost %4d\n", inputs);
|
2015-05-11 23:46:49 +03:00
|
|
|
cost_layer l = {0};
|
|
|
|
l.type = COST;
|
|
|
|
|
2015-09-05 03:52:44 +03:00
|
|
|
l.scale = scale;
|
2015-05-11 23:46:49 +03:00
|
|
|
l.batch = batch;
|
|
|
|
l.inputs = inputs;
|
|
|
|
l.outputs = inputs;
|
|
|
|
l.cost_type = cost_type;
|
|
|
|
l.delta = calloc(inputs*batch, sizeof(float));
|
2016-03-01 00:54:12 +03:00
|
|
|
l.output = calloc(inputs*batch, sizeof(float));
|
|
|
|
l.cost = calloc(1, sizeof(float));
|
2016-09-25 09:12:54 +03:00
|
|
|
|
|
|
|
l.forward = forward_cost_layer;
|
|
|
|
l.backward = backward_cost_layer;
|
2014-10-13 11:29:01 +04:00
|
|
|
#ifdef GPU
|
2016-09-25 09:12:54 +03:00
|
|
|
l.forward_gpu = forward_cost_layer_gpu;
|
|
|
|
l.backward_gpu = backward_cost_layer_gpu;
|
|
|
|
|
2016-03-01 00:54:12 +03:00
|
|
|
l.delta_gpu = cuda_make_array(l.output, inputs*batch);
|
|
|
|
l.output_gpu = cuda_make_array(l.delta, inputs*batch);
|
2014-10-13 11:29:01 +04:00
|
|
|
#endif
|
2015-05-11 23:46:49 +03:00
|
|
|
return l;
|
2014-10-13 11:29:01 +04:00
|
|
|
}
|
|
|
|
|
2015-09-24 00:13:43 +03:00
|
|
|
void resize_cost_layer(cost_layer *l, int inputs)
|
|
|
|
{
|
|
|
|
l->inputs = inputs;
|
|
|
|
l->outputs = inputs;
|
|
|
|
l->delta = realloc(l->delta, inputs*l->batch*sizeof(float));
|
2016-03-01 00:54:12 +03:00
|
|
|
l->output = realloc(l->output, inputs*l->batch*sizeof(float));
|
2015-09-24 00:13:43 +03:00
|
|
|
#ifdef GPU
|
|
|
|
cuda_free(l->delta_gpu);
|
2016-03-01 00:54:12 +03:00
|
|
|
cuda_free(l->output_gpu);
|
2015-09-24 00:13:43 +03:00
|
|
|
l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
|
2016-03-01 00:54:12 +03:00
|
|
|
l->output_gpu = cuda_make_array(l->output, inputs*l->batch);
|
2015-09-24 00:13:43 +03:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2017-04-10 05:56:42 +03:00
|
|
|
void forward_cost_layer(cost_layer l, network net)
|
2014-10-13 11:29:01 +04:00
|
|
|
{
|
2017-04-10 05:56:42 +03:00
|
|
|
if (!net.truth) return;
|
2015-05-11 23:46:49 +03:00
|
|
|
if(l.cost_type == MASKED){
|
2015-05-07 00:08:16 +03:00
|
|
|
int i;
|
2015-05-11 23:46:49 +03:00
|
|
|
for(i = 0; i < l.batch*l.inputs; ++i){
|
2017-04-10 05:56:42 +03:00
|
|
|
if(net.truth[i] == SECRET_NUM) net.input[i] = SECRET_NUM;
|
2015-05-07 00:08:16 +03:00
|
|
|
}
|
|
|
|
}
|
2016-01-28 23:30:38 +03:00
|
|
|
if(l.cost_type == SMOOTH){
|
2017-04-10 05:56:42 +03:00
|
|
|
smooth_l1_cpu(l.batch*l.inputs, net.input, net.truth, l.delta, l.output);
|
2017-03-27 09:42:30 +03:00
|
|
|
}else if(l.cost_type == L1){
|
2017-04-10 05:56:42 +03:00
|
|
|
l1_cpu(l.batch*l.inputs, net.input, net.truth, l.delta, l.output);
|
2016-01-28 23:30:38 +03:00
|
|
|
} else {
|
2017-04-10 05:56:42 +03:00
|
|
|
l2_cpu(l.batch*l.inputs, net.input, net.truth, l.delta, l.output);
|
2016-01-28 23:30:38 +03:00
|
|
|
}
|
2016-03-01 00:54:12 +03:00
|
|
|
l.cost[0] = sum_array(l.output, l.batch*l.inputs);
|
2014-10-13 11:29:01 +04:00
|
|
|
}
|
|
|
|
|
2017-04-10 05:56:42 +03:00
|
|
|
void backward_cost_layer(const cost_layer l, network net)
|
2014-10-13 11:29:01 +04:00
|
|
|
{
|
2017-04-10 05:56:42 +03:00
|
|
|
axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, net.delta, 1);
|
2014-10-13 11:29:01 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef GPU
|
2014-11-28 21:38:26 +03:00
|
|
|
|
2015-05-11 23:46:49 +03:00
|
|
|
void pull_cost_layer(cost_layer l)
|
2015-04-15 11:04:38 +03:00
|
|
|
{
|
2015-05-11 23:46:49 +03:00
|
|
|
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
2015-04-15 11:04:38 +03:00
|
|
|
}
|
|
|
|
|
2015-05-11 23:46:49 +03:00
|
|
|
void push_cost_layer(cost_layer l)
|
2015-04-15 11:04:38 +03:00
|
|
|
{
|
2015-05-11 23:46:49 +03:00
|
|
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
2015-04-15 11:04:38 +03:00
|
|
|
}
|
|
|
|
|
2016-09-02 02:48:41 +03:00
|
|
|
int float_abs_compare (const void * a, const void * b)
|
|
|
|
{
|
|
|
|
float fa = *(const float*) a;
|
|
|
|
if(fa < 0) fa = -fa;
|
|
|
|
float fb = *(const float*) b;
|
|
|
|
if(fb < 0) fb = -fb;
|
|
|
|
return (fa > fb) - (fa < fb);
|
|
|
|
}
|
|
|
|
|
2017-04-10 05:56:42 +03:00
|
|
|
void forward_cost_layer_gpu(cost_layer l, network net)
|
2014-10-13 11:29:01 +04:00
|
|
|
{
|
2017-06-10 02:41:00 +03:00
|
|
|
if (!net.truth_gpu) return;
|
2017-03-27 09:42:30 +03:00
|
|
|
if(l.smooth){
|
2017-06-18 23:05:37 +03:00
|
|
|
scal_gpu(l.batch*l.inputs, (1-l.smooth), net.truth_gpu, 1);
|
|
|
|
add_gpu(l.batch*l.inputs, l.smooth * 1./l.inputs, net.truth_gpu, 1);
|
2017-03-27 09:42:30 +03:00
|
|
|
}
|
2015-05-11 23:46:49 +03:00
|
|
|
if (l.cost_type == MASKED) {
|
2017-06-18 23:05:37 +03:00
|
|
|
mask_gpu(l.batch*l.inputs, net.input_gpu, SECRET_NUM, net.truth_gpu);
|
2015-05-07 00:08:16 +03:00
|
|
|
}
|
2015-09-24 00:13:43 +03:00
|
|
|
|
2016-01-28 23:30:38 +03:00
|
|
|
if(l.cost_type == SMOOTH){
|
2017-04-10 05:56:42 +03:00
|
|
|
smooth_l1_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu);
|
2017-03-27 09:42:30 +03:00
|
|
|
} else if (l.cost_type == L1){
|
2017-04-10 05:56:42 +03:00
|
|
|
l1_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu);
|
2016-01-28 23:30:38 +03:00
|
|
|
} else {
|
2017-04-10 05:56:42 +03:00
|
|
|
l2_gpu(l.batch*l.inputs, net.input_gpu, net.truth_gpu, l.delta_gpu, l.output_gpu);
|
2016-01-28 23:30:38 +03:00
|
|
|
}
|
2014-11-19 00:51:04 +03:00
|
|
|
|
2017-06-18 23:05:37 +03:00
|
|
|
if (l.cost_type == SEG && l.noobject_scale != 1) {
|
|
|
|
scale_mask_gpu(l.batch*l.inputs, l.delta_gpu, 0, net.truth_gpu, l.noobject_scale);
|
|
|
|
scale_mask_gpu(l.batch*l.inputs, l.output_gpu, 0, net.truth_gpu, l.noobject_scale);
|
|
|
|
}
|
|
|
|
|
2016-09-02 02:48:41 +03:00
|
|
|
if(l.ratio){
|
|
|
|
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
|
|
|
qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare);
|
|
|
|
int n = (1-l.ratio) * l.batch*l.inputs;
|
|
|
|
float thresh = l.delta[n];
|
|
|
|
thresh = 0;
|
|
|
|
printf("%f\n", thresh);
|
2017-06-18 23:05:37 +03:00
|
|
|
supp_gpu(l.batch*l.inputs, thresh, l.delta_gpu, 1);
|
2016-09-02 02:48:41 +03:00
|
|
|
}
|
|
|
|
|
2017-03-27 09:42:30 +03:00
|
|
|
if(l.thresh){
|
2017-06-18 23:05:37 +03:00
|
|
|
supp_gpu(l.batch*l.inputs, l.thresh*1./l.inputs, l.delta_gpu, 1);
|
2017-03-27 09:42:30 +03:00
|
|
|
}
|
|
|
|
|
2016-03-01 00:54:12 +03:00
|
|
|
cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs);
|
|
|
|
l.cost[0] = sum_array(l.output, l.batch*l.inputs);
|
2014-10-13 11:29:01 +04:00
|
|
|
}
|
|
|
|
|
2017-04-10 05:56:42 +03:00
|
|
|
void backward_cost_layer_gpu(const cost_layer l, network net)
|
2014-10-13 11:29:01 +04:00
|
|
|
{
|
2017-06-18 23:05:37 +03:00
|
|
|
axpy_gpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, net.delta_gpu, 1);
|
2014-10-13 11:29:01 +04:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|